1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
|
/********************************************************************
* Description: blendmath.c
* Circular arc blend math functions
*
* Author: Robert W. Ellenberg
* License: GPL Version 2
* System: Linux
*
* Copyright (c) 2014 All rights reserved.
*
* Last change:
********************************************************************/
#include "posemath.h"
#include "tc_types.h"
#include "tc.h"
#include "tp_types.h"
#include "rtapi_math.h"
#include "spherical_arc.h"
#include "blendmath.h"
#include "tp_debug.h"
/** @section utilityfuncs Utility functions */
/**
* Find the maximum angle allowed between "tangent" segments.
* @param v speed of motion in worst case (i.e. at max feed).
* @param acc magnitude of acceleration allowed during "kink".
*
* Since we are discretized by a timestep, the maximum allowable
* "kink" in a trajectory is bounded by normal acceleration. A small
* kink will effectively be one step along the tightest radius arc
* possible at a given speed.
*/
double findMaxTangentAngle(double v_plan, double acc_limit, double cycle_time)
{
//Find acc hiccup we're allowed to get
double acc_margin = BLEND_ACC_RATIO_NORMAL * BLEND_KINK_FACTOR * acc_limit;
double dx = v_plan / cycle_time;
if (dx > 0.0) {
return (acc_margin / dx);
} else {
tp_debug_print(" Velocity or period is negative!\n");
//Should not happen...
return TP_ANGLE_EPSILON;
}
}
double findKinkAccel(double kink_angle, double v_plan, double cycle_time)
{
double dx = v_plan / cycle_time;
if (dx > 0.0) {
return (dx * kink_angle);
} else {
rtapi_print_msg(RTAPI_MSG_ERR, "dx < 0 in KinkAccel\n");
return 0;
}
}
double fsign(double f)
{
if (f>0) {
return 1.0;
} else if (f < 0) {
return -1.0;
} else {
//Technically this should be NAN but that's a useless result for tp purposes
return 0;
}
}
/** negate a value (or not) based on a bool parameter */
inline double negate(double f, int neg)
{
return (neg) ? -f : f;
}
/** Clip the input at the specified minimum (in place). */
int clip_min(double * const x, double min) {
if ( *x < min ) {
*x = min;
return 1;
}
return 0;
}
/** Clip the input at the specified maximum (in place). */
int clip_max(double * const x, double max) {
if ( *x > max ) {
*x = max;
return 1;
}
return 0;
}
/**
* Saturate a value x to be within +/- max.
*/
double saturate(double x, double max) {
if ( x > max ) {
return max;
}
else if ( x < (-max) ) {
return -max;
}
else {
return x;
}
}
/** In-place saturation function */
int sat_inplace(double * const x, double max) {
if ( *x > max ) {
*x = max;
return 1;
}
else if ( *x < -max ) {
*x = -max;
return -1;
}
return 0;
}
#if 0
static int pmCirclePrint(PmCircle const * const circ) {
tp_debug_print(" center = %f %f %f\n",
circ->center.x,
circ->center.y,
circ->center.z);
tp_debug_print(" radius = %f\n", circ->radius);
tp_debug_print(" spiral = %f\n", circ->spiral);
tp_debug_print(" angle = %f\n", circ->angle);
//TODO add other debug data here as needed
return TP_ERR_OK;
}
#endif
/**
* @section geomfuncs Geometry check functions
*/
/**
* Calculate the best-fit circle to the spiral segment.
* @param circ spiral to be approximated
* @param base_pt the point about which the circle is fit
* @param u_tan tangent unit vector at the base point of the approximation
* @param[out] center_out displaced center for circular approximation
* @param[out] radius_out adjusted radius
*
* The adjusted center for the circle fit is found by displacing the center
* along the spiral tangent by the spiral coefficient. The adjusted radius is
* the distance between the base point and this new center.
*
*/
static inline int findSpiralApproximation(PmCircle const * const circ,
PmCartesian const * const base_pt,
PmCartesian const * const u_tan,
PmCartesian * const center_out,
double * const radius_out)
{
double dr = circ->spiral / circ->angle;
pmCartScalMult(u_tan, dr, center_out);
pmCartCartAddEq(center_out, &circ->center);
PmCartesian r_adjust;
pmCartCartSub(base_pt, center_out, &r_adjust);
pmCartMag(&r_adjust, radius_out);
tp_debug_print(" adjusted center = %f %f %f\n",
center_out->x,
center_out->y,
center_out->z);
tp_debug_print(" adjusted radius = %f\n", *radius_out);
return TP_ERR_OK;
}
/**
* Calculate the angle to trim from a circle based on the blend geometry.
*
* @param P intersection point
* @param arc_center calculated center of blend arc
* @param center actual center of circle (not spiral approximated center)
* @return trim angle
*/
static inline double findTrimAngle(PmCartesian const * const P,
PmCartesian const * const arc_center,
PmCartesian const * const center)
{
//Define vectors relative to circle center
PmCartesian u_P;
pmCartCartSub(P, center, &u_P);
pmCartUnitEq(&u_P);
PmCartesian u_arccenter;
pmCartCartSub(arc_center, center, &u_arccenter);
pmCartUnitEq(&u_arccenter);
double dot;
pmCartCartDot(&u_arccenter, &u_P, &dot);
double dphi = acos(saturate(dot,1.0));
tp_debug_print(" dphi = %g\n",dphi);
return dphi;
}
int checkTangentAngle(PmCircle const * const circ, SphericalArc const * const arc, BlendGeom3 const * const geom, BlendParameters const * const param, double cycle_time, int at_end)
{
// Debug Information to diagnose tangent issues
PmCartesian u_circ, u_arc;
arcTangent(arc, &u_arc, at_end);
if (at_end) {
pmCircleTangentVector(circ, 0, &u_circ);
} else {
pmCircleTangentVector(circ, circ->angle, &u_circ);
}
pmCartUnitEq(&u_arc);
//TODO fail if theta is too large
double dot;
pmCartCartDot(&u_circ, &u_arc, &dot);
double blend_angle = acos(saturate(dot,1.0));
double angle_max = findMaxTangentAngle(param->v_plan, param->a_max, cycle_time);
tp_debug_print("tangent angle = %f, max = %f\n",
blend_angle,
angle_max);
tp_debug_print("circ_tan = [%g %g %g]\n",
u_circ.x,
u_circ.y,
u_circ.z);
tp_debug_print("arc_tan = [%g %g %g]\n",
u_arc.x,
u_arc.y,
u_arc.z);
PmCartesian diff;
pmCartCartSub(&u_arc,&u_circ,&diff);
tp_debug_print("diff = [%g %g %g]\n",
diff.x,
diff.y,
diff.z);
if (blend_angle > angle_max) {
tp_debug_print("angle too large\n");
return TP_ERR_FAIL;
}
return TP_ERR_OK;
}
/**
* Check if two cartesian vectors are parallel.
* The input tolerance specifies what the maximum angle between the
* lines containing two vectors is. Note that vectors pointing in
* opposite directions are still considered parallel, since their
* containing lines are parallel.
* @param v1 input vector 1
* @param v2 input vector 2
* @param tol angle tolerance for parallelism
*/
int pmCartCartParallel(PmCartesian const * const v1,
PmCartesian const * const v2, double tol)
{
PmCartesian u1,u2;
pmCartUnit(v1,&u1);
pmCartUnit(v2,&u2);
double dot;
pmCartCartDot(&u1, &u2, &dot);
double theta = acos(fabs(dot));
if (theta < tol) {
return 1;
} else {
return 0;
}
}
/**
* Check if a Circle and line are coplanar.
*
* @param circ PmCircle input
* @param line PmCartLine input
* @param tol deviation tolerance (magnitude of error component)
*/
int pmCircLineCoplanar(PmCircle const * const circ,
PmCartLine const * const line, double tol)
{
double dot;
pmCartCartDot(&circ->normal, &line->uVec, &dot);
if (fabs(dot) < tol) {
return 1;
} else {
return 0;
}
}
/**
* Somewhat redundant function to calculate the segment intersection angle.
* The intersection angle is half of the supplement of the "divergence" angle
* between unit vectors. If two unit vectors are pointing in the same
* direction, then the intersection angle is PI/2. This is based on the
* simple_tp formulation for tolerances.
*/
int findIntersectionAngle(PmCartesian const * const u1,
PmCartesian const * const u2, double * const theta)
{
double dot;
pmCartCartDot(u1, u2, &dot);
/*tp_debug_print("u1 = %f %f %f u2 = %f %f %f\n", u1->x, u1->y, u1->z, u2->x, u2->y, u2->z);*/
if (dot > 1.0 || dot < -1.0) {
tp_debug_print("dot product %f outside domain of acos!\n",dot);
sat_inplace(&dot,1.0);
}
*theta = acos(-dot)/2.0;
return TP_ERR_OK;
}
/** Calculate the minimum of the three values in a PmCartesian. */
double pmCartMin(PmCartesian const * const in)
{
return fmin(fmin(in->x,in->y),in->z);
}
/**
* Calculate the diameter of a circle incscribed on a central cross section of a 3D
* rectangular prism.
*
* @param normal normal direction of plane slicing prism.
* @param extents distance from center to one corner of the prism.
* @param diameter diameter of inscribed circle on cross section.
*
*/
int calculateInscribedDiameter(PmCartesian const * const normal,
PmCartesian const * const bounds, double * const diameter)
{
if (!normal ) {
return TP_ERR_MISSING_INPUT;
}
PmCartesian planar_x,planar_y,planar_z;
//Find perpendicular component of unit directions
// FIXME Assumes normal is unit length
// FIXME use plane project?
pmCartScalMult(normal, -normal->x, &planar_x);
pmCartScalMult(normal, -normal->y, &planar_y);
pmCartScalMult(normal, -normal->z, &planar_z);
planar_x.x+=1.0;
planar_y.y+=1.0;
planar_z.z+=1.0;
pmCartAbs(&planar_x, &planar_x);
pmCartAbs(&planar_y, &planar_y);
pmCartAbs(&planar_z, &planar_z);
PmCartesian planar_scales;
pmCartMag(&planar_x, &planar_scales.x);
pmCartMag(&planar_y, &planar_scales.y);
pmCartMag(&planar_z, &planar_scales.z);
PmCartesian extents;
pmCartCartDiv(bounds, &planar_scales, &extents);
*diameter = pmCartMin(&extents);
return TP_ERR_OK;
}
/** Find real roots of a quadratic equation in standard form. */
int quadraticFormula(double A, double B, double C, double * const root0,
double * const root1)
{
double disc = pmSq(B) - 4.0 * A * C;
if (disc < 0) {
tp_debug_print("discriminant < 0\n");
return TP_ERR_FAIL;
}
double t1 = pmSqrt(disc);
if (root0) {
*root0 = ( -B + t1) / (2.0 * A);
}
if (root1) {
*root1 = ( -B - t1) / (2.0 * A);
}
return TP_ERR_OK;
}
/**
* @section blending blend math functions
*/
/**
* Setup common geom parameters based on trajectory segments.
* This function populates the geom structure and "input" fields of
* the blend parameter structure. It returns an error if the segments
* are not coplanar, or if one or both segments is not a circular arc.
*
* @param geom Stores simplified geometry used to calculate blend params.
* @param prev_tc first linear move to blend
* @param tc second linear move to blend
*/
int blendGeom3Init(BlendGeom3 * const geom,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc)
{
geom->v_max1 = prev_tc->maxvel;
geom->v_max2 = tc->maxvel;
// Get tangent unit vectors to each arc at the intersection point
int res_u1 = tcGetEndTangentUnitVector(prev_tc, &geom->u_tan1);
int res_u2 = tcGetStartTangentUnitVector(tc, &geom->u_tan2);
// Initialize u1 and u2 by assuming they match the tangent direction
geom->u1 = geom->u_tan1;
geom->u2 = geom->u_tan2;
int res_intersect = tcGetIntersectionPoint(prev_tc, tc, &geom->P);
tp_debug_print("Intersection point P = %f %f %f\n",
geom->P.x,
geom->P.y,
geom->P.z);
// Find angle between tangent vectors
int res_angle = findIntersectionAngle(&geom->u_tan1,
&geom->u_tan2,
&geom->theta_tan);
blendCalculateNormals3(geom);
return res_u1 |
res_u2 |
res_intersect |
res_angle;
}
/**
* Initialize common fields in parameters structure.
*
* @param geom Stores simplified geometry used to calculate blend params.
* @param param Abstracted parameters for blending calculations
* @param acc_bound maximum X, Y, Z machine acceleration
* @param vel_bound maximum X, Y, Z machine velocity
* @param maxFeedScale maximum allowed feed override (set in INI)
*/
int blendParamKinematics(BlendGeom3 * const geom,
BlendParameters * const param,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc,
PmCartesian const * const acc_bound,
PmCartesian const * const vel_bound,
double maxFeedScale)
{
// KLUDGE: common operations, but not exactly kinematics
param->phi = (PM_PI - param->theta * 2.0);
double nominal_tolerance;
tcFindBlendTolerance(prev_tc, tc, ¶m->tolerance, &nominal_tolerance);
// Calculate max acceleration based on plane containing lines
int res_dia = calculateInscribedDiameter(&geom->binormal, acc_bound, ¶m->a_max);
// Store max normal acceleration
param->a_n_max = param->a_max * BLEND_ACC_RATIO_NORMAL;
tp_debug_print("a_max = %f, a_n_max = %f\n", param->a_max,
param->a_n_max);
// Find common velocity and acceleration
param->v_req = fmax(prev_tc->reqvel, tc->reqvel);
param->v_goal = param->v_req * maxFeedScale;
// Calculate the maximum planar velocity
double v_planar_max;
calculateInscribedDiameter(&geom->binormal, vel_bound, &v_planar_max);
tp_debug_print("v_planar_max = %f\n", v_planar_max);
// Clip the angle at a reasonable value (less than 90 deg), to prevent div by zero
double phi_effective = fmin(param->phi, PM_PI * 0.49);
// Copy over maximum velocities, clipping velocity to place altitude within base
double v_max1 = fmin(prev_tc->maxvel, tc->maxvel / cos(phi_effective));
double v_max2 = fmin(tc->maxvel, prev_tc->maxvel / cos(phi_effective));
tp_debug_print("v_max1 = %f, v_max2 = %f\n", v_max1, v_max2);
// Get "altitude"
double v_area = v_max1 * v_max2 / 2.0 * sin(param->phi);
tp_debug_print("phi = %f\n", param->phi);
tp_debug_print("v_area = %f\n", v_area);
// Get "base" of triangle
PmCartesian tmp1, tmp2, diff;
pmCartScalMult(&geom->u1, v_max1, &tmp1);
pmCartScalMult(&geom->u2, v_max2, &tmp2);
pmCartCartSub(&tmp2, &tmp1, &diff);
double base;
pmCartMag(&diff, &base);
tp_debug_print("v_base = %f\n", base);
double v_max_alt = 2.0 * v_area / base;
// Can't do altitude-based velocity calculation if we have arcs
if (prev_tc->motion_type != TC_LINEAR || tc->motion_type != TC_LINEAR) {
v_max_alt = 0.0;
}
tp_debug_print("v_max_alt = %f\n", v_max_alt);
double v_max = fmax(v_max_alt, v_planar_max);
tp_debug_print("v_max = %f\n", v_max);
param->v_goal = fmin(param->v_goal, v_max);
tp_debug_print("vr1 = %f, vr2 = %f\n", prev_tc->reqvel, tc->reqvel);
tp_debug_print("v_goal = %f, max scale = %f\n", param->v_goal, maxFeedScale);
return res_dia;
}
/**
* Setup blend parameters based on a line and an arc.
* This function populates the geom structure and "input" fields of
* the blend parameter structure. It returns an error if the segments
* are not coplanar, or if one or both segments is not a circular arc.
*
* @param geom Stores simplified geometry used to calculate blend params.
* @param param Abstracted parameters for blending calculations
* @param prev_tc first linear move to blend
* @param tc second linear move to blend
* @param acc_bound maximum X, Y, Z machine acceleration
* @param vel_bound maximum X, Y, Z machine velocity
* @param maxFeedScale maximum allowed feed override (set in INI)
*/
int blendInit3FromLineArc(BlendGeom3 * const geom, BlendParameters * const param,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc,
PmCartesian const * const acc_bound,
PmCartesian const * const vel_bound,
double maxFeedScale)
{
if (tc->motion_type != TC_CIRCULAR || prev_tc->motion_type != TC_LINEAR) {
return TP_ERR_FAIL;
}
int res_init = blendGeom3Init(geom, prev_tc, tc);
if (res_init != TP_ERR_OK) {
return res_init;
}
// Handle convexity
param->convex2 = arcConvexTest(&tc->coords.circle.xyz.center, &geom->P, &geom->u_tan1, true);
tp_debug_print("circ2 convex: %d\n",
param->convex2);
//Identify max angle for first arc by blend limits
// TODO better name?
double blend_angle_2 = param->convex2 ? geom->theta_tan : PM_PI / 2.0;
param->phi2_max = fmin(tc->coords.circle.xyz.angle / 3.0, blend_angle_2);
param->theta = geom->theta_tan;
if (param->convex2) {
PmCartesian blend_point;
pmCirclePoint(&tc->coords.circle.xyz,
param->phi2_max / 2.0,
&blend_point);
//Create new unit vector based on secant line
// Direction is away from P (at start of segment)
pmCartCartSub(&blend_point, &geom->P, &geom->u2);
pmCartUnitEq(&geom->u2);
//Reduce theta proportionally to the angle between the secant and the normal
param->theta = fmin(param->theta, geom->theta_tan - param->phi2_max / 4.0);
}
tp_debug_print("phi2_max = %f\n", param->phi2_max);
blendGeom3Print(geom);
// Check that we're not below the minimum intersection angle (making too tight an arc)
// FIXME make this an INI setting?
const double theta_min = PM_PI / 6.0;
if (param->theta < theta_min) {
tp_debug_print("theta = %f < min %f, aborting arc...\n",
param->theta,
theta_min);
}
tp_debug_print("theta = %f\n", param->theta);
param->phi = (PM_PI - param->theta * 2.0);
param->L1 = fmin(prev_tc->target, prev_tc->nominal_length / 2.0);
if (param->convex2) {
//use half of the length of the chord
param->L2 = sin(param->phi2_max/4.0) * tc->coords.circle.xyz.radius;
} else {
param->L2 = param->phi2_max * tc->coords.circle.xyz.radius;
}
tp_debug_print("L1 = %f, L2 = %f\n", param->L1, param->L2);
// Setup common parameters
blendParamKinematics(geom,
param,
prev_tc,
tc,
acc_bound,
vel_bound,
maxFeedScale);
return TP_ERR_OK;
}
int blendInit3FromArcLine(BlendGeom3 * const geom, BlendParameters * const param,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc,
PmCartesian const * const acc_bound,
PmCartesian const * const vel_bound,
double maxFeedScale)
{
if (tc->motion_type != TC_LINEAR || prev_tc->motion_type != TC_CIRCULAR) {
return TP_ERR_FAIL;
}
int res_init = blendGeom3Init(geom, prev_tc, tc);
if (res_init != TP_ERR_OK) {
return res_init;
}
param->convex1 = arcConvexTest(&prev_tc->coords.circle.xyz.center, &geom->P, &geom->u_tan2, false);
tp_debug_print("circ1 convex: %d\n",
param->convex1);
//Identify max angle for first arc by blend limits
// TODO better name?
double blend_angle_1 = param->convex1 ? geom->theta_tan : PM_PI / 2.0;
param->phi1_max = fmin(prev_tc->coords.circle.xyz.angle * 2.0 / 3.0, blend_angle_1);
param->theta = geom->theta_tan;
// Build the correct unit vector for the linear approximation
if (param->convex1) {
PmCartesian blend_point;
pmCirclePoint(&prev_tc->coords.circle.xyz,
prev_tc->coords.circle.xyz.angle - param->phi1_max / 2.0 ,
&blend_point);
//Create new unit vector based on secant line
// Direction is toward P (at end of segment)
pmCartCartSub(&geom->P, &blend_point, &geom->u1);
pmCartUnitEq(&geom->u1);
//Reduce theta proportionally to the angle between the secant and the normal
param->theta = fmin(param->theta, geom->theta_tan - param->phi1_max / 4.0);
}
blendGeom3Print(geom);
tp_debug_print("phi1_max = %f\n", param->phi1_max);
// Check that we're not below the minimum intersection angle (making too tight an arc)
// FIXME make this an INI setting?
const double theta_min = PM_PI / 6.0;
if (param->theta < theta_min) {
tp_debug_print("theta = %f < min %f, aborting arc...\n",
param->theta,
theta_min);
}
tp_debug_print("theta = %f\n", param->theta);
param->L1 = param->phi1_max * prev_tc->coords.circle.xyz.radius;
param->L2 = tc->nominal_length / 2.0;
if (param->convex1) {
//use half of the length of the chord
param->L1 = sin(param->phi1_max/4.0) * prev_tc->coords.circle.xyz.radius;
}
tp_debug_print("L1 = %f, L2 = %f\n", param->L1, param->L2);
// Setup common parameters
blendParamKinematics(geom,
param,
prev_tc,
tc,
acc_bound,
vel_bound,
maxFeedScale);
return TP_ERR_OK;
}
/**
* Setup blend paramaters based on two circular arc segments.
* This function populates the geom structure and "input" fields of
* the blend parameter structure. It returns an error if the segments
* are not coplanar, or if one or both segments is not a circular arc.
*
* @param geom Stores simplified geometry used to calculate blend params.
* @param param Abstracted parameters for blending calculations
* @param prev_tc first linear move to blend
* @param tc second linear move to blend
* @param acc_bound maximum X, Y, Z machine acceleration
* @param vel_bound maximum X, Y, Z machine velocity
* @param maxFeedScale maximum allowed feed override (set in INI)
*/
int blendInit3FromArcArc(BlendGeom3 * const geom, BlendParameters * const param,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc,
PmCartesian const * const acc_bound,
PmCartesian const * const vel_bound,
double maxFeedScale)
{
if (tc->motion_type != TC_CIRCULAR || prev_tc->motion_type != TC_CIRCULAR) {
return TP_ERR_FAIL;
}
int res_init = blendGeom3Init(geom, prev_tc, tc);
if (res_init != TP_ERR_OK) {
return res_init;
}
//Do normal calculation here since we need this information for accel / vel limits
blendCalculateNormals3(geom);
// Get intersection point from circle start
pmCirclePoint(&tc->coords.circle.xyz, 0.0, &geom->P);
tp_debug_print("Intersection point P = %f %f %f\n",
geom->P.x,
geom->P.y,
geom->P.z);
param->convex1 = arcConvexTest(&prev_tc->coords.circle.xyz.center, &geom->P, &geom->u_tan2, false);
param->convex2 = arcConvexTest(&tc->coords.circle.xyz.center, &geom->P, &geom->u_tan1, true);
tp_debug_print("circ1 convex: %d, circ2 convex: %d\n",
param->convex1,
param->convex2);
//Identify max angle for first arc by blend limits
// TODO better name?
double blend_angle_1 = param->convex1 ? geom->theta_tan : PM_PI / 2.0;
double blend_angle_2 = param->convex2 ? geom->theta_tan : PM_PI / 2.0;
param->phi1_max = fmin(prev_tc->coords.circle.xyz.angle * 2.0 / 3.0, blend_angle_1);
param->phi2_max = fmin(tc->coords.circle.xyz.angle / 3.0, blend_angle_2);
param->theta = geom->theta_tan;
// Build the correct unit vector for the linear approximation
if (param->convex1) {
PmCartesian blend_point;
pmCirclePoint(&prev_tc->coords.circle.xyz,
prev_tc->coords.circle.xyz.angle - param->phi1_max / 2.0,
&blend_point);
//Create new unit vector based on secant line
// Direction is toward P (at end of segment)
pmCartCartSub(&geom->P, &blend_point, &geom->u1);
pmCartUnitEq(&geom->u1);
//Reduce theta proportionally to the angle between the secant and the normal
param->theta = fmin(param->theta, geom->theta_tan - param->phi1_max / 4.0);
}
if (param->convex2) {
PmCartesian blend_point;
pmCirclePoint(&tc->coords.circle.xyz,
param->phi2_max / 2.0,
&blend_point);
//Create new unit vector based on secant line
// Direction is away from P (at start of segment)
pmCartCartSub(&blend_point, &geom->P, &geom->u2);
pmCartUnitEq(&geom->u2);
//Reduce theta proportionally to the angle between the secant and the normal
param->theta = fmin(param->theta, geom->theta_tan - param->phi2_max / 4.0);
}
blendGeom3Print(geom);
// Check that we're not below the minimum intersection angle (making too tight an arc)
// FIXME make this an INI setting?
const double theta_min = PM_PI / 12.0;
if (param->theta < theta_min) {
tp_debug_print("theta = %f < min %f, aborting arc...\n",
param->theta,
theta_min);
return TP_ERR_FAIL;
}
tp_debug_print("theta = %f\n", param->theta);
param->phi = (PM_PI - param->theta * 2.0);
param->L1 = param->phi1_max * prev_tc->coords.circle.xyz.radius;
param->L2 = param->phi2_max * tc->coords.circle.xyz.radius;
if (param->convex1) {
//use half of the length of the chord
param->L1 = sin(param->phi1_max/4.0) * prev_tc->coords.circle.xyz.radius;
}
if (param->convex2) {
//use half of the length of the chord
param->L2 = sin(param->phi2_max/4.0) * tc->coords.circle.xyz.radius;
}
tp_debug_print("L1 = %f, L2 = %f\n", param->L1, param->L2);
tp_debug_print("phi1_max = %f\n",param->phi1_max);
tp_debug_print("phi2_max = %f\n",param->phi2_max);
// Setup common parameters
blendParamKinematics(geom,
param,
prev_tc,
tc,
acc_bound,
vel_bound,
maxFeedScale);
return TP_ERR_OK;
}
/**
* Setup blend paramaters based on two linear segments.
* This function populates the geom structure and "input" fields of the blend parameter structure based.
* @param geom Stores simplified geometry used to calculate blend params.
* @param param Abstracted parameters for blending calculations
* @param prev_tc first linear move to blend
* @param tc second linear move to blend
* @param acc_bound maximum X, Y, Z machine acceleration
* @param vel_bound maximum X, Y, Z machine velocity
* @param maxFeedScale maximum allowed feed override (set in INI)
*/
int blendInit3FromLineLine(BlendGeom3 * const geom, BlendParameters * const param,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc,
PmCartesian const * const acc_bound,
PmCartesian const * const vel_bound,
double maxFeedScale)
{
if (tc->motion_type != TC_LINEAR || prev_tc->motion_type != TC_LINEAR) {
return TP_ERR_FAIL;
}
int res_init = blendGeom3Init(geom, prev_tc, tc);
if (res_init != TP_ERR_OK) {
return res_init;
}
param->theta = geom->theta_tan;
tp_debug_print("theta = %f\n", param->theta);
param->phi = (PM_PI - param->theta * 2.0);
blendGeom3Print(geom);
const double greediness = 0.5;
//Nominal length restriction prevents gobbling too much of parabolic blends
param->L1 = fmin(prev_tc->target, prev_tc->nominal_length * greediness);
param->L2 = tc->target * greediness;
tp_debug_print("prev. nominal length = %f, next nominal_length = %f\n",
prev_tc->nominal_length, tc->nominal_length);
tp_debug_print("L1 = %f, L2 = %f\n", param->L1, param->L2);
// Setup common parameters
blendParamKinematics(geom,
param,
prev_tc,
tc,
acc_bound,
vel_bound,
maxFeedScale);
return TP_ERR_OK;
}
/**
* Calculate plane normal and binormal based on unit direction vectors.
*/
int blendCalculateNormals3(BlendGeom3 * const geom)
{
int err_cross = pmCartCartCross(&geom->u_tan1,
&geom->u_tan2,
&geom->binormal);
int err_unit_b = pmCartUnitEq(&geom->binormal);
tp_debug_print("binormal = [%f %f %f]\n", geom->binormal.x,
geom->binormal.y,
geom->binormal.z);
pmCartCartSub(&geom->u_tan2, &geom->u_tan1, &geom->normal);
int err_unit_n = pmCartUnitEq(&geom->normal);
tp_debug_print("normal = [%f %f %f]\n", geom->normal.x,
geom->normal.y,
geom->normal.z);
return (err_cross || err_unit_b || err_unit_n);
}
/**
* Compute blend parameters based on line data.
* Blend arc parameters such as radius and velocity are calculated here. These
* parameters are later used to create the actual arc geometry in other
* functions.
*/
int blendComputeParameters(BlendParameters * const param)
{
// Find maximum distance h from arc center to intersection point
double h_tol = param->tolerance / (1.0 - sin(param->theta));
// Find maximum distance along lines allowed by tolerance
double d_tol = cos(param->theta) * h_tol;
tp_debug_print(" d_tol = %f\n", d_tol);
// Find minimum distance by blend length constraints
double d_lengths = fmin(param->L1, param->L2);
double d_geom = fmin(d_lengths, d_tol);
// Find radius from the limiting length
double R_geom = tan(param->theta) * d_geom;
// Find maximum velocity allowed by accel and radius
double v_normal = pmSqrt(param->a_n_max * R_geom);
tp_debug_print("v_normal = %f\n", v_normal);
param->v_plan = fmin(v_normal, param->v_goal);
/*Get the limiting velocity of the equivalent parabolic blend. We use the
* time it would take to do a "stock" parabolic blend as a metric for how
* much of the segment to consume. A long segment will have a high
* "triangle" velocity, so the radius will only be as large as is needed to
* reach the cornering speed. A short segment will have a low triangle
* velocity, much lower than the actual curvature limit, which can be used
* to calculate an equivalent blend radius.
* */
double a_parabolic = param->a_max * 0.5;
double v_triangle = pmSqrt(2.0 * a_parabolic * d_geom);
double t_blend = fmin(v_triangle, param->v_plan) / (a_parabolic);
double s_blend = t_blend * param->v_plan;
double R_blend = fmin(s_blend / param->phi, R_geom); //Clamp by limiting radius
param->R_plan = fmax(pmSq(param->v_plan) / param->a_n_max, R_blend);
param->d_plan = param->R_plan / tan(param->theta);
tp_debug_print("v_plan = %f\n", param->v_plan);
tp_debug_print("R_plan = %f\n", param->R_plan);
tp_debug_print("d_plan = %f\n", param->d_plan);
/* "Actual" velocity means the velocity when feed override is 1.0. Recall
* that v_plan may be greater than v_req by the max feed override. If our
* worst-case planned velocity is higher than the requested velocity, then
* clip at the requested velocity. This allows us to increase speed above
* the feed override limits.
*/
if (param->v_plan > param->v_req) {
param->v_actual = param->v_req;
} else {
param->v_actual = param->v_plan;
}
// Store arc length of blend arc for future checks
param->s_arc = param->R_plan * param->phi;
if (param->R_plan < TP_POS_EPSILON) {
tp_debug_print("#Blend radius too small, aborting arc\n");
return TP_ERR_FAIL;
}
if (param->s_arc < TP_MIN_ARC_LENGTH) {
tp_debug_print("#Blend arc length too small, aborting arc\n");
return TP_ERR_FAIL;
}
return TP_ERR_OK;
}
/** Check if the previous line segment will be consumed based on the blend arc parameters. */
int blendCheckConsume(BlendParameters * const param,
BlendPoints3 const * const points,
TC_STRUCT const * const prev_tc, int gap_cycles)
{
//Initialize values
param->consume = 0;
param->line_length = 0;
if (!prev_tc) {
return -1;
}
if (prev_tc->motion_type != TC_LINEAR) {
return 0;
}
//Check for segment length limits
double L_prev = prev_tc->target - points->trim1;
double prev_seg_time = L_prev / param->v_plan;
param->consume = (prev_seg_time < gap_cycles * prev_tc->cycle_time);
if (param->consume) {
tp_debug_print("consuming prev line, L_prev = %g\n",
L_prev);
param->line_length = L_prev;
}
return 0;
}
/**
* Compute spherical arc points based on blend arc data.
* Once blend parameters are computed, the three arc points are calculated
* here.
*/
int blendFindPoints3(BlendPoints3 * const points, BlendGeom3 const * const geom,
BlendParameters const * const param)
{
// Find center of blend arc along normal vector
double center_dist = param->R_plan / sin(param->theta);
tp_debug_print("center_dist = %f\n", center_dist);
pmCartScalMult(&geom->normal, center_dist, &points->arc_center);
pmCartCartAddEq(&points->arc_center, &geom->P);
tp_debug_print("arc_center = %f %f %f\n",
points->arc_center.x,
points->arc_center.y,
points->arc_center.z);
// Start point is d_plan away from intersection P in the
// negative direction of u1
pmCartScalMult(&geom->u1, -param->d_plan, &points->arc_start);
pmCartCartAddEq(&points->arc_start, &geom->P);
tp_debug_print("arc_start = %f %f %f\n",
points->arc_start.x,
points->arc_start.y,
points->arc_start.z);
// End point is d_plan away from intersection P in the
// positive direction of u1
pmCartScalMult(&geom->u2, param->d_plan, &points->arc_end);
pmCartCartAddEq(&points->arc_end, &geom->P);
tp_debug_print("arc_end = %f %f %f\n",
points->arc_end.x,
points->arc_end.y,
points->arc_end.z);
//For line case, just copy over d_plan since it's the same
points->trim1 = param->d_plan;
points->trim2 = param->d_plan;
return TP_ERR_OK;
}
/**
* Take results of line blend calculation and project onto circular arc and line
*/
int blendLineArcPostProcess(BlendPoints3 * const points, BlendPoints3 const * const points_in,
BlendParameters * const param, BlendGeom3 const * const geom,
PmCartLine const * const line1, PmCircle const * const circ2)
{
PmCartesian center2;
double radius2;
findSpiralApproximation(circ2,
&geom->P,
&geom->u_tan2,
¢er2,
&radius2);
// Define distances from actual center to circle centers
double d2 = negate(param->R_plan, param->convex2) + radius2;
tp_debug_print("d2 = %f\n", d2);
//Get unit vector normal to line in plane, towards arc center
PmCartesian n1;
pmCartCartCross(&geom->binormal, &geom->u1, &n1);
pmCartUnitEq(&n1);
tp_debug_print("n1 = %f %f %f\n",
n1.x,
n1.y,
n1.z);
PmCartesian r_PC2;
pmCartCartSub(¢er2, &geom->P, &r_PC2);
double c2_u,c2_n; //Components of C2-P on u1 and n1
pmCartCartDot(&r_PC2, &geom->u1, &c2_u);
pmCartCartDot(&r_PC2, &n1, &c2_n);
tp_debug_print("c2_u = %f, c2_n = %f\n",
c2_u,
c2_n);
double d_L; // badly named distance along line to intersection
double A = 1;
double B = 2.0 * c2_u;
double C = pmSq(c2_u) - pmSq(d2) + pmSq(param->R_plan - c2_n);
double root0,root1;
int res_dist = quadraticFormula(A, B, C, &root0, &root1);
if (res_dist) {
return TP_ERR_FAIL;
}
tp_debug_print("root0 = %f, root1 = %f\n", root0,
root1);
d_L = fmin(fabs(root0),fabs(root1));
if (d_L < 0) {
tp_debug_print("d_L can't be < 0, aborting...\n");
return TP_ERR_FAIL;
}
PmCartesian C_u, C_n;
pmCartScalMult(&geom->u1, -d_L, &C_u);
pmCartScalMult(&n1, param->R_plan, &C_n);
PmCartesian r_PC;
//Continue with correct solution, get actual center
pmCartCartAdd(&C_u, &C_n, &r_PC);
pmCartCartAdd(&geom->P, &r_PC, &points->arc_center);
tp_debug_print("arc center = %f %f %f\n",
points->arc_center.x,
points->arc_center.y,
points->arc_center.z);
//Verify tolerances
double h;
pmCartMag(&r_PC, &h);
tp_debug_print("center_dist = %f\n", h);
double T_final = h - param->R_plan;
tp_debug_print("T_final = %f\n",T_final);
if (T_final > param->tolerance) {
tp_debug_print("Projected circle T (%f) exceeds tolerance %f, aborting blend arc\n",
T_final,
param->tolerance);
return TP_ERR_FAIL;
}
points->trim1 = d_L;
points->trim2 = findTrimAngle(&geom->P,
&points->arc_center,
¢er2);
return TP_ERR_OK;
}
/**
* Take results of line blend calculation and project onto circular arc and line
*/
int blendArcLinePostProcess(BlendPoints3 * const points, BlendPoints3 const * const points_in,
BlendParameters * const param, BlendGeom3 const * const geom,
PmCircle const * const circ1, PmCartLine const * const line2)
{
//Create "shifted center" approximation of spiral circles
PmCartesian center1;
double radius1;
findSpiralApproximation(circ1,
&geom->P,
&geom->u_tan1,
¢er1,
&radius1);
// Define distance from actual arc center to circle center
double d1 = negate(param->R_plan, param->convex1) + radius1;
tp_debug_print("d1 = %f\n", d1);
//Get unit vector normal to line in plane, towards arc center
PmCartesian n2;
pmCartCartCross(&geom->binormal, &geom->u2, &n2);
pmCartUnitEq(&n2);
tp_debug_print("n2 = %f %f %f\n",
n2.x,
n2.y,
n2.z);
PmCartesian r_PC1;
pmCartCartSub(¢er1, &geom->P, &r_PC1);
double c1_u, c1_n; //Components of C1-P on u2 and n2
pmCartCartDot(&r_PC1, &geom->u2, &c1_u);
pmCartCartDot(&r_PC1, &n2, &c1_n);
double d_L; // badly named distance along line to intersection
double A = 1;
double B = 2.0 * c1_u;
double C = pmSq(c1_u) - pmSq(d1) + pmSq(param->R_plan - c1_n);
double root0,root1;
int res_dist = quadraticFormula(A, B, C, &root0, &root1);
if (res_dist) {
return TP_ERR_FAIL;
}
tp_debug_print("root0 = %f, root1 = %f\n", root0,
root1);
d_L = fmin(fabs(root0),fabs(root1));
if (d_L < 0) {
tp_debug_print("d_L can't be < 0, aborting...\n");
return TP_ERR_FAIL;
}
PmCartesian C_u, C_n;
pmCartScalMult(&geom->u2, d_L, &C_u);
pmCartScalMult(&n2, param->R_plan, &C_n);
PmCartesian r_PC;
//Continue with correct solution, get actual center
pmCartCartAdd(&C_u, &C_n, &r_PC);
pmCartCartAdd(&geom->P, &r_PC, &points->arc_center);
tp_debug_print("arc center = %f %f %f\n",
points->arc_center.x,
points->arc_center.y,
points->arc_center.z);
//Verify tolerances
double h;
pmCartMag(&r_PC, &h);
tp_debug_print("center_dist = %f\n", h);
double T_final = h - param->R_plan;
if (T_final > param->tolerance) {
tp_debug_print("Projected circle T (%f) exceeds tolerance %f, aborting blend arc\n",
T_final,
param->tolerance);
return TP_ERR_FAIL;
}
tp_debug_print("T_final = %f\n",T_final);
points->trim1 = findTrimAngle(&geom->P,
&points->arc_center,
¢er1);
points->trim2 = d_L;
return TP_ERR_OK;
}
/**
* "Post-process" results from linear approximation to fit the circular segments.
* This step handles the projection from the linear approximation of each
* circle. Given the solved radius and tolerance, this function updates the
* points structure with the exact trim angles for each segment.
*/
int blendArcArcPostProcess(BlendPoints3 * const points, BlendPoints3 const * const points_in,
BlendParameters * const param, BlendGeom3 const * const geom,
PmCircle const * const circ1, PmCircle const * const circ2)
{
// Create "shifted center" approximation of spiral circles
// TODO refers to u1 instead of utan?
PmCartesian center1, center2;
double radius1, radius2;
findSpiralApproximation(circ1,
&geom->P,
&geom->u_tan1,
¢er1,
&radius1);
findSpiralApproximation(circ2,
&geom->P,
&geom->u_tan2,
¢er2,
&radius2);
// Define distances from actual center to adjusted circle centers
double d1 = negate(param->R_plan, param->convex1) + radius1;
double d2 = negate(param->R_plan, param->convex2) + radius2;
tp_debug_print("d1 = %f, d2 = %f\n", d1, d2);
//Find "x" distance between C1 and C2
PmCartesian r_C1C2;
pmCartCartSub(¢er2, ¢er1, &r_C1C2);
double c2x;
pmCartMag(&r_C1C2, &c2x);
// Compute the new center location
double Cx = (-pmSq(d1) + pmSq(d2)-pmSq(c2x)) / (-2.0 * c2x);
double Cy = pmSqrt(pmSq(d1) - pmSq(Cx));
tp_debug_print("Cx = %f, Cy = %f\n",Cx,Cy);
// Find the basis vector uc from center1 to center2
PmCartesian uc;
//TODO catch failures here
int norm_err = pmCartUnit(&r_C1C2, &uc);
if (norm_err) {
return TP_ERR_FAIL;
}
// Find the basis vector perpendicular to the binormal and uc
PmCartesian nc;
pmCartCartCross(&geom->binormal, &uc, &nc);
//Check if nc is in the same half-plane as the intersection normal. if not,
//we need to flip it around to choose the correct solution.
double dot1;
pmCartCartDot(&geom->normal, &nc, &dot1);
if (dot1 < 0) {
pmCartNegEq(&nc);
}
norm_err = pmCartUnitEq(&nc);
if (norm_err) {
return TP_ERR_FAIL;
}
//Find components of center position wrt circle 1 center.
PmCartesian c_x, c_y;
pmCartScalMult(&uc, Cx, &c_x);
pmCartScalMult(&nc, Cy, &c_y);
//Get vector from P to first center
PmCartesian r_PC1;
pmCartCartSub(¢er1, &geom->P, &r_PC1);
// Get "test vectors, relative distance from solution center to P
PmCartesian test1, test2;
pmCartCartAdd(&r_PC1, &c_x, &test1);
test2=test1;
//Add and subtract c_y component to get equivalent of two Y solutions
pmCartCartAddEq(&test1, &c_y);
pmCartCartSubEq(&test2, &c_y);
double mag1,mag2;
pmCartMag(&test1, &mag1);
pmCartMag(&test2, &mag2);
if (mag2 < mag1)
{
//negative solution is closer
pmCartNegEq(&c_y);
}
//Continue with correct solution, get actual center
PmCartesian r_C1C;
pmCartCartAdd(&c_x, &c_y, &r_C1C);
pmCartCartAdd(¢er1, &r_C1C, &points->arc_center);
tp_debug_print("arc center = %f %f %f\n",
points->arc_center.x,
points->arc_center.y,
points->arc_center.z);
//Find components of center position wrt circle 2 center.
PmCartesian r_C2C;
pmCartCartSub(&points->arc_center, ¢er2, &r_C2C);
PmCartesian r_PC;
pmCartCartSub(&points->arc_center, &geom->P, &r_PC);
//Verify tolerances
double h;
pmCartMag(&r_PC, &h);
tp_debug_print("center_dist = %f\n", h);
double T_final = h - param->R_plan;
if (T_final > param->tolerance) {
tp_debug_print("Projected circle T (%f) exceeds tolerance %f, aborting blend arc\n",
T_final,
param->tolerance);
return TP_ERR_FAIL;
}
tp_debug_print("T_final = %f\n",T_final);
points->trim1 = findTrimAngle(&geom->P,
&points->arc_center,
¢er1);
points->trim2 = findTrimAngle(&geom->P,
&points->arc_center,
¢er2);
tp_debug_print("trim1 = %f, trim2 = %f\n",
points->trim1,
points->trim2);
return TP_ERR_OK;
}
/**
* Setup the spherical arc struct based on the blend arc data.
*/
int arcFromBlendPoints3(SphericalArc * const arc, BlendPoints3 const * const points,
BlendGeom3 const * const geom, BlendParameters const * const param)
{
// If we consume the previous line, the remaining line length gets added here
arc->uTan = geom->u_tan1;
arc->line_length = param->line_length;
arc->binormal = geom->binormal;
// Create the arc from the processed points
return arcInitFromPoints(arc, &points->arc_start,
&points->arc_end, &points->arc_center);
}
int blendGeom3Print(BlendGeom3 const * const geom)
{
tp_debug_print("u1 = %f %f %f\n",
geom->u1.x,
geom->u1.y,
geom->u1.z);
tp_debug_print("u2 = %f %f %f\n",
geom->u2.x,
geom->u2.y,
geom->u2.z);
return 0;
}
int blendPoints3Print(BlendPoints3 const * const points)
{
tp_debug_print("arc_start = %f %f %f\n",
points->arc_start.x,
points->arc_start.y,
points->arc_start.z);
tp_debug_print("arc_center = %f %f %f\n",
points->arc_center.x,
points->arc_center.y,
points->arc_center.z);
tp_debug_print("arc_end = %f %f %f\n",
points->arc_end.x,
points->arc_end.y,
points->arc_end.z);
return 0;
}
double pmCircleActualMaxVel(PmCircle * const circle, double v_max, double a_max, int parabolic)
{
if (parabolic) {
a_max /= 2.0;
}
double a_n_max = BLEND_ACC_RATIO_NORMAL * a_max;
double v_max_acc = pmSqrt(a_n_max * circle->radius);
if (v_max_acc < v_max) {
tp_debug_print("Maxvel limited from %f to %f for tangential acceleration\n", v_max, v_max_acc);
return v_max_acc;
} else {
tp_debug_print("v_max %f is within limit of v_max_acc %f\n",v_max, v_max_acc);
return v_max;
}
}
|