1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/********************************************************************
* Description: spherical_arc.c
*
* A simple spherical linear interpolation library and related functions.
*
* Author: Robert W. Ellenberg
* License: GPL Version 2
* System: Linux
*
* Copyright (c) 2014 All rights reserved.
*
********************************************************************/
#include "posemath.h"
#include "spherical_arc.h"
#include "tp_types.h"
#include "rtapi_math.h"
#include "tp_debug.h"
int arcInitFromPoints(SphericalArc * const arc, PmCartesian const * const start,
PmCartesian const * const end,
PmCartesian const * const center)
{
#ifdef ARC_PEDANTIC
if (!P0 || !P1 || !center) {
return TP_ERR_MISSING_INPUT;
if (!arc) {
return TP_ERR_MISSING_OUTPUT;
}
#endif
// Store the start, end, and center
arc->start = *start;
arc->end = *end;
arc->center = *center;
pmCartCartSub(start, center, &arc->rStart);
pmCartCartSub(end, center, &arc->rEnd);
// Find the radii at start and end. These are identical for a perfect spherical arc
double radius0, radius1;
pmCartMag(&arc->rStart, &radius0);
pmCartMag(&arc->rEnd, &radius1);
tp_debug_print("radii are %g and %g\n",
radius0,
radius1);
if (radius0 < ARC_MIN_RADIUS || radius1 < ARC_MIN_RADIUS) {
tp_debug_print("radius below min radius %f, aborting arc\n",
ARC_MIN_RADIUS);
return TP_ERR_RADIUS;
}
// Choose initial radius as nominal radius
arc->radius = radius0;
// Get unit vectors from center to start and center to end
PmCartesian u0, u1;
pmCartScalMult(&arc->rStart, 1.0 / radius0, &u0);
pmCartScalMult(&arc->rEnd, 1.0 / radius1, &u1);
// Find arc angle
double dot;
pmCartCartDot(&u0, &u1, &dot);
arc->angle = acos(dot);
tp_debug_print("spherical arc angle = %f\n", arc->angle);
// Store spiral factor as radial difference. Archimedean spiral coef. a = spiral / angle
arc->spiral = (radius1 - radius0 );
if (arc->angle < ARC_MIN_ANGLE) {
tp_debug_print("angle %f below min angle %f, aborting arc\n",
arc->angle,
ARC_MIN_ANGLE);
return TP_ERR_GEOM;
}
// Store sin of arc angle since it is reused many times for SLERP
arc->Sangle = sin(arc->angle);
return TP_ERR_OK;
}
int arcPoint(SphericalArc const * const arc, double progress, PmCartesian * const out)
{
//TODO pedantic
//Convert progress to actual progress around the arc
double net_progress = progress - arc->line_length;
if (net_progress <= 0.0 && arc->line_length > 0) {
tc_debug_print("net_progress = %f, line_length = %f\n", net_progress, arc->line_length);
//Get position on line (not actually an angle in this case)
pmCartScalMult(&arc->uTan, net_progress, out);
pmCartCartAdd(out, &arc->start, out);
} else {
double angle_in = net_progress / arc->radius;
tc_debug_print("angle_in = %f, angle_total = %f\n", angle_in, arc->angle);
double scale0 = sin(arc->angle - angle_in) / arc->Sangle;
double scale1 = sin(angle_in) / arc->Sangle;
PmCartesian interp0,interp1;
pmCartScalMult(&arc->rStart, scale0, &interp0);
pmCartScalMult(&arc->rEnd, scale1, &interp1);
pmCartCartAdd(&interp0, &interp1, out);
pmCartCartAdd(&arc->center, out, out);
}
return TP_ERR_OK;
}
int arcLength(SphericalArc const * const arc, double * const length)
{
*length = arc->radius * arc->angle + arc->line_length;
tp_debug_print("arc length = %g\n", *length);
return TP_ERR_OK;
}
int arcFromLines(SphericalArc * const arc, PmCartLine const * const line1,
PmCartLine const * const line2, double radius,
double blend_dist, double center_dist, PmCartesian * const start, PmCartesian * const end, int consume) {
PmCartesian center, normal, binormal;
// Pointer to middle point of line segment pair
PmCartesian const * const middle = &line1->end;
//TODO assert line1 end = line2 start?
//Calculate the normal direction of the arc from the difference
//between the unit vectors
pmCartCartSub(&line2->uVec, &line1->uVec, &normal);
pmCartUnitEq(&normal);
pmCartScalMultEq(&normal, center_dist);
pmCartCartAdd(middle, &normal, ¢er);
//Calculate the binormal (vector perpendicular to the plane of the
//arc)
pmCartCartCross(&line1->uVec, &line2->uVec, &binormal);
pmCartUnitEq(&binormal);
// Start point is blend_dist away from middle point in the
// negative direction of line1
pmCartScalMult(&line1->uVec, -blend_dist, start);
pmCartCartAdd(start, middle, start);
// End point is blend_dist away from middle point in the positive
// direction of line2
pmCartScalMult(&line2->uVec, blend_dist, end);
pmCartCartAddEq(end, middle);
//Handle line portion of line-arc
arc->uTan = line1->uVec;
if (consume) {
arc->line_length = line1->tmag - blend_dist;
} else {
arc->line_length = 0;
}
return arcInitFromPoints(arc, start, end, ¢er);
}
int arcConvexTest(PmCartesian const * const center,
PmCartesian const * const P, PmCartesian const * const uVec, int reverse_dir)
{
//Check if an arc-line intersection is concave or convex
double dot;
PmCartesian diff;
pmCartCartSub(P, center, &diff);
pmCartCartDot(&diff, uVec, &dot);
tp_debug_print("convex test: dot = %f, reverse_dir = %d\n", dot, reverse_dir);
int convex = (reverse_dir != 0) ^ (dot < 0);
return convex;
}
int arcTangent(SphericalArc const * const arc, PmCartesian * const tan, int at_end)
{
PmCartesian r_perp;
PmCartesian r_tan;
if (at_end) {
r_perp = arc->rEnd;
} else {
r_perp = arc->rStart;
}
pmCartCartCross(&arc->binormal, &r_perp, &r_tan);
//Get spiral component
double dr = arc->spiral / arc->angle;
//Get perpendicular component due to spiral
PmCartesian d_perp;
pmCartUnit(&r_perp, &d_perp);
pmCartScalMultEq(&d_perp, dr);
//TODO error checks
pmCartCartAdd(&d_perp, &r_tan, tan);
pmCartUnitEq(tan);
return TP_ERR_OK;
}
|