summaryrefslogtreecommitdiff
path: root/src/emc/kinematics/pumakins.c
blob: fdd674c253ebf7c7eaddf5922dcd1643fce18448 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*****************************************************************
* Description: pumakins.c
*   Kinematics for puma typed robots
*   Set the params using HAL to fit your robot
*
*   Derived from a work by Fred Proctor
*
* Author: 
* License: GPL Version 2
* System: Linux
*    
* Copyright (c) 2004 All rights reserved.
*
* Last change:
*******************************************************************
*/

#include "rtapi_math.h"
#include "posemath.h"
#include "pumakins.h"
#include "kinematics.h"             /* decls for kinematicsForward, etc. */


#include "rtapi.h"		/* RTAPI realtime OS API */
#include "rtapi_app.h"		/* RTAPI realtime module decls */
#include "hal.h"

struct haldata {
    hal_float_t *a2, *a3, *d3, *d4;
} *haldata = 0;


#define PUMA_A2 (*(haldata->a2))
#define PUMA_A3 (*(haldata->a3))
#define PUMA_D3 (*(haldata->d3))
#define PUMA_D4 (*(haldata->d4))


int kinematicsForward(const double * joint,
                      EmcPose * world,
                      const KINEMATICS_FORWARD_FLAGS * fflags,
                      KINEMATICS_INVERSE_FLAGS * iflags)
{

   double s1, s2, s3, s4, s5, s6;
   double c1, c2, c3, c4, c5, c6;
   double s23;
   double c23;
   double t1, t2, t3, t4, t5;
   double sumSq, k;
   PmHomogeneous hom;
   PmPose worldPose;
   PmRpy rpy;

   /* Calculate sin of joints for future use */
   s1 = sin(joint[0]*PM_PI/180);
   s2 = sin(joint[1]*PM_PI/180);
   s3 = sin(joint[2]*PM_PI/180);
   s4 = sin(joint[3]*PM_PI/180);
   s5 = sin(joint[4]*PM_PI/180);
   s6 = sin(joint[5]*PM_PI/180);

   /* Calculate cos of joints for future use */
   c1 = cos(joint[0]*PM_PI/180);
   c2 = cos(joint[1]*PM_PI/180);
   c3 = cos(joint[2]*PM_PI/180);
   c4 = cos(joint[3]*PM_PI/180);
   c5 = cos(joint[4]*PM_PI/180);
   c6 = cos(joint[5]*PM_PI/180);

   s23 = c2 * s3 + s2 * c3;
   c23 = c2 * c3 - s2 * s3;

   /* Calculate terms to be used in definition of... */
   /* first column of rotation matrix.               */
   t1 = c4 * c5 * c6 - s4 * s6;
   t2 = s23 * s5 * c6;
   t3 = s4 * c5 * c6 + c4 * s6;
   t4 = c23 * t1 - t2;
   t5 = c23 * s5 * c6;

   /* Define first column of rotation matrix */
   hom.rot.x.x = c1 * t4 + s1 * t3;
   hom.rot.x.y = s1 * t4 - c1 * t3;
   hom.rot.x.z = -s23 * t1 - t5;

   /* Calculate terms to be used in definition of...  */
   /* second column of rotation matrix.               */
   t1 = -c4 * c5 * s6 - s4 * c6;
   t2 = s23 * s5 * s6;
   t3 = c4 * c6 - s4 * c5 * s6;
   t4 = c23 * t1 + t2;
   t5 = c23 * s5 * s6;

   /* Define second column of rotation matrix */
   hom.rot.y.x = c1 * t4 + s1 * t3;
   hom.rot.y.y = s1 * t4 - c1 * t3;
   hom.rot.y.z = -s23 * t1 + t5;

   /* Calculate term to be used in definition of... */
   /* third column of rotation matrix.              */
   t1 = c23 * c4 * s5 + s23 * c5;

   /* Define third column of rotation matrix */
   hom.rot.z.x = -c1 * t1 - s1 * s4 * s5;
   hom.rot.z.y = -s1 * t1 + c1 * s4 * s5;
   hom.rot.z.z = s23 * c4 * s5 - c23 * c5;

   /* Calculate term to be used in definition of...  */
   /* position vector.                               */
   t1 = PUMA_A2 * c2 + PUMA_A3 * c23 - PUMA_D4 * s23;

   /* Define position vector */
   hom.tran.x = c1 * t1 - PUMA_D3 * s1;
   hom.tran.y = s1 * t1 + PUMA_D3 * c1;
   hom.tran.z = -PUMA_A3 * s23 - PUMA_A2 * s2 - PUMA_D4 * c23;

   /* Calculate terms to be used to...   */
   /* determine flags.                   */
   sumSq = hom.tran.x * hom.tran.x + hom.tran.y * hom.tran.y -
           PUMA_D3 * PUMA_D3;
   k = (sumSq + hom.tran.z * hom.tran.z - PUMA_A2 * PUMA_A2 -
       PUMA_A3 * PUMA_A3 - PUMA_D4 * PUMA_D4) /
       (2.0 * PUMA_A2);

   /* reset flags */
   *iflags = 0;

   /* Set shoulder-up flag if necessary */
   if (fabs(joint[0]*PM_PI/180 - atan2(hom.tran.y, hom.tran.x) +
       atan2(PUMA_D3, -sqrt(sumSq))) < FLAG_FUZZ)
   {
     *iflags |= PUMA_SHOULDER_RIGHT;
   }

   /* Set elbow down flag if necessary */
   if (fabs(joint[2]*PM_PI/180 - atan2(PUMA_A3, PUMA_D4) +
       atan2(k, -sqrt(PUMA_A3 * PUMA_A3 +
       PUMA_D4 * PUMA_D4 - k * k))) < FLAG_FUZZ)
   {
      *iflags |= PUMA_ELBOW_DOWN;
   }

   /* set singular flag if necessary */
   t1 = -hom.rot.z.x * s1 + hom.rot.z.y * c1;
   t2 = -hom.rot.z.x * c1 * c23 - hom.rot.z.y * s1 * c23 +
         hom.rot.z.z * s23;
   if (fabs(t1) < SINGULAR_FUZZ && fabs(t2) < SINGULAR_FUZZ)
   {
      *iflags |= PUMA_SINGULAR;
   }

   /* if not singular set wrist flip flag if necessary */
   else{
     if (! (fabs(joint[3]*PM_PI/180 - atan2(t1, t2)) < FLAG_FUZZ))
     {
       *iflags |= PUMA_WRIST_FLIP;
     }
   }

   /* convert hom.rot to world->quat */
   pmHomPoseConvert(&hom, &worldPose);
   pmQuatRpyConvert(&worldPose.rot,&rpy);
   world->tran = worldPose.tran;
   world->a = rpy.r * 180.0/PM_PI;
   world->b = rpy.p * 180.0/PM_PI;
   world->c = rpy.y * 180.0/PM_PI;

   
   /* return 0 and exit */
   return 0;
}

int kinematicsInverse(const EmcPose * world,
                      double * joint,
                      const KINEMATICS_INVERSE_FLAGS * iflags,
                      KINEMATICS_FORWARD_FLAGS * fflags)
{
   PmHomogeneous hom;
   PmPose worldPose;
   PmRpy rpy;
   int singular;

   double t1, t2, t3;
   double k;
   double sumSq;

   double th1;
   double th3;
   double th23;
   double th2;
   double th4;
   double th5;
   double th6;

   double s1, c1;
   double s3, c3;
   double s23, c23;
   double s4, c4;
   double s5, c5;
   double s6, c6;

   /* reset flags */
   *fflags = 0;

   /* convert pose to hom */
   worldPose.tran = world->tran;
   rpy.r = world->a*PM_PI/180.0;
   rpy.p = world->b*PM_PI/180.0;
   rpy.y = world->c*PM_PI/180.0;
   pmRpyQuatConvert(&rpy,&worldPose.rot);
   pmPoseHomConvert(&worldPose, &hom);

   /* Joint 1 (2 independent solutions) */

   /* save sum of squares for this and subsequent calcs */
   sumSq = hom.tran.x * hom.tran.x + hom.tran.y * hom.tran.y -
           PUMA_D3 * PUMA_D3;

   /* FIXME-- is use of + sqrt shoulder right or left? */
   if (*iflags & PUMA_SHOULDER_RIGHT){
     th1 = atan2(hom.tran.y, hom.tran.x) - atan2(PUMA_D3, -sqrt(sumSq));
   }
   else{
     th1 = atan2(hom.tran.y, hom.tran.x) - atan2(PUMA_D3, sqrt(sumSq));
   }

   /* save sin, cos for later calcs */
   s1 = sin(th1);
   c1 = cos(th1);

   /* Joint 3 (2 independent solutions) */

   k = (sumSq + hom.tran.z * hom.tran.z - PUMA_A2 * PUMA_A2 -
       PUMA_A3 * PUMA_A3 - PUMA_D4 * PUMA_D4) / (2.0 * PUMA_A2);

   /* FIXME-- is use of + sqrt elbow up or down? */
   if (*iflags & PUMA_ELBOW_DOWN){
     th3 = atan2(PUMA_A3, PUMA_D4) - atan2(k, -sqrt(PUMA_A3 * PUMA_A3 + PUMA_D4 * PUMA_D4 - k * k));
   }
   else{
     th3 = atan2(PUMA_A3, PUMA_D4) -
           atan2(k, sqrt(PUMA_A3 * PUMA_A3 + PUMA_D4 * PUMA_D4 - k * k));
   }

   /* compute sin, cos for later calcs */
   s3 = sin(th3);
   c3 = cos(th3);

   /* Joint 2 */

   t1 = (-PUMA_A3 - PUMA_A2 * c3) * hom.tran.z +
        (c1 * hom.tran.x + s1 * hom.tran.y) * (PUMA_A2 * s3 - PUMA_D4);
   t2 = (PUMA_A2 * s3 - PUMA_D4) * hom.tran.z +
        (PUMA_A3 + PUMA_A2 * c3) * (c1 * hom.tran.x + s1 * hom.tran.y);
   t3 = hom.tran.z * hom.tran.z + (c1 * hom.tran.x + s1 * hom.tran.y) *
        (c1 * hom.tran.x + s1 * hom.tran.y);

   th23 = atan2(t1, t2);
   th2 = th23 - th3;

   /* compute sin, cos for later calcs */
   s23 = t1 / t3;
   c23 = t2 / t3;

   /* Joint 4 */

   t1 = -hom.rot.z.x * s1 + hom.rot.z.y * c1;
   t2 = -hom.rot.z.x * c1 * c23 - hom.rot.z.y * s1 * c23 + hom.rot.z.z * s23;
   if (fabs(t1) < SINGULAR_FUZZ && fabs(t2) < SINGULAR_FUZZ){
     singular = 1;
     *fflags |= PUMA_REACH;
     th4 = joint[3]*PM_PI/180;            /* use current value */
   }
   else{
     singular = 0;
     th4 = atan2(t1, t2);
   }

   /* compute sin, cos for later calcs */
   s4 = sin(th4);
   c4 = cos(th4);

   /* Joint 5 */

   s5 = hom.rot.z.z * (s23 * c4) -
        hom.rot.z.x * (c1 * c23 * c4 + s1 * s4) -
        hom.rot.z.y * (s1 * c23 * c4 - c1 * s4);
   c5 =-hom.rot.z.x * (c1 * s23) - hom.rot.z.y *
        (s1 * s23) - hom.rot.z.z * c23;
   th5 = atan2(s5, c5);

   /* Joint 6 */

   s6 = hom.rot.x.z * (s23 * s4) - hom.rot.x.x *
        (c1 * c23 * s4 - s1 * c4) - hom.rot.x.y *
        (s1 * c23 * s4 + c1 * c4);
   c6 = hom.rot.x.x * ((c1 * c23 * c4 + s1 * s4) *
        c5 - c1 * s23 * s5) + hom.rot.x.y *
        ((s1 * c23 * c4 - c1 * s4) * c5 - s1 * s23 * s5) -
        hom.rot.x.z * (s23 * c4 * c5 + c23 * s5);
   th6 = atan2(s6, c6);

   /* FIXME-- is wrist flip the normal or offset results? */
   if (*iflags & PUMA_WRIST_FLIP){
     th4 = th4 + PM_PI;
     th5 = -th5;
     th6 = th6 + PM_PI;
   }

   /* copy out */
   joint[0] = th1*180/PM_PI;
   joint[1] = th2*180/PM_PI;
   joint[2] = th3*180/PM_PI;
   joint[3] = th4*180/PM_PI;
   joint[4] = th5*180/PM_PI;
   joint[5] = th6*180/PM_PI;

   return singular == 0 ? 0 : -1;
}

int kinematicsHome(EmcPose * world,
                   double * joint,
                   KINEMATICS_FORWARD_FLAGS * fflags,
                   KINEMATICS_INVERSE_FLAGS * iflags)
{
  /* use joints, set world */
  return kinematicsForward(joint, world, fflags, iflags);
}

KINEMATICS_TYPE kinematicsType()
{
//  return KINEMATICS_FORWARD_ONLY;
  return KINEMATICS_BOTH;
}


EXPORT_SYMBOL(kinematicsType);
EXPORT_SYMBOL(kinematicsForward);
EXPORT_SYMBOL(kinematicsInverse);

int comp_id;

int rtapi_app_main(void) {
    int res=0;
    
    comp_id = hal_init("pumakins");
    if (comp_id < 0) return comp_id;
    
    haldata = hal_malloc(sizeof(struct haldata));
    if (!haldata) goto error;

    if((res = hal_pin_float_new("pumakins.A2", HAL_IO, &(haldata->a2), comp_id)) < 0) goto error;
    if((res = hal_pin_float_new("pumakins.A3", HAL_IO, &(haldata->a3), comp_id)) < 0) goto error;
    if((res = hal_pin_float_new("pumakins.D3", HAL_IO, &(haldata->d3), comp_id)) < 0) goto error;
    if((res = hal_pin_float_new("pumakins.D4", HAL_IO, &(haldata->d4), comp_id)) < 0) goto error;
    
    PUMA_A2 = DEFAULT_PUMA560_A2;
    PUMA_A3 = DEFAULT_PUMA560_A3;
    PUMA_D3 = DEFAULT_PUMA560_D3;
    PUMA_D4 = DEFAULT_PUMA560_D4;
    hal_ready(comp_id);
    return 0;
    
error:
    hal_exit(comp_id);
    return res;
}

void rtapi_app_exit(void) { hal_exit(comp_id); }