summaryrefslogtreecommitdiff
path: root/docs/man/man9/kins.9
blob: 1f933ca9967f68e74d5a5696c2928743e33cbb00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
.de TQ
.br
.ns
.TP \\$1
..

.TH KINS "9" "2007-01-20" "LinuxCNC Documentation" "HAL Component"
.SH NAME
kins \- kinematics definitions for LinuxCNC
.SH SYNOPSIS
.B loadrt trivkins
.PP
.B loadrt rotatekins 
.PP
.B loadrt tripodkins
.PP
.B loadrt genhexkins
.PP
.B loadrt maxkins
.PP
.B loadrt genserkins
.PP
.B loadrt pumakins
.PP
.B loadrt scarakins
.SH DESCRIPTION
Rather than exporting HAL pins and functions, these components provide the
forward and inverse kinematics definitions for LinuxCNC.
.SS trivkins \- Trivial Kinematics
There is a 1:1 correspondence between joints and axes.  Most standard milling
machines and lathes use the trivial kinematics module.
.SS rotatekins \- Rotated Kinematics
The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.
.SS tripodkins \- Tripod Kinematics
The joints represent the distance of the controlled point from three predefined
locations (the motors), giving three degrees of freedom in position (XYZ)
.TP
.B tripodkins.Bx
.TQ
.B tripodkins.Cx
.TQ
.B tripodkins.Cy
The location of the three motors is (0,0), (Bx,0), and (Cx,Cy)
.SS genhexkins \- Hexapod Kinematics
Gives six degrees of freedom in position and orientation (XYZABC).  The
location of the motors is defined at compile time.
.SS maxkins \- 5-axis kinematics example
Kinematics for Chris Radek's tabletop 5 axis mill named 'max' with tilting
head (B axis) and horizintal rotary mounted to the table (C axis).  Provides
UVW motion in the rotated coordinate system.  The source file, maxkins.c,
may be a useful starting point for other 5-axis systems.
.SS genserkins \- generalized serial kinematics
Kinematics that can model a general serial-link manipulator with up to 6
angular joints.  

The kinematics use Denavit-Hartenberg definition for the joint and
links. The DH definitions are the ones used by John J Craig in
"Introduction to Robotics: Mechanics and Control" The parameters for the
manipulator are defined by hal pins.
.TP
.B genserkins.A-\fIN
.TQ
.B genserkins.ALPHA-\fIN
.TQ
.B genserkins.D-\fIN
Parameters describing the \fIN\fRth joint's geometry.

.SS pumakins \- kinematics for puma typed robots
Kinematics for a puma-style robot with 6 joints
.TP
.B pumakins.A2
.TQ
.B pumakins.A3
.TQ
.B pumakins.D3
.TQ
.B pumakins.D4
Describe the geometry of the robot

.SS scarakins \- kinematics for SCARA-type robots
.TP
.B scarakins.D1
Vertical distance from the ground plane to the center of the inner arm.
.TP
.B scarakins.D2
Horizontal distance between joint[0] axis and joint[1] axis, ie.  the
length of the inner arm.
.TP
.B scarakins.D3
Vertical distance from the center of the inner arm to the center of the
outer arm.  May be positive or negative depending on the structure of
the robot.
.TP
.B scarakins.D4
Horizontal distance between joint[1] axis and joint[2] axis, ie.  the
length of the outer arm.
.TP
.B scarakins.D5
Vertical distance from the end effector to the tooltip.  Positive means
the tooltip is lower than the end effector, and is the normal case.
.TP
.B scarakins.D6
Horizontal distance from the centerline of the end effector (and the
joints 2 and 3 axis) and the tooltip.  Zero means the tooltip is on the
centerline.  Non-zero values should be positive, if negative they
introduce a 180 degree offset on the value of joint[3].

.SH SEE ALSO
\fIKinematics\fR section in the LinuxCNC documentation