RM0368

12 Advanced-control timer (TIM1)

TIM8 is not available in STM32F401xB/C and STM32F401xD/E.

12.1 TIM1 introduction

The advanced-control timers (TIM1) consist of a 16-bit auto-reload counter driven by a programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control (TIM1) and general-purpose (TIMx) timers are completely independent, and do not share any resources. They can be synchronized together as described in *Section 12.3.20*.

12.2 TIM1 main features

TIM1 timer features include:

- 16-bit up, down, up/down auto-reload counter.
- 16-bit programmable prescaler allowing dividing (also "on the fly") the counter clock frequency either by any factor between 1 and 65536.
- Up to 4 independent channels for:
 - Input Capture
 - Output Compare
 - PWM generation (Edge and Center-aligned Mode)
 - One-pulse mode output
- Complementary outputs with programmable dead-time
- Synchronization circuit to control the timer with external signals and to interconnect several timers together.
- Repetition counter to update the timer registers only after a given number of cycles of the counter.
- Break input to put the timer's output signals in reset state or in a known state.
- Interrupt/DMA generation on the following events:
 - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger)
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
 - Break input
- Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes
- Trigger input for external clock or cycle-by-cycle current management

Figure 39. Advanced-control timer block diagram

12.3 TIM1 functional description

12.3.1 Time-base unit

The main block of the programmable advanced-control timer is a 16-bit counter with its related auto-reload register. The counter can count up, down or both up and down. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running.

The time-base unit includes:

- Counter register (TIMx_CNT)
- Prescaler register (TIMx_PSC)
- Auto-reload register (TIMx ARR)
- Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. The generation of the update event is described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event.

Figure 40 and *Figure 41* give some examples of the counter behavior when the prescaler ratio is changed on the fly:

Figure 40. Counter timing diagram with prescaler division change from 1 to 2

Figure 41. Counter timing diagram with prescaler division change from 1 to 4

12.3.2 **Counter modes**

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register (TIMx_RCR). Else the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the

preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The repetition counter is reloaded with the content of TIMx_RCR register,
- The auto-reload shadow register is updated with the preload value (TIMx_ARR),
- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register).

The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36.

CK_PSC	mmmmm
CNT_EN	
Timer clock = CK_CNT	
Counter register	31 (32)(33)(34)(35)(36)(00)(01)(02)(03)(04)(05)(06)(07)
Counter overflow	Γ
Update event (UEV)	<u>_</u>
Update interrupt flag (UIF)	

Figure 42. Counter timing diagram, internal clock divided by 1

Figure 43. Counter timing diagram, internal clock divided by 2

5		<u> </u>	
CK_PSC		ուռու	mmm
CNT_EN	. <u> </u>		
Timer clock = CK_CNT			
Counter register	0	0034 0035 0036	0000 0001 0002 0003
Counter overflow			Γ
Update event (UEV)			Γ
Update interrupt flag (UIF)			

Figure 44. Counter timing diagram, internal clock divided by 4				
CK_PSC	mmmmm			
CNT_EN				
Timer clock = CK_CNT	ſſ			
Counter register	0035 0036 0000 0001			
Counter overflow	7			
Update event (UEV)	Γ			
Update interrupt flag (UIF)				

Figure 45. Counter timing diagram, internal clock divided by N

Figure 46. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)

5/

Figure 47. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting is repeated for the number of times programmed in the repetition counter register plus one (TIMx_RCR+1). Else the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn't change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The repetition counter is reloaded with the content of TIMx_RCR register
- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register)
- The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one

The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36.

Figure 48. Counter timing diagram, internal clock divided by 1

Figure 49. Counter timing diagram, internal clock divided by 2

Figure 50. Counter timing diagram, internal clock divided by 4

CK_PSC	www.www.
CNT_EN	
Timer clock = CK_CNT	
Counter register	0001 0000 0036 0035
Counter underflow	Γ
Update event (UEV)	Γ
Update interrupt flag (UIF)	

righte St. Counter timing diagram, internal clock divided by N				
CK_PSC				
Timer clock = CK_CNT				
Counter register	20 1F 00 36			
Counter underflow				
Update event (UEV)	Γ			
Update interrupt flag (UIF)				

Figure 51. Counter timing diagram, internal clock divided by N

Figure 52. Counter timing diagram, update event when repetition counter is not used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the $TIMx_ARR$ register) – 1, generates a counter overflow event, then counts from the auto-reload value down to 1 and generates a counter underflow event. Then it restarts counting from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11").

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The repetition counter is reloaded with the content of TIMx_RCR register
- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register)
- The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock frequencies.

i igure 55. Counter tinning ulagra	
CK_PSC	
CNT_EN	
Timer clock = CK_CNT	
Counter register	04 \03\02\01\00\01\02\03\04\05\06\05\04\03\
Counter underflow	
Counter overflow	□
Update event (UEV)	ΓΓ
Update interrupt flag (UIF)	

Figure 53. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 12.4: TIM1 registers on page 283).

Figure 54. Counter timing diagram, internal clock divided by 2				
CK_PSC	mmmmm			
CNT_EN				
Timer clock = CK_CNT				
Counter register	0003 \ 0002 \ 0001 \ 0000 \ 0001 \ 0002 \ 0003 \			
Counter underflow	Γ			
Update event (UEV)	Γ			
Update interrupt flag (UIF)				

...

Figure 55. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 57. Counter timing diagram, update event with ARPE=1 (counter underflow)

Figure 58. Counter timing diagram, Update event with ARPE=1 (counter overflow)

12.3.3 Repetition counter

Section 12.3.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows/underflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N+1 counter overflows or underflows, where N is the value in the TIMx_RCR repetition counter register.

The repetition counter is decremented:

- At each counter overflow in upcounting mode,
- At each counter underflow in downcounting mode,
- At each counter overflow and at each counter underflow in center-aligned mode. Although this limits the maximum number of repetition to 128 PWM cycles, it makes it possible to update the duty cycle twice per PWM period. When refreshing compare registers only once per PWM period in center-aligned mode, maximum resolution is $2xT_{ck}$, due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to *Figure 59*). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register.

In center-aligned mode, for odd values of RCR, the update event occurs either on the overflow or on the underflow depending on when the RCR register was written and when the counter was started. If the RCR was written before starting the counter, the UEV occurs on the overflow. If the RCR was written after starting the counter, the UEV occurs on the underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or underflow event depending on when RCR was written.

12.3.4 Clock selection

The counter clock can be provided by the following clock sources:

- Internal clock (CK_INT)
- External clock mode1: external input pin
- External clock mode2: external trigger input ETR
- Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to *Using one timer as prescaler for another timer* for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 60 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler.

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input.

For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure:

- 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = '01' in the TIMx_CCMR1 register.
- 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000).
- 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register.
- 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register.
- 5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.
- 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so you don't need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input.

Figure 62. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 63 gives an overview of the external trigger input block.

Figure 63. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure:

- 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.
- 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register
- Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register
- 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
- 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 64. Control circuit in external clock mode 2

12.3.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control).

Figure 65 to Figure 68 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be

used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS).

The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain.

Figure 66. Capture/compare channel 1 main circuit

Figure 67. Output stage of capture/compare channel (channel 1 to 3)

Figure 68. Output stage of capture/compare channel (channel 4)

The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter.

12.3.6 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to '0' or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to '0'.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure:

- Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only.
- Program the input filter duration you need with respect to the signal you connect to the timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register.
- Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP bits to 0 in the TIMx_CCER register (rising edge in this case).
- Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to '00' in the TIMx_CCMR1 register).
- Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register.
- If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

- The TIMx_CCR1 register gets the value of the counter on the active transition.
- CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared.
- An interrupt is generated depending on the CC1IE bit.
- A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register.

12.3.7 **PWM** input mode

This mode is a particular case of input capture mode. The procedure is the same except:

- Two ICx signals are mapped on the same TIx input.
- These 2 ICx signals are active on edges with opposite polarity.
- One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode.

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value):

- Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected).
- Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P and CC1NP bits to '0' (active on rising edge).
- Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected).
- Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P and CC2NP bits to '1' (active on falling edge).
- Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected).
- Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register.
- Enable the captures: write the CC1E and CC2E bits to '1' in the TIMx_CCER register.

Figure 69. PWM input mode timing

12.3.8 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below.

12.3.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has elapsed.

When a match is found between the capture/compare register and the counter, the output compare function:

- Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.
- Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
- Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register).
- Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One Pulse mode).

Procedure:

- 1. Select the counter clock (internal, external, prescaler).
- 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
- 3. Set the CCxIE bit if an interrupt request is to be generated.
- 4. Select the output mode. For example:
 - Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx
 - Write OCxPE = 0 to disable preload register
 - Write CCxP = 0 to select active high polarity
 - Write CCxE = 1 to enable the output
- 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE='0', else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 70*.

12.3.10 **PWM** mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing '110' (PWM mode 1) or '111' (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx \leq TIMx_CNT or TIMx_CNT \leq TIMx_CCRx (depending on the direction of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to *Section : Upcounting mode on page 245.*

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1'. If the compare value is 0 then OCxRef is held at '0'. *Figure 71* shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

Figure 71. Edge-aligned PWM waveforms (ARR=8)

• Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Section : Downcounting mode on page 248

In PWM mode 1, the reference signal OCxRef is low as long as

 $TIMx_CNT > TIMx_CCRx$ else it becomes high. If the compare value in $TIMx_CCRx$ is greater than the auto-reload value in $TIMx_ARR$, then OCxREF is held at '1'. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from '00' (all the remaining configurations having the same effect on the OCxRef/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to *Section : Center-aligned mode (up/down counting) on page 250*.

Figure 72 shows some center-aligned PWM waveforms in an example where:

- TIMx_ARR=8,
- PWM mode is the PWM mode 1,
- The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 72. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

- When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software.
- Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular:
 - The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up.
 - The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated.
- The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running.

12.3.11 Complementary outputs and dead-time insertion

The advanced-control timers (TIM1) can output two complementary signals and manage the switching-off and the switching-on instants of the outputs.

This time is generally known as dead-time and you have to adjust it depending on the devices you have connected to the outputs and their characteristics (intrinsic delays of level-shifters, delays due to power switches...)

You can select the polarity of the outputs (main output OCx or complementary OCxN) independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to *Table 51: Output control bits for complementary OCx and OCxN channels with break feature on page 301* for more details. In particular, the dead-time is activated when switching to the IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to control the dead-time generation for all channels. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high:

- The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge.
- The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples)

Figure 73. Complementary output with dead-time insertion.

Figure 75. Dead-time waveforms with delay greater than the positive pulse.

The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx_BDTR register. Refer to Section 12.4.18: TIM1 break and dead-time register (TIMx_BDTR) on page 305 for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER register.

This allows you to send a specific waveform (such as PWM or static active level) on one output while the complementary remains at its inactive level. Other alternative possibilities are to have both outputs at inactive level or both outputs active and complementary with dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low.

12.3.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register, OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs cannot be set both to active level at a given time. Refer to *Table 51: Output control bits for complementary OCx and OCxN channels with break feature on page 301* for more details.

The break source can be either the break input pin or a clock failure event, generated by the Clock Security System (CSS), from the Reset Clock Controller. For further information on the Clock Security System, refer to Section 6.2.7: Clock security system (CSS).

When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable the break function by setting the BKE bit in the TIMx_BDTR register. The break input polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you must insert a delay (dummy instruction) before reading it correctly. This is because you write the asynchronous signal and read the synchronous signal.

When a break occurs (selected level on the break input):

- The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or in reset state (selected by the OSSI bit). This feature functions even if the MCU oscillator is off.
- Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable output else the enable output remains high.
- When complementary outputs are used:
 - The outputs are first put in reset state inactive state (depending on the polarity).
 This is done asynchronously so that it works even if no clock is provided to the timer.
 - If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their active level together. Note that because of the resynchronization on MOE, the dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).
 - If OSSI=0 then the timer releases the enable outputs else the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high.
- The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the BDE bit in the TIMx_DIER register is set.
- If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event UEV. This can be used to perform a regulation, for instance. Else, MOE remains low until you write it to '1' again. In this case, it can be used for security and you can connect the break input to an alarm from power drivers, thermal sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF cannot be cleared.

The break can be generated by the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR Register.

There are two solutions to generate a break:

- By using the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR register
- By software through the BG bit of the TIMx_EGR register.

In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows you to freeze the configuration of several parameters (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). You can choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to *Section 12.4.18: TIM1 break and dead-time register (TIMx_BDTR) on page 305.* The LOCK bits can be written only once after an MCU reset.

Figure 76 shows an example of behavior of the outputs in response to a break.

Figure 76. Output behavior in response to a break.

12.3.13 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, the ETR must be configured as follow:

- 1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR register set to '00'.
- 2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to '0'.
- 3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be configured according to the user needs.

Figure 77 shows the behavior of the OCxREF signal when the ETRF Input becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in PWM mode.

Figure 77. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at the next counter overflow.

12.3.14 6-step PWM generation

When complementary outputs are used on a channel, preload bits are available on the OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the COM commutation event. Thus you can program in advance the configuration for the next step and change the configuration of all the channels at the same time. COM can be generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on TRGI rising edge).

A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request (if the COMDE bit is set in the TIMx_DIER register).

Figure 78 describes the behavior of the OCx and OCxN outputs when a COM event occurs, in 3 different examples of programmed configurations.

Figure 78. 6-step generation, COM example (OSSR=1)

12.3.15 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be:

- In upcounting: $CNT < CCRx \le ARR$ (in particular, 0 < CCRx)
- In downcounting: CNT > CCRx

For example you may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin.

Let's use TI2FP2 as trigger 1:

- Map TI2FP2 to TI2 by writing CC2S='01' in the TIMx_CCMR1 register.
- TI2FP2 must detect a rising edge, write CC2P='0' and CC2NP='0' in the TIMx_CCER register.
- Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS='110' in the TIMx_SMCR register.
- TI2FP2 is used to start the counter by writing SMS to '110' in the TIMx_SMCR register (trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler).

- The t_{DELAY} is defined by the value written in the TIMx_CCR1 register.
- The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx_ARR TIMx_CCR1).
- Let's say you want to build a waveform with a transition from '0' to '1' when a compare match occurs and a transition from '1' to '0' when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE='1' in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0' in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay t_{DELAY} min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

12.3.16 Encoder interface mode

To select Encoder Interface mode write SMS='001' in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS='010' if it is counting on TI1 edges only and SMS='011' if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. CC1NP and CC2NP must be kept low.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to *Table 49*. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to '1'). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must

configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler, repetition counter, trigger output features continue to work as normal. Encoder mode and External clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder's position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 don't switch at the same time.

	Level on	TI1FP1	signal	TI2FP2 signal	
Active edge	signal (TI1FP1 for TI2, TI2FP2 for TI1)	Rising	Falling	Rising	Falling
Counting on TI1 only	High	Down	Up	No Count	No Count
	Low	Up	Down	No Count	No Count
Counting on	High	No Count	No Count	Up	Down
TI2 only	Low	No Count	No Count	Down	Up
Counting on TI1 and TI2	High	Down	Up	Up	Down
	Low	Up	Down	Down	Up

Table 49. Counting direction versus encoder signals

An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder's differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset.

Figure 80 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following:

- CC1S='01' (TIMx_CCMR1 register, TI1FP1 mapped on TI1).
- CC2S='01' (TIMx_CCMR2 register, TI1FP2 mapped on TI2).
- CC1P='0', CC1NP='0', and IC1F = '0000' (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1).
- CC2P='0', CC2NP='0', and IC2F = '0000' (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2).
- SMS='011' (TIMx_SMCR register, both inputs are active on both rising and falling edges).
- CEN='1' (TIMx_CR1 register, Counter enabled).

Figure 80. Example of counter operation in encoder interface mode.

Figure 81 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P='1').

Figure 81. Example of encoder interface mode with TI1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor's current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a real-time clock.

12.3.17 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input capture. An example of this feature used to interface Hall sensors is given in

Section 12.3.18 below.

12.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers (TIM1) to generate PWM signals to drive the motor and another timer TIMx (TIM2, TIM3, TIM4 or TIM5) referred to as "interfacing timer" in *Figure 82*. The "interfacing timer" captures the 3 timer input pins (TIMx_CH1, TIMx_CH2, and TIMx_CH3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs.

On the "interfacing timer", capture/compare channel 1 is configured in capture mode, capture signal is TRC (see *Figure 65: Capture/compare channel (example: channel 1 input stage) on page 258*). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed.

The "interfacing timer" can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1) through the TRGO output.

Example: you want to change the PWM configuration of your advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers.

- Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the TIMx_CR2 register to '1',
- Program the time base: write the TIMx_ARR to the max value (the counter must be cleared by the TI1 change. Set the prescaler to get a maximum counter period longer than the time between 2 changes on the sensors,
- Program channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx_CCMR1 register to '11'. You can also program the digital filter if needed,
- Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to '111' and the CC2S bits to '00' in the TIMx_CCMR1 register,
- Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to '101',

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF).

Figure 82 describes this example.

Figure 82. Example of hall sensor interface

12.3.19 TIMx and external trigger synchronization

The TIMx timer can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

- Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect rising edges only).
- Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.
- Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input.

Figure 83. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

- Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect low level only).
- Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.
- Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

Figure 84. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

- Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don't need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only).
- Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input.

Figure 85. Control circuit in trigger mode

Slave mode: external clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input (in reset mode, gated mode or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs:

- 1. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows:
 - ETF = 0000: no filter
 - ETPS = 00: prescaler disabled
 - ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2.
- 2. Configure the channel 1 as follows, to detect rising edges on TI:
 - IC1F=0000: no filter.
 - The capture prescaler is not used for triggering and does not need to be configured.
 - CC1S=01 in TIMx_CCMR1 register to select only the input capture source

DocID025350 Rev 4

- CC1P=0 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect rising edge only).
- 3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input.

Figure 86. Control circuit in external clock mode 2 + trigger mode

12.3.20 Timer synchronization

The TIM timers are linked together internally for timer synchronization or chaining. Refer to *Section 13.3.15: Timer synchronization on page 341* for details.

12.3.21 Debug mode

When the microcontroller enters debug mode (Cortex[®]-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to *Section 23.16.2: Debug support for timers, watchdog and I2C*.

12.4 TIM1 registers

Refer to Section 1.1 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers must be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-word (16 bits) or words (32 bits).

12.4.1 TIM1 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Beconvod						CKD	[1:0]	ARPE	CMS	5[1:0]	DIR	OPM	URS	UDIS	CEN
		Rese	iveu			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t_{DTS})used by the dead-time generators and the digital filters (ETR, Tlx),

- 00: t_{DTS}=t_{CK INT}
- 01: t_{DTS}=2*t_{CK_INT}
- 10: t_{DTS}=4*t_{CK_INT}
- 11: Reserved, do not program this value
- Bit 7 **ARPE**: Auto-reload preload enable
 - 0: TIMx ARR register is not buffered
 - 1: TIMx_ARR register is buffered
- Bits 6:5 **CMS[1:0]**: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).

01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down.

10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up.

11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down.

- Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1)
- Bit 4 **DIR**: Direction
 - 0: Counter used as upcounter
 - 1: Counter used as downcounter
 - Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
- Bit 3 **OPM**: One pulse mode
 - 0: Counter is not stopped at update event
 - 1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
- Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

- 0: Counter disabled
- 1: Counter enabled
- Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware.

12.4.2 TIM1 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pos	OIS4	OIS3N	OIS3	OIS2N	OIS2	OIS1N	OIS1	TI1S		MMS[2:0]		CCDS	CCUS	Pos	CCPC
Nes.	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	ites.	rw

- Bit 15 Reserved, must be kept at reset value.
- Bit 14 **OIS4**: Output Idle state 4 (OC4 output) refer to OIS1 bit
- Bit 13 **OIS3N**: Output Idle state 3 (OC3N output) refer to OIS1N bit
- Bit 12 **OIS3**: Output Idle state 3 (OC3 output) refer to OIS1 bit
- Bit 11 **OIS2N**: Output Idle state 2 (OC2N output) refer to OIS1N bit
- Bit 10 **OIS2**: Output Idle state 2 (OC2 output) refer to OIS1 bit

Bit 9 **OIS1N**: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0

1: OC1N=1 after a dead-time when MOE=0

- Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register).
- Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0

1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

- Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register).
- Bit 7 TI1S: TI1 selection

0: The TIMx CH1 pin is connected to TI1 input

1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows:

000: **Reset** - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset.

001: **Enable** - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, excent if the master/slave mode is

controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register).

010: **Update** - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer.

011: **Compare Pulse** - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO).

100: Compare - OC1REF signal is used as trigger output (TRGO)

101: Compare - OC2REF signal is used as trigger output (TRGO)

- 110: Compare OC3REF signal is used as trigger output (TRGO)
- 111: Compare OC4REF signal is used as trigger output (TRGO)
- Note: The clock of the slave timer and ADC must be enabled prior to receiving events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer.
- Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs

1: CCx DMA requests sent when update event occurs

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only

1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

- Bit 1 Reserved, must be kept at reset value.
- Bit 0 **CCPC**: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded

1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit).

Note: This bit acts only on channels that have a complementary output.

12.4.3 TIM1 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	ECE	ETPS	S[1:0]		ETF[3:0]					TS[2:0]		Res.		SMS[2:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	Res.	rw	rw	rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or $\overline{\text{ETR}}$ is used for trigger operations

0: ETR is non-inverted, active at high level or rising edge.

1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.

0: External clock mode 2 disabled

1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.

Note: **1**: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111).

3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.

00: Prescaler OFF

01: ETRP frequency divided by 2

10: ETRP frequency divided by 4

11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:

0000: No filter, sampling is done at f_{DTS}

0001: f_{SAMPLING}=f_{CK INT}, N=2

0010: f_{SAMPLING}=f_{CK} INT, N=4

0011: f_{SAMPLING}=f_{CK INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6

0101: f_{SAMPLING}=f_{DTS}/2, N=8

- 0110: f_{SAMPLING}=f_{DTS}/4, N=6
- 0111: f_{SAMPLING}=f_{DTS}/4, N=8
- 1000: f_{SAMPLING}=f_{DTS}/8, N=6
- 1001: f_{SAMPLING}=f_{DTS}/8, N=8
- 1010: f_{SAMPLING}=f_{DTS}/16, N=5
- 1011: f_{SAMPLING}=f_{DTS}/16, N=6
- 1100: f_{SAMPLING}=f_{DTS}/16, N=8
- 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8
- Bit 7 MSM: Master/slave mode

0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event.

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.

- 000: Internal Trigger 0 (ITR0)
- 001: Internal Trigger 1 (ITR1)
- 010: Internal Trigger 2 (ITR2)
- 011: Internal Trigger 3 (ITR3)
- 100: TI1 Edge Detector (TI1F_ED)
- 101: Filtered Timer Input 1 (TI1FP1)
- 110: Filtered Timer Input 2 (TI2FP2)
- 111: External Trigger input (ETRF)

See Table 50: TIMx Internal trigger connection on page 289 for more details on ITRx meaning for each Timer.

- Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition.
- Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description.

000: Slave mode disabled - if CEN = '1' then the prescaler is clocked directly by the internal clock.

001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 level.

010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 level.

011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.

100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled.

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS='100'). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer.

Slave TIM	ITR0 (TS = 000)	ITR1 (TS = 001)	ITR2 (TS = 010)	ITR3 (TS = 011)
TIM1	TIM5_TRGO	TIM2_TRGO	TIM3_TRGO	TIM4_TRGO

12.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	UDE	BIE	TIE	COMIE	CC4IE	CC3IE	CC2IE	CC1IE	UIE
1.63.	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 15 Reserved, must be kept at reset value.

- Bit 14 TDE: Trigger DMA request enable
 - 0: Trigger DMA request disabled 1: Trigger DMA request enabled

Bit 13 COMDE: COM DMA request enable

- 0: COM DMA request disabled
- 1: COM DMA request enabled

- Bit 12 **CC4DE**: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled 1: CC4 DMA request enabled
- Bit 11 CC3DE: Capture/Compare 3 DMA request enable
 - 0: CC3 DMA request disabled
 - 1: CC3 DMA request enabled
- Bit 10 **CC2DE**: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled 1: CC2 DMA request enabled
- Bit 9 **CC1DE**: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled
 - 1: CC1 DMA request enabled
- Bit 8 **UDE**: Update DMA request enable
 - 0: Update DMA request disabled
 - 1: Update DMA request enabled
- Bit 7 BIE: Break interrupt enable
 - 0: Break interrupt disabled
 - 1: Break interrupt enabled
- Bit 6 TIE: Trigger interrupt enable
 - 0: Trigger interrupt disabled
 - 1: Trigger interrupt enabled
- Bit 5 COMIE: COM interrupt enable
 - 0: COM interrupt disabled
 - 1: COM interrupt enabled
- Bit 4 CC4IE: Capture/Compare 4 interrupt enable
 - 0: CC4 interrupt disabled
 - 1: CC4 interrupt enabled
- Bit 3 CC3IE: Capture/Compare 3 interrupt enable
 - 0: CC3 interrupt disabled 1: CC3 interrupt enabled
- Bit 2 CC2IE: Capture/Compare 2 interrupt enable
 - 0: CC2 interrupt disabled
 - 1: CC2 interrupt enabled
- Bit 1 CC1IE: Capture/Compare 1 interrupt enable
 - 0: CC1 interrupt disabled
 - 1: CC1 interrupt enabled
- Bit 0 **UIE**: Update interrupt enable
 - 0: Update interrupt disabled
 - 1: Update interrupt enabled

12.4.5 TIM1 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15	14 13		12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		CC4OF	CC3OF	CC2OF	CC10F	Res.	BIF	TIF	COMIF	CC4IF	CC3IF	CC2IF	CC1IF	UIF	
			rc_w0	rc_w0	rc_w0	rc_w0	Res.	rc_w0							

Bits 15:13 Reserved, must be kept at reset value.

- Bit 12 **CC4OF**: Capture/Compare 4 overcapture flag refer to CC1OF description
- Bit 11 **CC3OF**: Capture/Compare 3 overcapture flag refer to CC1OF description
- Bit 10 CC2OF: Capture/Compare 2 overcapture flag refer to CC1OF description
- Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'.

0: No overcapture has been detected.

1: The counter value has been captured in $\mathsf{TIMx_CCR1}$ register while CC1IF flag was already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 **BIF**: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active.

- 0: No break event occurred.
- 1: An active level has been detected on the break input.
- Bit 6 **TIF**: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software.

- 0: No trigger event occurred.1: Trigger interrupt pending.
- Bit 5 **COMIF**: COM interrupt flag

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software.0: No COM event occurred.1: COM interrupt pending.

- Bit 4 **CC4IF**: Capture/Compare 4 interrupt flag refer to CC1IF description
- Bit 3 **CC3IF**: Capture/Compare 3 interrupt flag refer to CC1IF description

- Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description
- Bit 1 **CC1IF**: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software.

0: No match.

1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode)

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register.

0: No input capture occurred

1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity)

- Bit 0 UIF: Update interrupt flag
 - This bit is set by hardware on an update event. It is cleared by software.
 - 0: No update occurred.
 - 1: Update interrupt pending. This bit is set by hardware when the registers are updated:
 - At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register.
 - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register.
 - When CNT is reinitialized by a trigger event (refer to Section 12.4.3: TIM1 slave mode control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.

12.4.6 TIM1 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Poso	nvod				BG	TG	COMG	CC4G	CC3G	CC2G	CC1G	UG
			NE3E	Iveu				W	w	w	W	W	W	w	w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled.

Bit 6 **TG**: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled.

- Bit 5 COMG: Capture/Compare control update generation
 - This bit can be set by software, it is automatically cleared by hardware 0: No action

1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits

- Note: This bit acts only on channels having a complementary output.
- Bit 4 **CC4G**: Capture/Compare 4 generation refer to CC1G description
- Bit 3 **CC3G**: Capture/Compare 3 generation refer to CC1G description
- Bit 2 **CC2G**: Capture/Compare 2 generation refer to CC1G description
- Bit 1 **CC1G**: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 1:

If channel CC1 is configured as output:

CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.

If channel CC1 is configured as input:

The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting).

12.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in output take care that the same bit can have a different meaning for the input stage and for the output stage.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2 CE	OC2M[2:0]		OC2 PE	OC2 FE	CC2S	6[1:0]	OC1 CE	(OC1M[2:0)]	OC1 PE	OC1 FE	CC1S	S[1:0]	
	IC2F[3:0]			IC2PS	SC[1:0]				IC1F	[3:0]		IC1PS	SC[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode:

- Bit 15 OC2CE: Output Compare 2 clear enable
- Bits 14:12 OC2M[2:0]: Output Compare 2 mode
 - Bit 11 OC2PE: Output Compare 2 preload enable
 - Bit 10 **OC2FE**: Output Compare 2 fast enable
 - Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output

- 01: CC2 channel is configured as input, IC2 is mapped on TI2
- 10: CC2 channel is configured as input, IC2 is mapped on TI1
- 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register)
- Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx_CCER).

Bit 7 OC1CE: Output Compare 1 clear enable

- OC1CE: Output Compare 1 Clear Enable
- 0: OC1Ref is not affected by the ETRF Input
- 1: OC1Ref is cleared as soon as a High level is detected on ETRF input

Bits 6:4 **OC1M**: Output Compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits.

000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base).

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.

100: Force inactive level - OC1REF is forced low.

101: Force active level - OC1REF is forced high.

110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else inactive. In downcounting, channel 1 is inactive (OC1REF='0') as long as TIMx_CNT>TIMx_CCR1 else active (OC1REF='1').

111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else inactive.

Note: **1:** These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode.

3: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated.

Bit 3 **OC1PE**: Output Compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately.

1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: **1:** These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output).

2: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output Compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output

01: CC1 channel is configured as input, IC1 is mapped on TI1

10: CC1 channel is configured as input, IC1 is mapped on TI2

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx CCER).

Input capture mode

- Bits 15:12 IC2F: Input capture 2 filter
- Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler
 - Bits 9:8 CC2S: Capture/Compare 2 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input.
 - 00: CC2 channel is configured as output

01: CC2 channel is configured as input, IC2 is mapped on TI2

10: CC2 channel is configured as input, IC2 is mapped on TI1

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx CCER).

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:

- 0000: No filter, sampling is done at fDTS
- 0001: f_{SAMPLING}=f_{CK INT}, N=2
- 0010: f_{SAMPLING}=f_{CK} N=4
- 0011: f_{SAMPLING}=f_{CK_INT}, N=8
- 0100: f_{SAMPLING}=f_{DTS}/2, N=6
- 0101: f_{SAMPLING}=f_{DTS}/2, N=8
- 0110: $f_{SAMPLING}=f_{DTS}/4$, N=6
- 0111: f_{SAMPLING}=f_{DTS}/4, N=8
- 1000: f_{SAMPLING}=f_{DTS}/8, N=6
- 1001: f_{SAMPLING}=f_{DTS}/8, N=8
- 1010: f_{SAMPLING}=f_{DTS}/16, N=5
- 1011: f_{SAMPLING}=f_{DTS}/16, N=6
- 1100: f_{SAMPLING}=f_{DTS}/16, N=8
- 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

- The prescaler is reset as soon as CC1E='0' (TIMx_CCER register).
- 00: no prescaler, capture is done each time an edge is detected on the capture input
- 01: capture is done once every 2 events
- 10: capture is done once every 4 events
- 11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

- This bit-field defines the direction of the channel (input/output) as well as the used input.
- 00: CC1 channel is configured as output
- 01: CC1 channel is configured as input, IC1 is mapped on TI1
- 10: CC1 channel is configured as input, IC1 is mapped on TI2
- 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx CCER).

12.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

15	14	13	12	11	10	9	8	7 6 5 4				3	2	1	0
OC4 CE	4 OC4M[2:0]		OC4 PE	OC4 FE	CC49	6[1:0]	OC3 CE.	(DC3M[2:0]	OC3 PE	OC3 FE	CC3	S[1:0]	
	IC4F[3:0] IC4PSC[1:0] IC3F[3:0]						IC3PS	SC[1:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode

Bit 15 OC4CE: Output compare 4 clear enable

- Bits 14:12 OC4M: Output compare 4 mode
 - Bit 11 OC4PE: Output compare 4 preload enable
 - Bit 10 OC4FE: Output compare 4 fast enable
 - Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

- 00: CC4 channel is configured as output
 - 01: CC4 channel is configured as input, IC4 is mapped on TI4
 - 10: CC4 channel is configured as input, IC4 is mapped on TI3
 - 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = '0' in TIMx_CCER).

- Bit 7 OC3CE: Output compare 3 clear enable
- Bits 6:4 **OC3M**: Output compare 3 mode
 - Bit 3 OC3PE: Output compare 3 preload enable
 - Bit 2 OC3FE: Output compare 3 fast enable
- Bits 1:0 CC3S: Capture/Compare 3 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output
 - 01: CC3 channel is configured as input, IC3 is mapped on TI3
 - 10: CC3 channel is configured as input, IC3 is mapped on TI4
 - 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register)
 - Note: CC3S bits are writable only when the channel is OFF (CC3E = '0' in TIMx_CCER).

DocID025350 Rev 4

Input capture mode

- Bits 15:12 IC4F: Input capture 4 filter
- Bits 11:10 **IC4PSC**: Input capture 4 prescaler
 - Bits 9:8 CC4S: Capture/Compare 4 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output
 - 01: CC4 channel is configured as input, IC4 is mapped on TI4
 - 10: CC4 channel is configured as input, IC4 is mapped on TI3
 - 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = '0' in TIMx_CCER).

- Bits 7:4 IC3F: Input capture 3 filter
- Bits 3:2 IC3PSC: Input capture 3 prescaler
- Bits 1:0 CC3S: Capture/compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output

- 01: CC3 channel is configured as input, IC3 is mapped on TI3
- 10: CC3 channel is configured as input, IC3 is mapped on TI4
- 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = '0' in TIMx_CCER).

12.4.9 TIM1 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		CC4P	CC4E	CC3NP	CC3NE	CC3P	CC3E	CC2NP	CC2NE	CC2P	CC2E	CC1NP	CC1NE	CC1P	CC1E
Resei	veu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:14 Reserved, must be kept at reset value.

- Bit 13 **CC4P**: Capture/Compare 4 output polarity refer to CC1P description
- Bit 12 **CC4E**: Capture/Compare 4 output enable refer to CC1E description
- Bit 11 **CC3NP**: Capture/Compare 3 complementary output polarity refer to CC1NP description
- Bit 10 **CC3NE**: Capture/Compare 3 complementary output enable refer to CC1NE description
- Bit 9 **CC3P**: Capture/Compare 3 output polarity refer to CC1P description
- Bit 8 **CC3E**: Capture/Compare 3 output enable refer to CC1E description

- Bit 7 **CC2NP**: Capture/Compare 2 complementary output polarity refer to CC1NP description
- Bit 6 **CC2NE**: Capture/Compare 2 complementary output enable refer to CC1NE description
- Bit 5 **CC2P**: Capture/Compare 2 output polarity refer to CC1P description
- Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description
- Bit 3 CC1NP: Capture/Compare 1 complementary output polarity
 - CC1 channel configured as output:
 - 0: OC1N active high.
 - 1: OC1N active low.
 - CC1 channel configured as input:

This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description.

- Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated.
- Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S="00" (the channel is configured in output).
- Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.

1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:

0: OC1 active high

1: OC1 active low

CC1 channel configured as input:

CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations.

00: non-inverted/rising edge

The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode).

01: inverted/falling edge

The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode).

10: reserved, do not use this configuration.

11: non-inverted/both edges

The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode.

- Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated.
- Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:

0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits.

1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits.

CC1 channel configured as input:

This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.

0: Capture disabled.

1: Capture enabled.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated.

Table 51. Output control bits for complementary OCx and OCxN channels with
break feature

		Control I	bits		Outp	ut states ⁽¹⁾
MOE bit	OSSI bit	OSSR bit	CCxE bit	CCxNE bit	OCx output state	OCxN output state
		0	0	0	Output Disabled (not driven by the timer), OCx=0, OCx_EN=0	Output Disabled (not driven by the timer), OCxN=0, OCxN_EN=0
		0	0	1	Output Disabled (not driven by the timer), OCx=0, OCx_EN=0	OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1
		0	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1	Output Disabled (not driven by the timer) OCxN=0, OCxN_EN=0
		0	1	1	OCREF + Polarity + dead-time OCx_EN=1	Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1
1	х	1	0	0	Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0	Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0
		1	0	1	Off-State (output enabled with inactive state) OCx=CCxP, OCx_EN=1	OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1
		1	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1	Off-State (output enabled with inactive state) OCxN=CCxNP, OCxN_EN=1
		1	1	1	OCREF + Polarity + dead-time OCx_EN=1	Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1
	0		0	0	Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0	Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0
	0		0	1	Output Disabled (not driven by t	he timer)
	0		1	0	Asynchronously: OCx=CCxP, O	Cx_EN=0, OCxN=CCxNP,
0	0	¥	1	1	Then if the clock is present: OC dead-time, assuming that OISx a and OCxN both in active state.	x=OISx and OCxN=OISxN after a and OISxN do not correspond to OCX
0	1	~	0	0	Output Disabled (not driven by the timer)	Output Disabled (not driven by the timer)
					OCx=CCxP, OCx_EN=0	OCxN=CCxNP, OCxN_EN=0
	1		0	1	Off-State (output enabled with in	nactive state)
	1		1	0	Asynchronously: OCx=CCxP, O	UX_EN=1, UUXN=UUXNP,
	1		1	1	Then if the clock is present: OC: dead-time, assuming that OISx a and OCxN both in active state	x=OISx and OCxN=OISxN after a and OISxN do not correspond to OCX

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared.

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and the GPIO registers.

12.4.10 TIM1 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNT[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CNT[15:0]: Counter value

12.4.11 TIM1 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PSC[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to f_{CK_PSC} / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode").

12.4.12 TIM1 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ARR[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register. Refer to Section 12.3.1: Time-base unit on page 244 for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

12.4.13 TIM1 repetition counter register (TIMx_RCR)

Address offset: 0x30

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											REP	[7:0]			
	Reserved									rw	rw	rw	rw	rw	rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable.

Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event.

It means in PWM mode (REP+1) corresponds to:

- the number of PWM periods in edge-aligned mode
- the number of half PWM period in center-aligned mode.

12.4.14 TIM1 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR1[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:

CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output.

If channel CC1 is configured as input:

CCR1 is the counter value transferred by the last input capture 1 event (IC1).

12.4.15 TIM1 capture/compare register 2 (TIMx_CCR2)

Address	offset:	0x38
7 10000	011000	0,000

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR2[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:

CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output.

If channel CC2 is configured as input:

CCR2 is the counter value transferred by the last input capture 2 event (IC2).

12.4.16 TIM1 capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CCR3[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:

CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter $TIMx_CNT$ and signalled on OC3 output.

If channel CC3 is configured as input:

CCR3 is the counter value transferred by the last input capture 3 event (IC3).

12.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)

Δddrees	offeet.	0×40
Audicaa	Under.	0740

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR4[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CCR4[15:0]: Capture/Compare value

If channel CC4 is configured as output:

CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output.

If channel CC4 is configured as input:

CCR4 is the counter value transferred by the last input capture 4 event (IC4).

12.4.18 TIM1 break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOE	AOE	BKP	BKE	OSSR	OSSI	LOC	LOCK[1:0]				DTG	[7:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on the LOCK configuration, it can be necessary to configure all of them during the first write access to the TIMx_BDTR register.

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output.

0: OC and OCN outputs are disabled or forced to idle state.

1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register).

See OC/OCN enable description for more details (*Section 12.4.9: TIM1 capture/compare enable register (TIMx_CCER) on page 298*).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software

1: MOE can be set by software or automatically at the next update event (if the break input is not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 13 **BKP**: Break polarity

- 0: Break input BRK is active low
- 1: Break input BRK is active high
- Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).
- Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

- 0: Break inputs (BRK and CSS clock failure event) disabled
- 1; Break inputs (BRK and CSS clock failure event) enabled
- Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).
- Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer.

See OC/OCN enable description for more details (Section 12.4.9: TIM1 capture/compare enable register (TIMx_CCER) on page 298).

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).

1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 10 **OSSI**: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (*Section 12.4.9: TIM1 capture/compare enable register (TIMx_CCER) on page 298*).

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).

1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.

00: LOCK OFF - No bit is write protected.

01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.

10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written.

11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in

TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset.

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration.

- $DTG[7:5]=0xx \Rightarrow DT=DTG[7:0]x t_{dtg}$ with $t_{dtg}=t_{DTS}$.
- $DTG[7:5]=10x \Rightarrow DT=(64+DTG[5:0])xt_{dtg}$ with $T_{dtg}=2xt_{DTS}$.
- $\begin{array}{l} {\sf DTG[7:5]=110 => DT=(32+DTG[4:0])xt_{dtg} \text{ with } T_{dtg}=8xt_{DTS}.} \\ {\sf DTG[7:5]=111 => DT=(32+DTG[4:0])xt_{dtg} \text{ with } T_{dtg}=16xt_{DTS}.} \end{array}$
- Example if T_{DTS}=125ns (8MHz), dead-time possible values are:
- 0 to 15875 ns by 125 ns steps,

16 us to 31750 ns by 250 ns steps,

- 32 us to 63us by 1 us steps,
- 64 us to 126 us by 2 us steps
- Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register).

12.4.19 TIM1 DMA control register (TIMx DCR)

Address offset: 0x48

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
Reserved				DBL[4:0]				Doooniod	_	DBA[4:0]										
		rw	rw	rw	rw	rw		Reserved		rw	rw	rw	rw	rw						

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer detects a burst transfer when a read or a write access to the TIMx DMAR register address is performed). the TIMx DMAR address) 00000: 1 transfer 00001: 2 transfers 00010: 3 transfers

10001: 18 transfers

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx DMAR address). DBA is defined as an offset starting from the address of the TIMx CR1 register. Example:

00000: TIMx CR1, 00001: TIMx CR2, 00010: TIMx SMCR,

Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx CR1. In this case the transfer is done to/from 7 registers starting from the TIMx CR1 address.

12.4.20 TIM1 DMA address for full transfer (TIMx_DMAR)

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DMAE	3[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

- 1. Configure the corresponding DMA channel as follows:
 - DMA channel peripheral address is the DMAR register address
 - DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers.
 - Number of data to transfer = 3 (See note below).
 - Circular mode disabled.
- 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE.
- 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).
- 4. Enable TIMx
- 5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR3 and data6 is transferred to CCR4.

12.4.21 TIM1 register map

TIM1 registers are mapped as 16-bit addressable registers as described in the table below:

Offset	Register	31	30	29	28	27	26	25	24	00	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	-	0
0x00	TIMx_CR1		Reserved																				CI [1	KD :0]	ARPE	CI [1	ИS :0]	DIR	ОРМ	URS	NDIS	CEN		
	Reset value																								0	0	0	0	0	0	0	0	0	0
0x04	TIMx_CR2		Reserved															OIS4	0IS3N	0IS3	OIS2N	olS2	, OIS1N	olS1	T11S	M	MS]	[2:0	ccds	ccus	eserved	CCPC		
	Reset value													-	0	0	0	0	0	0	0	0	0	0	0	0	0	R	0					
0x08	TIMx_SMCR								Rese	en	ved								ЕТР	ECE	E [1	S 1:0]		ETF	[3:0)]	MSM	т	S[2	:0]	eserved	SI	VS[2	2:0]
	Reset value												0	0	0	0	0	0	0	0	0	0	0	0	Ŕ	0	0	0						
0x0C	TIMx_DIER		Reserved															TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	UDE	BIE	TIE	COMIE	CC4IE	CC3IE	CC2IE	CC1IE	UIE		
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0x10	TIMx_SR		Reserved																	CC40F	CC30F	CC20F	CC10F	eserved	BIF	TIF	COMIF	CC4IF	CC3IF	CC2IF	CC11F	UIF		
	Reset value																0	0	Å	0	0	0	0	0	0	0	0							
0x14	TIMx_EGR												R	Rese	erve	d											BG	TG	COMG	CC4G	CC3G	CC2G	CC1G	DG
	Reset value																										0	0	0	0	0	0	0	0
	TIMx_CCMR1 Output Compare mode	Reserved														OC2CE	(C22 [2:0	2M)]	OC2PE	OC2FE	C ; [1	C2 S :0]	OC1CE	C	DC1 [2:0	M)]	OC1PE	OC1FE	C ; [1	C1 S :0]			
0x18	Reset value															0	0	0	0	0	0	0	0	0	0	0								
UX TO	TIMx_CCMR1 Input Capture mode								Rese	en	ved									IC2	F[3:	0]	10 P: [1	C2 SC :0]	C ; [1	C2 S :0]	I	IC1F	-[3:	0]	 P ['	C1 SC I:0]	C ; [1	C1 S :0]
	Reset value															0	0	0	0	0 0 0			0	0	0 0 0			0	0	0	0			
	TIMx_CCMR2 Output Compare mode								Rese	en	ved								024CE	(C4 [2:0	M)]	OC4PE	OC4FE	C ; [1	C4 S :0]	OC3CE	C	DC3 [2:0	BM 0]	OC3PE	OC3FE	C) (1	C3 S :0]
0x1C	Reset value															0	0	0	0 0 0			0	0	0	0	0	0 0		0	0	0			
	TIMx_CCMR2 Input Capture mode								Rese	en	ved									IC4	F[3:	0]	10 P: [1	C4 SC :0]	C ; [1	C4 S :0]	1	IC3F	-[3:	0]	 P ['	C3 SC [:0]	C ; [1	C3 S :0]
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	TIMx_CCER								F	Re	eserv	ve	d								CC4P	CC4E	CC3NP	CC3NE	CC3P	CC3E	CC2NP	CC2NE	CC2P	CC2E	CC1NP	CC1NE	CC1P	CC1E
	Reset value																				0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x24	TIMx_CNT		Reserved																					C	CNT	[15:	0]							
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x28	TIMx_PSC								Rese	en	ved														F	PSC	[15:	0]						
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 52. TIM1 register map and reset values

									_				-								•				,									
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	5	4	с	7	۲	0	
0x2C	IX2C TIMx_ARR Reserved																						A	RR	R[15:0]									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x30	TIMx_RCR		Reserved																															
	Reset value																									0	0	0	0	0	0	0	0	
0x34	TIMx_CCR1		Reserved																				С	CR1	R1[15:0]									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x38	TIMx_CCR2							R	lese	erveo	d							CCR2[15:0]																
	Reset value															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0x3C	TIMx_CCR3							R	lese	erveo	þ							CCR3[15:0]																
	Reset value														0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
0x40	TIMx_CCR4							R	Rese	erveo	d							CCR4[15:0]																
	Reset value		0 0 0 0 0 0 0 0												0	0	0	0	0	0	0	0												
0x44	TIMx_BDTR		Reserved													TD LOC K NOE RK NOE K NO								DT	[7:0]									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x48	TIMx_DCR									Re	ser	/ed										DE	3L[4	:0]		R	eser d	ve		D	3A[4	:0]		
	Reset value																				0	0	0	0	0				0	0	0	0	0	
0x4C	TIMx_DMAR		Reserved																DI	MAE	3[15	:0]												
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Refer to Table 1 on page 38 for the register boundary addresses.

13 General-purpose timers (TIM2 to TIM5)

13.1 TIM2 to TIM5 introduction

The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input signals (*input capture*) or generating output waveforms (*output compare and PWM*).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be synchronized together as described in *Section* 13.3.15.

13.2 TIM2 to TIM5 main features

General-purpose TIMx timer features include:

- 16-bit (TIM3 and TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter.
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65536.
- Up to 4 independent channels for:
 - Input capture
 - Output compare
 - PWM generation (Edge- and Center-aligned modes)
 - One-pulse mode output
- Synchronization circuit to control the timer with external signals and to interconnect several timers.
- Interrupt/DMA generation on the following events:
 - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger)
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
- Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes
- Trigger input for external clock or cycle-by-cycle current management

Figure 87. General-purpose timer block diagram

13.3 TIM2 to TIM5 functional description

13.3.1 Time-base unit

The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running.

The time-base unit includes:

- Counter Register (TIMx_CNT)
- Prescaler Register (TIMx_PSC):
- Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. The generation of the update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event.

Figure 88 and *Figure 89* give some examples of the counter behavior when the prescaler ratio is changed on the fly:

CK_PSC	www.www.www
CNT_EN	
Timer clock = CK_CNT	
Counter register	F7 (F8)(F9)(FA)(FB)(F0) 00 (01) 02 (03)
Update event (UEV)	
Prescaler control register	0 1
Write a new valu	Je in TIMx_PSC
Prescaler buffer	0 / 1
Prescaler counter	<u>0 </u>

Figure 88. Counter timing diagram with prescaler division change from 1 to 2

Figure 89. Counter timing diagram with prescaler division change from 1 to 4

13.3.2 **Counter modes**

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit):

- The buffer of the prescaler is reloaded with the preload value (content of the TIMx PSC register)
- The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock frequencies when TIMx ARR=0x36.

Figure 90. Counter timir	ig diagram, internal clock divided by 1
CK_INT	mmmmm
CNT_EN	
Timer clock = CK_CNT	
Counter register	31 (32)(33)(34)(35)(36)(00)(01)(02)(03)(04)(05)(06)(07)
Counter overflow	Γ
Update event (UEV)	Γ
Update interrupt flag (UIF)	

.

Figure 91. Counter timing diagram, internal clock divided by 2

Figure 92. Counter timing diagram, internal clock divided by 4

CK_INT	
CNT_EN	
Timer clock = CK_CNT	<u>nn</u>
Counter register	0035 0036 0000 0001
Counter overflow	Γ
Update event (UEV)	Γ
Update interrupt flag (UIF)	

Figure 95. Counter timing	j ulagram, memai clock ulviueu by N
CK_INT	mpm, mmm
Timer clock = CK_CNT	
Counter register	1F 20 00
Counter overflow	Л
Update event (UEV)	Л
Update interrupt flag (UIF)	

Figure 95. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn't change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register).
- The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36.

Figure 96. Counter timing diagram, internal clock divided by 1										
CK_INT	mmmmmm									
CNT_EN										
Timer clock = CK_CNT										
Counter register	05 (04(03(02(01)(00)(36)(35)(34)(33)(32)(31)(30)(2F)									
Counter underflow (cnt_udf)	Π									
Update event (UEV)	Γ									
Update interrupt flag (UIF)										

Figure 97. Counter timing diagram, internal clock divided by 2

Figure 98. Counter timing diagram, internal clock divided by 4

CK_INT	mmmmm
CNT_EN	
Timer clock = CK_CNT	
Counter register	0001 0000 0036 0035
Counter underflow	ſ
Update event (UEV)	Π
Update interrupt flag (UIF)	

Figure 99. Counter timing	g diagram, internal clock divided by N
CK_INT	
Timer clock = CK_CNT	
Counter register	20 1F 00 36
Counter underflow	7
Update event (UEV)	<u>[</u>
Update interrupt flag (UIF)	

Figure 99. Counter timing diagram, internal clock divided by N

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the $TIMx_ARR$ register) – 1, generates a counter overflow event, then counts from the auto-reload value down to 1 and generates a counter underflow event. Then it restarts counting from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11").

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler.

DocID025350 Rev 4

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupt when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register).
- The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the auto-reload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock frequencies.

CK_INT	www.www.
CNT_EN	
Timer clock = CK_CNT	
Counter register	04 \03\02\01\00\01\02\03\04\05\06\05\04\03\
Counter underflow	Π
Counter overflow	□
Update event (UEV)	ΓΓ
Update interrupt flag (UIF)	

Figure 101. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 13.4.1: TIMx control register 1 (TIMx_CR1) on page 347).

Figure 102. Counter timi	ng diagram, internal clock divided by 2
CK_INT	mmmmm
CNT_EN	
Timer clock = CK_CNT	
Counter register	0003 (0002 (0001 (0000 (0001 (0002 (0003 (
Counter underflow	
Update event (UEV)	Π
Update interrupt flag (UIF)	

Figure 103. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

CK_INT	
Timer clock = CK_CNT	
Counter register	20 1F 01 00
Counter underflow	Γ
Update event (UEV)	Γ
Update interrupt flag (UIF)	
Update interrupt flag (UIF)	

Figure 105. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 106. Counter timing diagram, Update event with ARPE=1 (counter overflow)

13.3.3 **Clock selection**

The counter clock can be provided by the following clock sources:

- Internal clock (CK INT)
- External clock mode1: external input pin (TIx)
- External clock mode2: external trigger input (ETR) available on TIM2, TIM3 and TIM4 only.
- Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer to act as a prescaler for Timer 2. Refer to : Using one timer as prescaler for another timer on page 342 for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 107 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler.

Figure 107. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input.

For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure:

- 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= '01 in the TIMx_CCMR1 register.
- 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000).

DocID025350 Rev 4

Note:

The capture prescaler is not used for triggering, so you don't need to configure it.

- 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register.
- 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register.
- 5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.
- 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input.

Figure 109. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 110 gives an overview of the external trigger input block.

For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure:

- 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.
- 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register
- 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register
- 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
- 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 111. Control circuit in external clock mode 2

13.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control).

The following figure gives an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS).

Figure 112. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain.

Figure 114. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter.

13.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure:

- Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only.
- Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the

new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register.

- Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case).
- Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx_CCMR1 register).
- Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register.
- If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

- The TIMx_CCR1 register gets the value of the counter on the active transition.
- CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared.
- An interrupt is generated depending on the CC1IE bit.
- A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register.

13.3.6 **PWM** input mode

This mode is a particular case of input capture mode. The procedure is the same except:

- Two ICx signals are mapped on the same TIx input.
- These 2 ICx signals are active on edges with opposite polarity.
- One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode.

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value):

- Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected).
- Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P to '0' and the CC1NP bit to '0' (active on rising edge).
- Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected).
- Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P bit to '1' and the CC2NP bit to '0'(active on falling edge).
- Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected).
- Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register.

Figure 115. PWM input mode timing

Enable the captures: write the CC1E and CC2E bits to '1 in the TIMx CCER register.

13.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter.

To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the Output Compare Mode section.

13.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has elapsed.

When a match is found between the capture/compare register and the counter, the output compare function:

- Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.
- Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
- Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register).
- Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode).

Procedure:

- 1. Select the counter clock (internal, external, prescaler).
- 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
- 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be generated.
- 4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not used, OCx is enabled and active high.
- 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 116*.

Figure 116. Output compare mode, toggle on OC1

13.3.9 PWM mode

Pulse width modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing 110 (PWM mode 1) or '111 (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx \leq TIMx_CNT or TIMx_CNT \leq TIMx_CCRx (depending on the direction of the counter). However, to comply with the ETRF (OCREF can be cleared by an external event through the ETR signal until the next PWM period), the OCREF signal is asserted only:

- When the result of the comparison changes, or
- When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from the "frozen" configuration (no comparison, OCxM='000) to one of the PWM modes (OCxM='110 or '111).

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register.

DocID025350 Rev 4

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Section : Upcounting mode on page 314.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1. If the compare value is 0 then OCxREF is held at '0. *Figure 117* shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

Figure 117. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Section : Downcounting mode on page 317.

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then ocxref is held at '1. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from '00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to *Section : Center-aligned mode (up/down counting) on page 319*.

Figure 118 shows some center-aligned PWM waveforms in an example where:

- TIMx_ARR=8,
- PWM mode is the PWM mode 1,
- The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 118. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

- When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software.
- Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular:
 - The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up.
 - The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated.
- The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running.

13.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be:

- In upcounting: CNT<CCRx≤ ARR (in particular, 0<CCRx),
- In downcounting: CNT>CCRx.

For example you may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin.

Let's use TI2FP2 as trigger 1:

- Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register.
- TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP='0' in the TIMx_CCER register.
- Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in the TIMx_SMCR register.
- TI2FP2 is used to start the counter by writing SMS to '110 in the TIMx_SMCR register (trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler).

- The t_{DELAY} is defined by the value written in the TIMx_CCR1 register.
- The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx_ARR TIMx_CCR + 1).
- Let's say you want to build a waveform with a transition from '0 to '1 when a compare match occurs and a transition from '1 to '0 when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay t_{DELAY} min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

13.3.11 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, ETR must be configured as follows:

- 1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR register are cleared to 00.
- 2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is cleared to 0.
- 3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be configured according to the application's needs.

Figure 120 shows the behavior of the OCxREF signal when the ETRF input becomes high, for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in PWM mode.

Figure 120. Clearing TIMx OCxREF

1. In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter overflow.

13.3.12 Encoder interface mode

To select Encoder Interface mode write SMS='001 in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to *Table 53*. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to '1). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder's position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 don't switch at the same time.

A stine solution	Level on opposite	TI1FP1	signal	TI2FP2 signal						
Active edge	TI2, TI2FP2 for TI1)	Rising	Falling	Rising	Falling					
Counting on TI1 only	High	Down	Up	No Count	No Count					
	Low	Up	Down	No Count	No Count					
Counting on TI2 only	High	No Count	No Count	Up	Down					
	Low	No Count	No Count	Down	Up					
Counting on TI1 and TI2	High	Down	Up	Up	Down					
	Low	Up	Down	Down	Up					

 Table 53. Counting direction versus encoder signals

An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder's differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset.

Figure 121 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following:

- CC1S= '01' (TIMx_CCMR1 register, TI1FP1 mapped on TI1)
- CC2S= '01' (TIMx_CCMR2 register, TI2FP2 mapped on TI2)
- CC1P= '0', CC1NP = '0', IC1F ='0000' (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1)
- CC2P= '0', CC2NP = '0', IC2F ='0000' (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2)
- SMS= '011' (TIMx_SMCR register, both inputs are active on both rising and falling edges)
- CEN = 1 (TIMx_CR1 register, Counter is enabled)

Figure 121. Example of counter operation in encoder interface mode

Figure 122 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=1).

Figure 122. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor's current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a Real-Time clock.

13.3.13 Timer input XOR function

The TI1S bit in the TIM_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input capture.

13.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

 Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write

CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edges only).

- Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.
- Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input.

Figure 123. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

- Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).
- Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.
- Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

Figure 124. Control circuit in gated mode

 The configuration "CCxP=CCxNP=1" (detection of both rising and falling edges) does not have any effect in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

- Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don't need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. CC2S bits are selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level only).
- Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input.

Figure 125. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input when operating in reset mode, gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register.

DocID025350 Rev 4

RM0368

In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs:

- 1. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows:
 - ETF = 0000: no filter
 - ETPS = 00: prescaler disabled
 - ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2.
- 2. Configure the channel 1 as follows, to detect rising edges on TI:
 - IC1F = 0000: no filter.
 - The capture prescaler is not used for triggering and does not need to be configured.
 - CC1S = 01 in TIMx_CCMR1 register to select only the input capture source
 - CC1P = 0 in TIMx_CCER register to validate the polarity (and detect rising edge only).
- 3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input.

Figure 126. Control circuit in external clock mode 2 + trigger mode

13.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of another Timer configured in Slave Mode.

Figure 127: Master/Slave timer example presents an overview of the trigger selection and the master mode selection blocks.

Note: The clock of the slave timer must be enabled prior to receiving events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer.

Using one timer as prescaler for another timer

Figure 127. Master/Slave timer example

For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to *Figure 127*. To do this:

- Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is output on TRGO1 each time an update event is generated.
- To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in slave mode using ITR0 as internal trigger. You select this through the TS bits in the TIM2_SMCR register (writing TS=000).
- Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow).
- Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1 register).

If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock the counter of timer 2.

Using one timer to enable another timer

In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1. Refer to *Figure 127* for connections. Timer 2 counts on the divided internal clock only when OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT (f_{CK} _{CNT} = f_{CK} _{INT}/3).

- Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register).
- Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
- Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register).
- Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
- Enable Timer 2 by writing '1 in the CEN bit (TIM2_CR1 register).
- Start Timer 1 by writing '1 in the CEN bit (TIM1_CR1 register).
- *Note:* The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2 counter enable signal.

Note:

In the example in *Figure 162*, the Timer 2 counter and prescaler are not initialized before being started. So they start counting from their current value. It is possible to start from a given value by resetting both timers before starting Timer 1. You can then write any value you want in the timer counters. The timers can easily be reset by software using the UG bit in the TIMx_EGR registers.

In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and starts from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. Timer 2 stops when Timer 1 is disabled by writing '0 to the CEN bit in the TIM1_CR1 register:

- Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register).
- Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
- Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register).
- Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
- Reset Timer 1 by writing '1 in UG bit (TIM1_EGR register).
- Reset Timer 2 by writing '1 in UG bit (TIM2_EGR register).
- Initialize Timer 2 to 0xE7 by writing '0xE7' in the timer 2 counter (TIM2_CNTL).
- Enable Timer 2 by writing '1 in the CEN bit (TIM2_CR1 register).
- Start Timer 1 by writing '1 in the CEN bit (TIM1_CR1 register).
- Stop Timer 1 by writing '0 in the CEN bit (TIM1_CR1 register).

Figure 129. Gating timer 2 with Enable of timer 1

Using one timer to start another timer

In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to Figure 127 for connections. Timer 2 starts counting from its current value (which can be nonzero) on the divided internal clock as soon as the update event is generated by Timer 1. When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter counts until we write '0 to the CEN bit in the TIM2_CR1 register. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT ($f_{CK CNT} = f_{CK INT}/3$).

- Configure Timer 1 master mode to send its Update Event (UEV) as trigger output • (MMS=010 in the TIM1_CR2 register).
- Configure the Timer 1 period (TIM1_ARR registers).
- Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register).
- Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register).
- Start Timer 1 by writing '1 in the CEN bit (TIM1_CR1 register).

Figure 130. Triggering timer 2 with update of timer 1

DocID025350 Rev 4

As in the previous example, you can initialize both counters before starting counting. Figure 131 shows the behavior with the same configuration as in Figure 162 but in trigger mode instead of gated mode (SMS=110 in the TIM2 SMCR register).

Figure 131. Triggering timer 2 with Enable of timer 1

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of Timer 2 with the enable of Timer 1. Refer to *Figure 127* for connections. To ensure the counters are aligned, Timer 1 must be configured in Master/Slave mode (slave with respect to TI1, master with respect to Timer 2):

- Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the TIM1 CR2 register).
- Configure Timer 1 slave mode to get the input trigger from TI1 (TS=100 in the TIM1_SMCR register).
- Configure Timer 1 in trigger mode (SMS=110 in the TIM1 SMCR register).
- Configure the Timer 1 in Master/Slave mode by writing MSM=1 (TIM1 SMCR register).
- Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2 SMCR register).
- Configure Timer 2 in trigger mode (SMS=110 in the TIM2 SMCR register).

When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously on the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG bits). Both counters starts from 0, but you can easily insert an offset between them by writing any of the counter registers (TIMx CNT). You can see that the master/slave mode insert a delay between CNT EN and CK PSC on timer 1.

13.3.16 Debug mode

When the microcontroller enters debug mode (Cortex[®]-M4 with FPU core - halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBGMCU module. For more details, refer to *Section 23.16.2: Debug support for timers, watchdog and I2C*.

RM0368

13.4 TIM2 to TIM5 registers

Refer to Section 1.1 on page 34 for a list of abbreviations used in register descriptions.

The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

13.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		CKD	[1:0]	ARPE	CN	/IS	DIR	OPM	URS	UDIS	CEN				
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 **CKD**: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (ETR, TIx),

- 00: t_{DTS} = t_{CK_INT}
- 01: $t_{DTS} = 2 \times t_{CK_{INT}}$
- 10: $t_{DTS} = 4 \times t_{CK}$ _INT
- 11: Reserved
- Bit 7 ARPE: Auto-reload preload enable
 - 0: TIMx_ARR register is not buffered
 - 1: TIMx_ARR register is buffered
- Bits 6:5 CMS: Center-aligned mode selection
 - 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).

01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down.

10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up.

11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down.

- Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1)
- Bit 4 **DIR**: Direction
 - 0: Counter used as upcounter
 - 1: Counter used as downcounter
 - Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
- Bit 3 **OPM**: One-pulse mode
 - 0: Counter is not stopped at update event
 - 1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
- Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

- 0: Counter disabled
- 1: Counter enabled
- Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware.
- CEN is cleared automatically in one-pulse mode, when an update event occurs.

13.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Poss	nuod				TI1S		MMS[2:0]		CCDS		Peserved	
	Reserved								rw	rw	rw	rw		Reserveu	

Bits 15:8 Reserved, must be kept at reset value.

- Bit 7 TI1S: TI1 selection
 - 0: The TIMx CH1 pin is connected to TI1 input
 - 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)
- Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows:

000: **Reset** - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset.

001: **Enable** - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode.

When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register).

010: **Update** - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer.

011: **Compare Pulse** - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO)

100: Compare - OC1REF signal is used as trigger output (TRGO)

- 101: Compare OC2REF signal is used as trigger output (TRGO)
- 110: Compare OC3REF signal is used as trigger output (TRGO)
- 111: Compare OC4REF signal is used as trigger output (TRGO)
- Note: The clock of the slave timer and ADC must be enabled prior to receiving events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer.
- Bit 3 CCDS: Capture/compare DMA selection
 - 0: CCx DMA request sent when CCx event occurs
 - 1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, must be kept at reset value.

13.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	ECE	ETPS	S[1:0]		ETF[3:0]					TS[2:0]		Bee		SMS[2:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	Res.	rw	rw	rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations

0: ETR is noninverted, active at high level or rising edge

1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.

0: External clock mode 2 disabled

1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.

1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111).

3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.

00: Prescaler OFF

01: ETRP frequency divided by 2

10: ETRP frequency divided by 4

- 11: ETRP frequency divided by 8
- Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:

0000: No filter, sampling is done at f_{DTS}

- 0001: f_{SAMPLING}=f_{CK INT}, N=2
- 0010: f_{SAMPLING}=f_{CK INT}, N=4
- 0011: f_{SAMPLING}=f_{CK} INT, N=8
- 0100: f_{SAMPLING}=f_{DTS}/2, N=6
- 0101: f_{SAMPLING}=f_{DTS}/2, N=8
- 0110: f_{SAMPLING}=f_{DTS}/4, N=6
- 0111: f_{SAMPLING}=f_{DTS}/4, N=8
- 1000: f_{SAMPLING}=f_{DTS}/8, N=6
- 1001: f_{SAMPLING}=f_{DTS}/8, N=8
- 1010: f_{SAMPLING}=f_{DTS}/16, N=5
- 1011: $f_{SAMPLING}=f_{DTS}/16$, N=6
- International
 Interna
 International
 Internationali

DocID025350 Rev 4

- Bit 7 MSM: Master/Slave mode
 - 0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event.

Bits 6:4 **TS:** Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.

- 000: Internal Trigger 0 (ITR0).
- 001: Internal Trigger 1 (ITR1).
- 010: Internal Trigger 2 (ITR2).
- 011: Internal Trigger 3 (ITR3).
- 100: TI1 Edge Detector (TI1F_ED)
- 101: Filtered Timer Input 1 (TI1FP1)
- 110: Filtered Timer Input 2 (TI2FP2)
- 111: External Trigger input (ETRF)

See *Table 54: TIMx internal trigger connection on page 352* for more details on ITRx meaning for each Timer.

- Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition.
- Bit 3 Reserved, must be kept at reset value.
- Bits 2:0 **SMS:** Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description.

000: Slave mode disabled - if CEN = '1 then the prescaler is clocked directly by the internal clock.

001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 level.

010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 level.

011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.

100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled.

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer.

		in a line lingge	Connection	
Slave TIM	ITR0 (TS = 000)	ITR1 (TS = 001)	ITR2 (TS = 010)	ITR3 (TS = 011)
TIM2	TIM1_TRGO	Reserved	TIM3_TRGO	TIM4_TRGO
TIM3	TIM1_TRGO	TIM2_TRGO	TIM5_TRGO	TIM4_TRGO
TIM4	TIM1_TRGO	TIM2_TRGO	TIM3_TRGO	Reserved
TIM5	TIM2_TRGO	TIM3_TRGO	TIM4_TRGO	Reserved

Table 54. TIMx internal trigger connection

13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pos	TDE	Pos	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Pos	TIE	Pos	CC4IE	CC3IE	CC2IE	CC1IE	UIE
Res.	rw	Res	rw	rw	rw	rw	rw	Res.	rw	Res	rw	rw	rw	rw	rw

- Bit 15 Reserved, must be kept at reset value.
- Bit 14 TDE: Trigger DMA request enable
 - 0: Trigger DMA request disabled.
 - 1: Trigger DMA request enabled.
- Bit 13 Reserved, always read as 0
- Bit 12 **CC4DE**: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled. 1: CC4 DMA request enabled.
- Bit 11 **CC3DE**: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled.
 - 1: CC3 DMA request enabled.
- Bit 10 CC2DE: Capture/Compare 2 DMA request enable
 - 0: CC2 DMA request disabled.
 - 1: CC2 DMA request enabled.
- Bit 9 CC1DE: Capture/Compare 1 DMA request enable
 - 0: CC1 DMA request disabled.
 - 1: CC1 DMA request enabled.

Bit 8 **UDE**: Update DMA request enable 0: Update DMA request disabled.

- 1: Update DMA request enabled.
- Bit 7 Reserved, must be kept at reset value.
- Bit 6 TIE: Trigger interrupt enable
 - 0: Trigger interrupt disabled.
 - 1: Trigger interrupt enabled.
- Bit 5 Reserved, must be kept at reset value.
- Bit 4 CC4IE: Capture/Compare 4 interrupt enable
 - 0: CC4 interrupt disabled.
 - 1: CC4 interrupt enabled.

- Bit 2 CC2IE: Capture/Compare 2 interrupt enable
 - 0: CC2 interrupt disabled
 - 1: CC2 interrupt enabled
- Bit 1 **CC1IE**: Capture/Compare 1 interrupt enable
 - 0: CC1 interrupt disabled
 - 1: CC1 interrupt enabled
- Bit 0 UIE: Update interrupt enable
 - 0: Update interrupt disabled
 - 1: Update interrupt enabled

13.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Peserved		CC4OF	CC3OF	CC2OF	CC10F	Poso	nyod	TIF	Pos	CC4IF	CC3IF	CC2IF	CC1IF	UIF
	Reserved		rc_w0	rc_w0	rc_w0	rc_w0	Nese	Iveu	rc_w0	Nes	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

- Bits 15:13 Reserved, must be kept at reset value.
 - Bit 12 **CC4OF**: Capture/Compare 4 overcapture flag refer to CC1OF description
 - Bit 11 **CC3OF**: Capture/Compare 3 overcapture flag refer to CC1OF description
 - Bit 10 **CC2OF**: Capture/compare 2 overcapture flag refer to CC1OF description
 - Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0.

0: No overcapture has been detected

1: The counter value has been captured in $\mathsf{TIMx_CCR1}$ register while CC1IF flag was already set

- Bits 8:7 Reserved, must be kept at reset value.
 - Bit 6 **TIF**: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred

- 1: Trigger interrupt pending
- Bit 5 Reserved, must be kept at reset value.
- Bit 4 **CC4IF**: Capture/Compare 4 interrupt flag refer to CC1IF description
- Bit 3 **CC3IF**: Capture/Compare 3 interrupt flag refer to CC1IF description

- Bit 2 **CC2IF**: Capture/Compare 2 interrupt flag refer to CC1IF description
- Bit 1 **CC1IF**: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software.

0: No match

1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode)

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register.

0: No input capture occurred

1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity)

Bit 0 **UIF**: Update interrupt flag

- This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred.
- 1: Update interrupt pending. This bit is set by hardware when the registers are updated:
- At overflow or underflow (for TIM2 to TIM5) and if UDIS=0 in the TIMx_CR1 register.
- When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register.

When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=0 and UDIS=0 in the TIMx_CR1 register.

13.4.6 TIMx event generation register (TIMx_EGR)

```
Address offset: 0x14
```

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Pagariad					TG	Baa	CC4G	CC3G	CC2G	CC1G	UG
				Reserveu					w	Res.	w	w	W	w	w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled.

- Bit 5 Reserved, must be kept at reset value.
- Bit 4 **CC4G**: Capture/compare 4 generation refer to CC1G description
- Bit 3 **CC3G**: Capture/compare 3 generation refer to CC1G description
- Bit 2 **CC2G**: Capture/compare 2 generation refer to CC1G description
- Bit 1 **CC1G**: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 1:

If channel CC1 is configured as output:

CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.

If channel CC1 is configured as input:

The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware. 0: No action

1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting).

13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in output take care that the same bit can have a different meaning for the input stage and for the output stage.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2CE	(C2M[2:0	2M[2:0] OC2PE OC2FE CC2S[1				10.11	OC1CE	(OC1M[2:0]	OC1PE	OC1FE	0019	2[1:0]
	IC2F[3:0]			IC2PS	C[1:0]	0020	5[1.0]		IC1F	[3:0]		IC1PS	SC[1:0]	001	5[1.0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode

Bit 15 OC2CE: Output compare 2 clear enable

- Bits 14:12 OC2M[2:0]: Output compare 2 mode
 - Bit 11 **OC2PE**: Output compare 2 preload enable
 - Bit 10 **OC2FE**: Output compare 2 fast enable
 - Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output

- 01: CC2 channel is configured as input, IC2 is mapped on TI2
- 10: CC2 channel is configured as input, IC2 is mapped on TI1
- 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register)
- Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
- Bit 7 **OC1CE:** Output compare 1 clear enable
 - OC1CE: Output Compare 1 Clear Enable
 - 0: OC1Ref is not affected by the ETRF input
 - 1: OC1Ref is cleared as soon as a High level is detected on ETRF input

Bits 6:4 **OC1M**: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits.

000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base).

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.

100: Force inactive level - OC1REF is forced low.

101: Force active level - OC1REF is forced high.

110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else inactive. In downcounting, channel 1 is inactive (OC1REF='0) as long as TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).

111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else inactive.

- Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode.
- Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately.

1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: **1**: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output).

2: The PWM mode can be used without validating the preload register only in onepulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 **OC1FE**: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1.

10: CC1 channel is configured as input, IC1 is mapped on TI2.

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

Input capture mode

- Bits 15:12 IC2F: Input capture 2 filter
- Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler
 - Bits 9:8 CC2S: Capture/compare 2 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input.
 - 00: CC2 channel is configured as output.
 - 01: CC2 channel is configured as input, IC2 is mapped on TI2.
 - 10: CC2 channel is configured as input, IC2 is mapped on TI1.
 - 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
 - Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
 - Bits 7:4 IC1F: Input capture 1 filter
 - This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:
 - 0000: No filter, sampling is done at $f_{\mbox{\scriptsize DTS}}$
 - 0001: $f_{SAMPLING}=f_{CK_{INT}}$, N=2
 - 0010: f_{SAMPLING}=f_{CK_INT}, N=4
 - 0011: f_{SAMPLING}=f_{CK_INT}, N=8
 - 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8
 - 0110: f_{SAMPLING}=f_{DTS}/4, N=6
 - 0111: f_{SAMPLING}=f_{DTS}/4, N=8
 - 1000: f_{SAMPLING}=f_{DTS}/8, N=6
 - 1001: f_{SAMPLING}=f_{DTS}/8, N=8
 - 1010: f_{SAMPLING}=f_{DTS}/16, N=5
 - 1011: f_{SAMPLING}=f_{DTS}/16, N=6
 - 1100: f_{SAMPLING}=f_{DTS}/16, N=8
 - 1101: f_{SAMPLING}=f_{DTS}/32, N=5
 - 1110: f_{SAMPLING}=f_{DTS}/32, N=6
 - 1111: f_{SAMPLING}=f_{DTS}/32, N=8
 - Bits 3:2 IC1PSC: Input capture 1 prescaler
 - This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).

- 00: no prescaler, capture is done each time an edge is detected on the capture input
- 01: capture is done once every 2 events
- 10: capture is done once every 4 events
- 11: capture is done once every 8 events
- Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

- 00: CC1 channel is configured as output
- 01: CC1 channel is configured as input, IC1 is mapped on TI1
- 10: CC1 channel is configured as input, IC1 is mapped on TI2
- 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
- Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC4CE	CE OC4M[2:0]			OC4PE	OC4FE	0049	10.11	OC3CE	(DC3M[2:0]	OC3PE	OC3FE	002	2[1:0]
	IC4F[3:0]			IC4PS	SC[1:0]	0043	5[1.0]		IC3F	[3:0]		IC3PS	SC[1:0]	003	5[1.0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode

- Bit 15 **OC4CE**: Output compare 4 clear enable
- Bits 14:12 OC4M: Output compare 4 mode
 - Bit 11 OC4PE: Output compare 4 preload enable
 - Bit 10 OC4FE: Output compare 4 fast enable
 - Bits 9:8 CC4S: Capture/Compare 4 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output
 - 01: CC4 channel is configured as input, IC4 is mapped on TI4
 - 10: CC4 channel is configured as input, IC4 is mapped on TI3
 - 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
 - Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
 - Bit 7 **OC3CE:** Output compare 3 clear enable
 - Bits 6:4 OC3M: Output compare 3 mode
 - Bit 3 OC3PE: Output compare 3 preload enable
 - Bit 2 OC3FE: Output compare 3 fast enable
 - Bits 1:0 CC3S: Capture/Compare 3 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input.
 - 00: CC3 channel is configured as output
 - 01: CC3 channel is configured as input, IC3 is mapped on TI3
 - 10: CC3 channel is configured as input, IC3 is mapped on TI4
 - 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
 - Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

Input capture mode

- Bits 15:12 IC4F: Input capture 4 filter
- Bits 11:10 IC4PSC: Input capture 4 prescaler
 - Bits 9:8 CC4S: Capture/Compare 4 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input.
 - 00: CC4 channel is configured as output
 - 01: CC4 channel is configured as input, IC4 is mapped on TI4
 - 10: CC4 channel is configured as input, IC4 is mapped on TI3
 - 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
 - Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
 - Bits 7:4 IC3F: Input capture 3 filter
 - Bits 3:2 IC3PSC: Input capture 3 prescaler
 - Bits 1:0 CC3S: Capture/Compare 3 selection
 - This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output
 - 01: CC3 channel is configured as input, IC3 is mapped on TI3
 - 10: CC3 channel is configured as input, IC3 is mapped on TI4
 - 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

13.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CC4NP	Boo	CC4P	CC4E	CC3NP	Baa	CC3P	CC3E	CC2NP	Boo	CC2P	CC2E	CC1NP	Boo	CC1P	CC1E
rw	Res.	rw	rw												

- Bit 15 **CC4NP**: *Capture/Compare 4 output Polarity.* Refer to CC1NP description
- Bit 14 Reserved, must be kept at reset value.
- Bit 13 **CC4P**: *Capture/Compare 4 output Polarity.* refer to CC1P description
- Bit 12 **CC4E**: Capture/Compare 4 output enable. refer to CC1E description
- Bit 11 **CC3NP**: Capture/Compare 3 output Polarity. refer to CC1NP description
- Bit 10 Reserved, must be kept at reset value.
- Bit 9 **CC3P**: Capture/Compare 3 output Polarity. refer to CC1P description

- Bit 8 **CC3E**: Capture/Compare 3 output enable. refer to CC1E description
- Bit 7 **CC2NP**: Capture/Compare 2 output Polarity. refer to CC1NP description
- Bit 6 Reserved, must be kept at reset value.
- Bit 5 **CC2P**: *Capture/Compare 2 output Polarity.* refer to CC1P description
- Bit 4 **CC2E**: Capture/Compare 2 output enable. refer to CC1E description
- Bit 3 CC1NP: Capture/Compare 1 output Polarity.
 - CC1 channel configured as output:

CC1NP must be kept cleared in this case.

CC1 channel configured as input:

This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P description.

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:

0: OC1 active high

1: OC1 active low

CC1 channel configured as input:

CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge

Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).

01: inverted/falling edge

Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).

10: reserved, do not use this configuration.

11: noninverted/both edges

Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:

0: Off - OC1 is not active

1: On - OC1 signal is output on the corresponding output pin

CC1 channel configured as input:

This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.

0: Capture disabled

1: Capture enabled

Table 55. Output control bit for standard OCx channels

CCxE bit	OCx output state
0	Output Disabled (OCx=0, OCx_EN=0)
1	OCx=OCxREF + Polarity, OCx_EN=1

Note: The state of the external IO pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers.

13.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						CNT[31	:16] (dep	ending or	timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 15:0 CNT[15:0]: Counter value

13.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to f_{CK_PSC} / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event.

13.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						ARR[31	:16] (dep	ending or	n timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 13.3.1: Time-base unit on page 312 for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

13.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						CCR1[3	1:16] (dep	pending o	n timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR1	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (on TIM2 and TIM5).

Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value

If channel CC1 is configured as output:

CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:

CCR1 is the counter value transferred by the last input capture 1 event (IC1).

13.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						CCR2[3	1:16] (dep	ending o	n timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR2	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (on TIM2 and TIM5).

Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value

If channel CC2 is configured as output:

CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output.

If channel CC2 is configured as input:

CCR2 is the counter value transferred by the last input capture 2 event (IC2).

13.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						CCR3[3	1:16] (dep	ending o	n timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
								_		_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR3	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (on TIM2 and TIM5).

Bits 15:0 CCR3[15:0]: Low Capture/Compare value

If channel CC3 is configured as output:

CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC3 output.

If channel CC3 is configured as input:

CCR3 is the counter value transferred by the last input capture 3 event (IC3).

13.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						CCR4[3	1:16] (dep	pending o	n timers)						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		_		_	_	_	CCR4	[15:0]				_	_	_	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw						

Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (on TIM2 and TIM5).

Bits 15:0 CCR4[15:0]: Low Capture/Compare value

- 1. if CC4 channel is configured as output (CC4S bits):
 - CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output.

2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register): CCR4 is the counter value transferred by the last input capture 4 event (IC4).

13.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Beconvod				DBL[4:0]				Basanyad	1			DBA[4:0]		
	Reserveu		rw	rw	rw	rw	rw		Reserveu		rw	rw	rw	rw	rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example:

00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR,

- - -

Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

13.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DMAE	8[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

DocID025350 Rev 4

This is done in the following steps:

- 1. Configure the corresponding DMA channel as follows:
 - DMA channel peripheral address is the DMAR register address
 - DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers.
 - Number of data to transfer = 3 (See note below).
 - Circular mode disabled.
- 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE.
- 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).
- 4. Enable TIMx
- 5. Enable the DMA channel
- Note: This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR3 and data6 is transferred to CCR4.

13.4.19 TIM2 option register (TIM2_OR)

Address offset: 0x50

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Poso	nvod		ITR1	RMP					Poss	ryod				
	Rese	iveu		rw	rw					Nese	iveu				

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:10 ITR1_RMP: Internal trigger 1 remap

Set and cleared by software.

00: Reserved

- 01: PTP trigger output is connected to TIM2_ITR1
- 10: OTG FS SOF is connected to the TIM2_ITR1 input

11: OTG HS SOF is connected to the TIM2_ITR1 input

Bits 9:0 Reserved, must be kept at reset value.

13.4.20 TIM5 option register (TIM5_OR)

Address offset: 0x50

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Pos	nuod				TI4_	RMP			Pos	anvod		
			Nest	liveu				rw	rw			Nest	erveu		

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:6 TI4_RMP: Timer Input 4 remap

Set and cleared by software.

00: TIM5 Channel4 is connected to the GPIO: Refer to the Alternate function mapping table in the datasheets.

01: the LSI internal clock is connected to the TIM5_CH4 input for calibration purposes

10: the LSE internal clock is connected to the TIM5_CH4 input for calibration purposes 11: the RTC wakeup interrupt is connected to TIM5_CH4 input for calibration purposes.

Wakeup interrupt should be enabled.

Bits 5:0 Reserved, must be kept at reset value.

13.4.21 TIMx register map

TIMx registers are mapped as described in the table below:

Offset	Register	31	30	29	28	27	26	25	24	1	23	22	21	20	10	2	18	17	16	15	14	13	12	11	10	6	8	7	9	ŝ	4	ę	2	-	0
0x00	TIMx_CR1												Re	eser	vec	ł							<u> </u>			C [1	KD :0]	ARPE	C ['	:MS 1:0]	DIR	MGO	URS	NDIS	CEN
	Reset value																									0	0	0	0	0	0	0	0	0	0
0x04	TIMx_CR2													Re	ese	erve	ed											TI1S	М	MS	[2:0]	CCDS	Re	eser	ved
L	Reset value																				1	-						0	0	0	0	0			
0x08	TIMx_SMCR								Res	er	ved									ETP	ECE	E1 [1	PS :0]		ETF	[3:0)]	MSM	-	TS[2	:0]	eserved	SI	MS[2	2:0]
L	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	Å	0	0	0
0x0C	TIMx_DIER								R	ese	erv	ed									TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	UDE	eserved	ΠE	eserved	CC4IE	CC3IE	CC2IE	CC1IE	UIE
	Reset value																				0	0	0	0	0	0	0	æ	0	æ	0	0	0	0	0
0x10	TIMx_SR	_								F	Res	er	ve	d									CC40F	CC30F	CC20F	CC10F	-	eserved	ΞL	eserved	CC4IF	CC3IF	CC2IF	CC1IF	UIF
	Reset value																						0	0	0	0	(r	0	R	0	0	0	0	0
0x14	TIMx_EGR													I	Re	ser	ve	d											Ъ	served	CC4G	CC3G	CC2G	CC1G	ng
	Reset value																							1	1	1		-	0	Re	0	0	0	0	0
	TIMx_CCMR1 Output Compare mode								Res	er	ved									OC2CE		OC2 [2:0	M]	0C2PE	OC2FE	C([1	C2S :0]	OC1CE	1	OC1 [2:(IM)]	OC1PE	0C1FE	CC [1	21S :0]
0x18	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CCMR1 Input Capture mode								Res	er	ved									l	IC2	F[3:	0]	0 P [1	C2 SC :0]	C([1	C2S :0]	;	IC1	F[3:	0]	 P [C1 SC I:0]	CC [1	21S :0]
	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CCMR2 Output Compare mode								Res	er	ved									024CE		OC4 [2:0	M]	OC4PE	0C4FE	C([1	C4S :0]	OC3CE		OC3 [2:0	BM D]	OC3PE	OC3FE	CC [1	23S :0]
0x1C	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CCMR2 Input Capture mode								Res	er	ved									I	IC4	F[3:	0]	0 P [1	C4 SC :0]	C([1	C4S [:0]	;	IC3	F[3:	0]	 P ['	C3 SC 1:0]	CC [1	C3S :0]
	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	TIMx_CCER								Res	en	ved									CC4NP	Reserved	CC4P	CC4E	CC3NP	Reserved	ссзр	CC3E	CC2NP	Reserved	CC2P	CC2E	CC1NP	Reserved	CC1P	CC1E
	Reset value																			0		0	0	0		0	0	0		0	0	0		0	0
0x24	TIMx_CNT	(TIN	12 a	and	TIN	15 c	C only	CNT , res	[31 ser	1:16 vec	5] 1 o	n t	he c	oth	er t	tim	ers)							(CNI	F[15:	0]						
	Reset value	0	0	0	0	0	0	0	0	(0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x28	TIMx_PSC		Reserved																			PSC	2[15:	0]											
	Reset value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 56. TIM2 to TIM5 register map and reset values

DocID025350 Rev 4

	Tak	ле	50	<i>)</i> .	1 114	// Z U		I IIVI	J	16	yıs	JU			a	Jai	IU	Te	;3C	ιν	ait	63	(0	,011		ue	u)						
Offset	Register	31	30	29	28	27	7 0	25 24	5	57 55	22	7.1	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
0x2C	TIMx_ARR	(TIN	12 a	and	TIM5	on	ARR[ily, res	[31 ser	l:16 ved] l on	th	e ot	the	r tir	mers	;)							A	RR	[15:	0]						
	Reset value	0	0	0	0	0 ()	0 0	() (0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x30															Re	serv	ed																
0x34	TIMx_CCR1	(TIN	12 a	and	TIM5	on	CCR1	[3 ser	1:16 ved	6] I on	th	e ot	the	r tir	mers	;)							С	CR1	[15	:0]						
	Reset value	0	0	0	0	0 0)	0 0	(0 0	0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x38	TIMx_CCR2	(TIN	12 a	CCR2[31:16] CCR2[15:0] 0 <td></td>																												
	Reset value	0	0	0	0	0 ()	0 0	() (0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x3C	TIMx_CCR3	(TIN	12 a	0 0																												
	Reset value	0	0	0	0	0 ()	0 0	0) (0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x40	TIMx_CCR4	(TIN	12 a	and	TIM5	on	CCR4 Ily, res	l[3 ser	1:16 ved	6] I on	th	e ot	the	r tir	mers	;)							С	CR4	[15	:0]						
	Reset value	0	0	0	0	0 ()	0 0	0) (0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x44		-													Re	serv	ed									-							
0x48	TIMx_DCR								F	Res	erve	ed										DI	BL[4	:0]		Re	eser	/ed		D	3A[4	1:0]	
	Reset value																				0	0	0	0	0				0	0	0	0	0
0x4C	TIMx_DMAR							Res	er	ved														D	MAE	3[15	:0]						
	Reset value														0	0																	
0x50	TIM2_OR			Reserved Reserved Reserved Reserved																													
	Reset value																					0	0										
0x50	TIM5_OR			Reserved Reserved Reserved Reserved																													
	Reset value				Reserved																				0	0							

Table 56. TIM2 to TIM5 register map and reset values (continued)

Refer to Table 1 on page 38 for the register boundary addresses.

14 General-purpose timers (TIM9 to TIM11)

TIM12, TIM13 and TIM14 are not available in STM32F401xB/C and STM32F401xD/E.

14.1 TIM9/10/11 introduction

The TIM9/10/11 general-purpose timers consist of a 16-bit auto-reload counter driven by a programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM9/10/11 timers are completely independent, and do not share any resources. They can be synchronized together as described in *Section 14.3.12*.

14.2 TIM9/10/11 main features

14.2.1 TIM9 main features

The features of the TIM9 general-purpose timer include:

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed "on the fly")
- Up to 2 independent channels for:
 - Input capture
 - Output compare
 - PWM generation (edge-aligned mode)
 - One-pulse mode output
- Synchronization circuit to control the timer with external signals and to interconnect several timers together
- Interrupt generation on the following events:
 - Update: counter overflow, counter initialization (by software or internal trigger)
 - Trigger event (counter start, stop, initialization or count by internal trigger)
 - Input capture
 - Output compare

Figure 133. General-purpose timer block diagram (TIM9)

14.2.2 TIM10/TIM11 main features

The features of general-purpose timers TIM10/TIM11 include:

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed "on the fly")
- independent channel for:
 - Input capture
 - Output compare
 - PWM generation (edge-aligned mode)
 - One-pulse mode output
- Interrupt generation on the following events:
 - Update: counter overflow, counter initialization (by software)
 - Input capture
 - Output compare

Figure 134. General-purpose timer block diagram (TIM10/11)

14.3 TIM9 to TIM11 functional description

14.3.1 Time-base unit

The main block of the timer is a 16-bit counter with its related auto-reload register.

The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running.

The time-base unit includes:

- Counter register (TIMx_CNT)
- Prescaler register (TIMx_PSC)
- Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in details for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event.

Figure 135 and *Figure 136* give some examples of the counter behavior when the prescaler ratio is changed on the fly.

Figure 135. Counter timing diagram with prescaler division change from 1 to 2

Figure 136. Counter timing diagram with prescaler division change from 1 to 4

14.3.2 **Counter modes**

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIMx_EGR register (by software) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without

DocID025350 Rev 4

setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit):

- The auto-reload shadow register is updated with the preload value (TIMx_ARR),
- The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register).

The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36.

i iguio iori ocuitor tini	
CK_PSC	www.www.www.
CNT_EN	
Timer clock = CK_CNT	
Counter register	31 (32)(33)(34)(35)(36)(00)(01)(02)(03)(04)(05)(06)(07)
Counter overflow	Π
Update event (UEV)	Γ
Update interrupt flag (UIF)	

Figure 137. Counter timing diagram, internal clock divided by 1

Figure 138. Counter timing diagram, internal clock divided by 2

CK_PSC	
CNT_EN	
Timer clock = CK_CNT	
Counter register	0034 0035 0036 0000 0001 0002 0003
Counter overflow	Ω
Update event (UEV)	Γ
Update interrupt flag (UIF)	

Figure 139. Counter timing diagram, internal clock divided by 4	
CK_PSC	mmmmmm
CNT_EN	
Timer clock = CK_CNT	
Counter register	0035 0036 0000 0001
Counter overflow	Γ
Update event (UEV)	Γ
Update interrupt flag (UIF)	

Figure 140. Counter timing diagram, internal clock divided by N

Figure 141. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)

DocID025350 Rev 4

Figure 142. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

14.3.3 Clock selection

The counter clock can be provided by the following clock sources:

- Internal clock (CK_INT)
- External clock mode1 (for **TIM9**): external input pin (TIx)
- Internal trigger inputs (ITRx) (for **TIM9**): connecting the trigger output from another timer. Refer to Section : Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

The internal clock source is the default clock source for TIM10/TIM11.

For TIM9, the internal clock source is selected when the slave mode controller is disabled (SMS='000'). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR register are then used as control bits and can be changed only by software (except for UG which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 143 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler.

Figure 143. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1(TIM9)

This mode is selected when SMS='111' in the TIMx SMCR register. The counter can count at each rising or falling edge on a selected input.

Figure 144. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure:

- 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = '01' in the TIMx CCMR1 register.
- 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F='0000').
- 3. Select the rising edge polarity by writing CC2P='0' and CC2NP='0' in the TIMx CCER register.
- Configure the timer in external clock mode 1 by writing SMS='111' in the TIMx_SMCR 4. register.
- Select TI2 as the trigger input source by writing TS='110' in the TIMx SMCR register. 5.
- Enable the counter by writing CEN='1' in the TIMx_CR1 register. 6.

The capture prescaler is not used for triggering, so you don't need to configure it. Note:

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input.

14.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control).

Figure 146 to Figure 148 give an overview of one capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS).

Figure 146. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain.

Figure 147. Capture/compare channel 1 main circuit

The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter.

14.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be

cleared by software by writing it to '0' or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to '0'.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure:

- Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to '01' in the TIMx_CCMR1 register. As soon as CC1S becomes different from '00', the channel is configured in input mode and the TIMx_CCR1 register becomes readonly.
- 2. Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to '0011' in the TIMx_CCMR1 register.
- 3. Select the edge of the active transition on the TI1 channel by programming CC1P and CC1NP bits to '00' in the TIMx_CCER register (rising edge in this case).
- 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to '00' in the TIMx_CCMR1 register).
- 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register.
- 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register.

When an input capture occurs:

- The TIMx_CCR1 register gets the value of the counter on the active transition.
- CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared.
- An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data.

Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register.

This mode is a particular case of input capture mode. The procedure is the same except:

- Two ICx signals are mapped on the same TIx input.
- These 2 ICx signals are active on edges with opposite polarity.
- One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode.

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value):

- 1. Select the active input for TIMx_CCR1: write the CC1S bits to '01' in the TIMx_CCMR1 register (TI1 selected).
- 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): program the CC1P and CC1NP bits to '00' (active on rising edge).
- 3. Select the active input for TIMx_CCR2: write the CC2S bits to '10' in the TIMx_CCMR1 register (TI1 selected).
- 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the CC2P and CC2NP bits to '11' (active on falling edge).
- 5. Select the valid trigger input: write the TS bits to '101' in the TIMx_SMCR register (TI1FP1 selected).
- 6. Configure the slave mode controller in reset mode: write the SMS bits to '100' in the TIMx_SMCR register.
- 7. Enable the captures: write the CC1E and CC2E bits to '1' in the TIMx_CCER register.

Figure 149. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller.

14.3.7 Forced output mode

In output mode (CCxS bits = '00' in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, you just need to write '101' in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP='0' (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to '100' in the TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is described in the output compare mode section below.

14.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has elapsed.

When a match is found between the capture/compare register and the counter, the output compare function:

- Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM='000'), be set active (OCxM='001'), be set inactive (OCxM='010') or can toggle (OCxM='011') on match.
- 2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
- 3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register).

The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode).

Procedure:

- 1. Select the counter clock (internal, external, prescaler).
- 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
- 3. Set the CCxIE bit if an interrupt request is to be generated.
- 4. Select the output mode. For example:
 - Write OCxM = '011' to toggle OCx output pin when CNT matches CCRx
 - Write OCxPE = '0' to disable preload register
 - Write CCxP = '0' to select active high polarity
 - Write CCxE = '1' to enable the output
- 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE='0', else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 150*.

14.3.9 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing '110' (PWM mode 1) or '111' (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. The OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CNT \leq TIMx_CCRx.

The timer is able to generate PWM in edge-aligned mode only since the counter is upcounting.
PWM edge-aligned mode

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1'. If the compare value is 0 then OCxRef is held at '0'. *Figure 151* shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

14.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be as follows:

CNT < CCRx≤ ARR (in particular, 0 < CCRx)

Figure 152. Example of one pulse mode.

For example you may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin.

Use TI2FP2 as trigger 1:

- 1. Map TI2FP2 to TI2 by writing CC2S='01' in the TIMx_CCMR1 register.
- 2. TI2FP2 must detect a rising edge, write CC2P='0' and CC2NP = '0' in the TIMx_CCER register.
- 3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS='110' in the TIMx_SMCR register.
- 4. TI2FP2 is used to start the counter by writing SMS to '110' in the TIMx_SMCR register (trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler).

- The t_{DELAY} is defined by the value written in the TIMx_CCR1 register.
- The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1).
- Let's say you want to build a waveform with a transition from '0' to '1' when a compare match occurs and a transition from '1' to '0' when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M='111' in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE='1' in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0' in this example.

You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected.

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay t_{DELAY} min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

14.3.11 TIM9 external trigger synchronization

The TIM9 timer can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

- Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F='0000'). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S = '01' in the TIMx_CCMR1 register. Program CC1P and CC1NP to '00' in TIMx_CCER register to validate the polarity (and detect rising edges only).
- 2. Configure the timer in reset mode by writing SMS='100' in TIMx_SMCR register. Select TI1 as the input source by writing TS='101' in TIMx_SMCR register.
- 3. Start the counter by writing CEN='1' in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if enabled (depending on the TIE bit in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input.

Figure 153. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

- Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F='0000'). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S='01' in TIMx_CCMR1 register. Program CC1P='1' and CC1NP= '0' in TIMx_CCER register to validate the polarity (and detect low level only).
- 2. Configure the timer in gated mode by writing SMS='101' in TIMx_SMCR register. Select TI1 as the input source by writing TS='101' in TIMx_SMCR register.
- 3. Enable the counter by writing CEN='1' in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN='0', whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

Figure 154. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

- Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don't need any filter, so we keep IC2F='0000'). The capture prescaler is not used for triggering, so you don't need to configure it. The CC2S bits are configured to select the input capture source only, CC2S='01' in TIMx_CCMR1 register. Program CC2P='1' and CC2NP='0' in TIMx_CCER register to validate the polarity (and detect low level only).
- 2. Configure the timer in trigger mode by writing SMS='110' in TIMx_SMCR register. Select TI2 as the input source by writing TS='110' in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input.

14.3.12 Timer synchronization (TIM9)

The TIM timers are linked together internally for timer synchronization or chaining. Refer to *Section 13.3.15: Timer synchronization on page 341* for details.

14.3.13 Debug mode

When the microcontroller enters debug mode (Cortex[®]-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to *Section 23.16.2: Debug support for timers, watchdog and I2C*.

14.4 TIM9 registers

Refer to Section 1.1 for a list of abbreviations used in register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

14.4.1 TIM9 control register 1 (TIMx CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						CKD	[1:0]	ARPE		Beconvod		OPM	URS	UDIS	CEN
		Rese	erveu			rw	rw	rw		Reserveu		rw	rw	rw	rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK INT) frequency and sampling clock used by the digital filters (TIx),

- 00: $t_{DTS} = t_{CK_INT}$ 01: $t_{DTS} = 2 \times t_{CK_INT}$ 10: $t_{DTS} = 4 \times t_{CK_INT}$
- 11: Reserved
- Bit 7 ARPE: Auto-reload preload enable
 - 0: TIMx ARR register is not buffered.
 - 1: TIMx_ARR register is buffered.
- Bits 6:4 Reserved, must be kept at reset value.
 - Bit 3 OPM: One-pulse mode
 - 0: Counter is not stopped on the update event
 - 1: Counter stops counting on the next update event (clearing the CEN bit).
 - Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generates an update interrupt if enabled:

- Counter overflow
- Setting the UG bit

1: Only counter overflow generates an update interrupt if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update event (UEV) generation. 0: UEV enabled. An UEV is generated by one of the following events:

- Counter overflow _
- Setting the UG bit _

Buffered registers are then loaded with their preload values.

1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

- Bit 0 CEN: Counter enable
 - 0: Counter disabled
 - 1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

DocID025350 Rev 4

14.4.2 TIM9 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MSM		TS[2:0]		Boo		SMS[2:0]							
			Rese	iveu				rw	rw	rw	rw	Res.	rw	rw	rw

Bits 15:8 Reserved, must be kept at reset value.

- Bit 7 MSM: Master/Slave mode
 - 0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful in order to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bitfield selects the trigger input to be used to synchronize the counter.

- 000: Internal Trigger 0 (ITR0)
- 001: Internal Trigger 1 (ITR1)
- 010: Internal Trigger 2 (ITR2)
- 011: Internal Trigger 3 (ITR3)
- 100: TI1 Edge Detector (TI1F_ED)
- 101: Filtered Timer Input 1 (TI1FP1)
- 110: Filtered Timer Input 2 (TI2FP2)
- 111: Reserved.

See *Table 57: TIMx internal trigger connection on page 392* for more details on the meaning of ITRx for each timer.

- Note: These bits must be changed only when they are not used (e.g. when SMS='000') to avoid wrong edge detections at the transition.
- Bit 3 Reserved, must be kept at reset value.
- Bits 2:0 SMS: Slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input control register and Control register descriptions.

000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal clock

- 001: Reserved
- 010: Reserved
- 011: Reserved

100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers

101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops are both controlled

110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled

- 111: External clock mode 1 Rising edges of the selected trigger (TRGI) clock the counter
- Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input (TS='100'). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the Gated mode checks the level of the trigger signal.

		inix internal trigge	Connection	
Slave TIM	ITR0 (TS =' 000')	ITR1 (TS = '001')	ITR2 (TS = '010')	ITR3 (TS = '011')
TIM9	TIM2_TRGO	TIM3_TRGO	TIM10_OC	TIM11_OC

Table 57. TIMx internal trigger connection

14.4.3 TIM9 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Pasarvad	1				TIE		Pos		CC2IE	CC1IE	UIE
				Reserveu					rw		Res		rw	rw	rw

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

- 0: Trigger interrupt disabled.
- 1: Trigger interrupt enabled.
- Bit 5:3 Reserved, must be kept at reset value.
 - Bit 2 CC2IE: Capture/Compare 2 interrupt enable
 - 0: CC2 interrupt disabled.
 - 1: CC2 interrupt enabled.
 - Bit 1 CC1IE: Capture/Compare 1 interrupt enable
 - 0: CC1 interrupt disabled.
 - 1: CC1 interrupt enabled.
 - Bit 0 **UIE**: Update interrupt enable
 - 0: Update interrupt disabled.
 - 1: Update interrupt enabled.

14.4.4 TIM9 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved					CC10F	Boor	nucl	TIF		Beconvod		CC2IF	CC1IF	UIF
	Reserved				rc_w0	rc_w0	NESC	i veu	rc_w0		Reserveu		rc_w0	rc_w0	rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 **CC2OF**: Capture/compare 2 overcapture flag refer to CC1OF description

Bit 9 **CC10F**: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'.

0: No overcapture has been detected.

1: The counter value has been captured in $\mathsf{TIMx_CCR1}$ register while CC1IF flag was already set

- Bits 8:7 Reserved, must be kept at reset value.
 - Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept at reset value.

- Bit 2 **CC2IF**: Capture/Compare 2 interrupt flag refer to CC1IF description
- Bit 1 **CC1IF**: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value. It is cleared by software.

0: No match.

1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow.

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register.

0: No input capture occurred.

1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.

- 0: No update occurred.
- 1: Update interrupt pending. This bit is set by hardware when the registers are updated:
- At overflow and if UDIS='0' in the TIMx_CR1 register.
- When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS='0' and UDIS='0' in the TIMx_CR1 register.
- When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS='0' and UDIS='0' in the TIMx_CR1 register.

14.4.5 TIM9 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Deserved					TG		Basariad		CC2G	CC1G	UG
				Reserveu					w		Reserved		w	w	w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 **TG**: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled

Bits 5:3 Reserved, must be kept at reset value.

- Bit 2 **CC2G**: Capture/compare 2 generation refer to CC1G description
- Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software to generate an event, it is automatically cleared by hardware. 0: No action

1: A capture/compare event is generated on channel 1:

If channel CC1 is configured as output:

the CC1IF flag is set, the corresponding interrupt is sent if enabled.

If channel CC1 is configured as input:

The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Re-initializes the counter and generates an update of the registers. The prescaler counter is also cleared and the prescaler ratio is not affected. The counter is cleared.

14.4.6 TIM9 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits in this register have different functions in input and output modes. For a given bit, OCxx describes its function when the channel is configured in output mode, ICxx describes its function when the channel is configured in input mode. So you must take care that the same bit can have different meanings for the input stage and the output stage.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	(DC2M[2:0]	OC2PE	OC2FE	000	2[1:0]	Res.	(OC1M[2:0]	OC1PE	OC1FE	0019	10.112
	IC2F[3:0]				SC[1:0]	0020	5[1.0]		IC1F	[3:0]		IC1PS	SC[1:0]	0018	5[1.0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode

Bits 14:12 OC2M[2:0]: Output compare 2 mode

- Bit 11 OC2PE: Output compare 2 preload enable
- Bit 10 OC2FE: Output compare 2 fast enable
- Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection
 - This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output
 - 01: CC2 channel is configured as input, IC2 is mapped on TI2
 - 10: CC2 channel is configured as input, IC2 is mapped on TI1

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register

- Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
- Bits 6:4 **OC1M**: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N depend on the CC1P and CC1NP bits, respectively.

000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base).

001: Set channel 1 to active level on match. The OC1REF signal is forced high when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).

010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).

- 011: Toggle OC1REF toggles when TIMx_CNT=TIMx_CCR1
- 100: Force inactive level OC1REF is forced low

101: Force active level - OC1REF is forced high

110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else it is inactive. In downcounting, channel 1 is inactive (OC1REF='0) as long as TIMx_CNT>TIMx_CCR1, else it is active (OC1REF='1')

111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else it is active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode.

Bit 3 **OC1PE**: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken into account immediately

1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded into the active register at each update event

- Note: The PWM mode can be used without validating the preload register only in one-pulse mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.
- Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on the counter and CCR1 values even when the trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the trigger input is 5 clock cycles

1: An active edge on the trigger input acts like a compare match on the CC1 output. Then, OC is set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output

01: CC1 channel is configured as input, IC1 is mapped on TI1

10: CC1 channel is configured as input, IC1 is mapped on TI2

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

Input capture mode

- Bits 15:12 IC2F: Input capture 2 filter
- Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler
 - Bits 9:8 CC2S: Capture/compare 2 selection
 - This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output
 - 00: CC2 channel is configured as output
 - 01: CC2 channel is configured as input, IC2 is mapped on TI2
 - 10: CC2 channel is configured as input, IC2 is mapped on TI1
 - 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register)
 - Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
 - Bits 7:4 IC1F: Input capture 1 filter
 - This bitfield defines the frequency used to sample the TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:
 - 0000: No filter, sampling is done at f_{DTS}1000: f_{SAMPLING}=f_{DTS}/8, N=6
 - 0001: f_{SAMPLING}=f_{CK_INT}, N=21001: f_{SAMPLING}=f_{DTS}/8, N=8
 - 0010: f_{SAMPLING}=f_{CK_INT}, N=41010: f_{SAMPLING}=f_{DTS}/16, N=5
 - 0011: f_{SAMPLING}=f_{CK_INT}, N=8 1011: f_{SAMPLING}=f_{DTS}/16, N=6
 - 0100: f_{SAMPLING}=f_{DTS}/2, N=61100: f_{SAMPLING}=f_{DTS}/16, N=8
 - 0101: f_{SAMPLING}=f_{DTS}/2, N=81101: f_{SAMPLING}=f_{DTS}/32, N=5
 - 0110: $f_{SAMPLING}=f_{DTS}/4$, N=61110: $f_{SAMPLING}=f_{DTS}/32$, N=6
 - 0111: $f_{SAMPLING}$ =f_DTS/4, N=81111: $f_{SAMPLING}$ =f_DTS/32, N=8
 - Bits 3:2 IC1PSC: Input capture 1 prescaler
 - This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
 - The prescaler is reset as soon as CC1E='0' (TIMx_CCER register).
 - 00: no prescaler, capture is done each time an edge is detected on the capture input
 - 01: capture is done once every 2 events
 - 10: capture is done once every 4 events
 - 11: capture is done once every 8 events
 - Bits 1:0 CC1S: Capture/Compare 1 selection
 - This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output
 - 01: CC1 channel is configured as input, IC1 is mapped on TI1
 - 10: CC1 channel is configured as input, IC1 is mapped on TI2
 - 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register)
 - Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

398/841

14.4.7 TIM9 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									Boo	CC2P	CC2E	CC1NP	Boo	CC1P	CC1E
			Rese	iveu				rw	Res.	rw	rw	rw	Res.	rw	rw

Bits 15:8 Reserved, must be kept at reset value.

- Bit 7 **CC2NP**: Capture/Compare 2 output Polarity refer to CC1NP description
- Bits 6 Reserved, must be kept at reset value.
- Bit 5 **CC2P**: Capture/Compare 2 output Polarity refer to CC1P description
- Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description
- Bit 3 **CC1NP**: Capture/Compare 1 complementary output Polarity
 - CC1 channel configured as output: CC1NP must be kept cleared CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity (refer to CC1P description).
- Bit 2 Reserved, must be kept at reset value.
- Bit 1 **CC1P**: Capture/Compare 1 output Polarity.
 - CC1 channel configured as output:
 - 0: OC1 active high.
 - 1: OC1 active low.
 - CC1 channel configured as input:
 - CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge
 - Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
 - 01: inverted/falling edge

Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).

- 10: reserved, do not use this configuration.
- Note: 11: noninverted/both edges
 - Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode.
- Bit 0 CC1E: Capture/Compare 1 output enable.
 - CC1 channel configured as output:

0: Off - OC1 is not active.

- 1: On OC1 signal is output on the corresponding output pin.
- CC1 channel configured as input:

This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.

- 0: Capture disabled.
- 1: Capture enabled.

CCxE bit	OCx output state
0	Output disabled (OCx='0', OCx_EN='0')
1	OCx=OCxREF + Polarity, OCx_EN='1'

Table 58. Output control bit for standard OCx channels

Note: The states of the external I/O pins connected to the standard OCx channels depend on the state of the OCx channel and on the GPIO registers.

14.4.8 TIM9 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNT[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CNT[15:0]: Counter value

14.4.9 TIM9 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PSC[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to f_{CK_PSC} / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event.

14.4.10 TIM9 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.

Refer to the Section 14.3.1: Time-base unit on page 373 for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

DocID025350 Rev 4

14.4.11 TIM9 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR1	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:

CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (OC1PE bit). Else the preload value is copied into the active capture/compare 1 register when an update event occurs.

The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signaled on the OC1 output.

If channel CC1is configured as input:

CCR1 is the counter value transferred by the last input capture 1 event (IC1).

14.4.12 TIM9 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR2	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:

CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (OC2PE bit). Else the preload value is copied into the active capture/compare 2 register when an update event occurs.

The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signalled on the OC2 output.

If channel CC2 is configured as input:

CCR2 is the counter value transferred by the last input capture 2 event (IC2).

14.4.13 TIM9 register map

TIM9 registers are mapped as 16-bit addressable registers as described below:

Offset	Register	31	30	29	28	27	26	25	25	5	23	22	21	20	10	2	18	-	16	15	14	13	12	11	10	6	8	7	9		n •	4	3	2	•	•
0x00	TIMx_CR1											F	Res	serv	/ed											C [1	KD :0]	ARPE	R	ese	erve	d	OPM	URS	NDIS	CEN
	Reset value																									0	0	0					0	0	0	0
0x08	TIMx_SMCR													Re	ser	vec	i											MSM		TS[2:0]		eserved	SN	1S[2	::0]
	Reset value																											0	0	()	Ř	0	0	0
0x0C	TIMx_DIER													F	Res	erv	ed												ΤE	F	Rese	erv	ed	CC2IE	CC1IE	UE
	Reset value																								.	I			0					0	0	0
0x10	TIMx_SR											Re	ese	rve	d										CC20F	CC10F		eserved	ΠF	F	Rese	erv	ed	CC2IF	CC1IF	UIF
	Reset value																								0	0	0	ř	0					0	0	0
0x14	TIMx_EGR													F	Res	erv	ed												TG	F	Rese	erv	ed	CC2G	CC1G	ПG
	Reset value																								i	1			0			-1		0	0	0
	TIMx_CCMR1 Output Compare mode								R	es	serv	ed									C)C2 [2:	2M 0]	OC2PE	OC2FE	C0 [1	22S :0]	served		OC [2	1M :0]		OC1PE	OC1FE	C({ [1	C1 5 :0]
0x18	Reset value																				0	0	0	0	0	0	0	Re	0	()	0	0	0	0
	TIMx_CCMR1 Input Capture mode								Res	ser	rve	d								I	C2	-[3	:0]	10 P: [1	C2 SC :0]	C0 [1	22S :0]		IC1	F[3	8:0]		IC PS [1:	:1 SC :0]	C({1	21 3 :0]
	Reset value																			0	0	0	0	0	0	0	0	0	0	()	0	0	0	0
0x1C																Res	serv	ed																		
0x20	TIMx_CCER													Re	ser	vec	ł											CC2NP	served	CC2P	003F	0.00	CC1NP	served	CC1P	CC1E
	Reset value																											0	Å	() ()	0	Å	0	0
0x24	TIMx_CNT								Res	ser	rve	d														(СИЛ	[15:	:0]							
	Reset value																			0	0	0	0	0	0	0	0	0	0	() ()	0	0	0	0
0x28	TIMx_PSC								Res	ser	rve	d														I	PSC	[15:	:0]							
	Reset value																			0	0	0	0	0	0	0	0	0	0	() ()	0	0	0	0
0x2C	TIMx_ARR			Reserved																÷		ARF	R[15	:0]							÷					
	Reset value																			0	0	0	0	0	0	0	0	0	0	() ()	0	0	0	0
0x30															l	Res	serv	ed																		
0x34	TIMx_CCR1								Res	ser	rve	b														C	CR	1[15	5:0]							
	Reset value																			0	0	0	0	0	0	0	0	0	0	() ()	0	0	0	0

Table 59. TIM9 register map and reset values

			uN		00	•••		• •	~9	101			up	u.			90		un	400				i u	<i>,</i> ,								
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	١	0
0x38	TIMx_CCR2			Reserved																	С	CR2	2[15	:0]									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x3C to 0x4C														R	ese	rve	d	_															

Table 59. TIM9 register map and reset values (continued)

Refer to Table 1 on page 38 for the register boundary addresses.

14.5 TIM10/11 registers

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

14.5.1 TIM10/11 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Boog	nucl			CKD	[1:0]	ARPE		Boo	nind		URS	UDIS	CEN
		Rese	erveu			rw	rw	rw		Rest	erveu		rw	rw	rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx),

- 00: t_{DTS} = t_{CK_INT}
- 01: $t_{DTS} = 2 \times t_{CK \ INT}$
- 10: $t_{DTS} = 4 \times t_{CK_{INT}}$
- 11: Reserved
- Bit 7 ARPE: Auto-reload preload enable
 - 0: TIMx_ARR register is not buffered
 - 1: TIMx_ARR register is buffered
- Bits 6:3 Reserved, must be kept at reset value.
 - Bit 2 URS: Update request source

This bit is set and cleared by software to select the update interrupt (UEV) sources.

- 0: Any of the following events generate an UEV if enabled:
 - Counter overflow
 - Setting the UG bit
- 1: Only counter overflow generates an UEV if enabled.
- Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update interrupt (UEV) event generation.

0: UEV enabled. An UEV is generated by one of the following events:

- Counter overflow
- Setting the UG bit.

Buffered registers are then loaded with their preload values.

1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

- 0: Counter disabled
- 1: Counter enabled

404/841

14.5.2 TIM10/11 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Boor	nucl							CC1IE	UIE
						Rese	liveu							rw	rw

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 **CC1IE**: Capture/Compare 1 interrupt enable

- 0: CC1 interrupt disabled
- 1: CC1 interrupt enabled
- Bit 0 UIE: Update interrupt enable
 - 0: Update interrupt disabled
 - 1: Update interrupt enabled

14.5.3 TIM status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Poss	nund			CC10F				Peserved				CC1IF	UIF
		Nese	i veu			rc_w0				Reserved				rc_w0	rc_w0

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'.

0: No overcapture has been detected.

1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set

- Bits 8:2 Reserved, must be kept at reset value.
 - Bit 1 **CC1IF**: Capture/compare 1 interrupt flag
 - If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value. It is cleared by software.

0: No match.

1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow.

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register.

0: No input capture occurred.

1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity).

Bit 0 **UIF**: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.

- 0: No update occurred.
- 1: Update interrupt pending. This bit is set by hardware when the registers are updated:
 - At overflow and if UDIS='0' in the TIMx_CR1 register.
 - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS='0' and UDIS='0' in the TIMx_CR1 register.

14.5.4 TIM event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Boor	nucd							CC1G	UG
						Rese	eiveu							w	w

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 **CC1G**: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 1:

If channel CC1 is configured as output:

CC1IF flag is set, Corresponding interrupt or is sent if enabled.

If channel CC1 is configured as input:

The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared.

RM0368

14.5.5 TIM10/11 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			F	Reserved					(OC1M[2:0]	OC1PE	OC1FE	0019	2[1.0]
			Baaa	nucd					IC1F	[3:0]		IC1PS	SC[1:0]	001	5[1.0]
			Rese	iveu				rw	rw	rw	rw	rw	rw	rw	rw

Output compare mode

- Bits 15:7 Reserved, must be kept at reset value.
- Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 is derived. OC1REF is active high whereas OC1 active level depends on CC1P bit. 000: Frozen. The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).

- 011: Toggle OC1REF toggles when TIMx_CNT = TIMx_CCR1.
- 100: Force inactive level OC1REF is forced low.

101: Force active level - OC1REF is forced high.

- 110: PWM mode 1 Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive.
- 111: PWM mode 2 Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active.
- Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison changes or when the output compare mode switches from frozen to PWM mode.
- Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately.

1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1.

- 10: 11:
- Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

Input capture mode

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N events are needed to validate a transition on the output:

0000: No filter, sampling is done at f_{DTS}1000: f_{SAMPLING}=f_{DTS}/8, N=6

0001: f_{SAMPLING}=f_{CK INT}, N=21001: f_{SAMPLING}=f_{DTS}/8, N=8

0010: $f_{SAMPLING}=f_{CK_INT}$, N=21001: $f_{SAMPLING}=f_{DTS}/3$, N=5 0010: $f_{SAMPLING}=f_{CK_INT}$, N=41010: $f_{SAMPLING}=f_{DTS}/16$, N=5 0011: $f_{SAMPLING}=f_{CK_INT}$, N=81011: $f_{SAMPLING}=f_{DTS}/16$, N=6 0100: $f_{SAMPLING}=f_{DTS}/2$, N=61100: $f_{SAMPLING}=f_{DTS}/32$, N=5 0110: $f_{SAMPLING}=f_{DTS}/4$, N=61110: $f_{SAMPLING}=f_{DTS}/32$, N=6 0111: $f_{SAMPLING}=f_{DTS}/4$, N=81111: $f_{SAMPLING}=f_{DTS}/32$, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

The prescaler is reset as soon as CC1E='0' (TIMx CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input

01: capture is done once every 2 events

10: capture is done once every 4 events

11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output

01: CC1 channel is configured as input, IC1 is mapped on TI1

10: Reserved

11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

14.5.6 TIM10/11 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Poso	avod						CC1NP	Pos	CC1P	CC1E
					Rese	veu						rw	Nes.	rw	rw

Bits 15:4 Reserved, must be kept at reset value.

- Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity.
 - CC1 channel configured as output: CC1NP must be kept cleared. CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define TI1FP1 polarity (refer to CC1P description).
- Bit 2 Reserved, must be kept at reset value.
- Bit 1 **CC1P**: Capture/Compare 1 output Polarity.

CC1 channel configured as output:

0: OC1 active high

- 1: OC1 active low
- CC1 channel configured as input:

The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations.

00: noninverted/rising edge

Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted.

01: inverted/falling edge

Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted.

10: reserved, do not use this configuration.

11: noninverted/both edges

Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not inverted.

Bit 0 CC1E: Capture/Compare 1 output enable.

- CC1 channel configured as output:
- 0: Off OC1 is not active

1: On - OC1 signal is output on the corresponding output pin

CC1 channel configured as input: This bit determines if a capture of the

This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.

- 0: Capture disabled
- 1: Capture enabled

Table 60.	Output control	bit for standard	OCx channels
-----------	-----------------------	------------------	--------------

CCxE bit	OCx output state
0	Output Disabled (OCx='0', OCx_EN='0')
1	OCx=OCxREF + Polarity, OCx_EN='1'

Note: The state of the external I/O pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers.

14.5.7 TIM10/11 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 CNT[15:0]: Counter value

14.5.8 TIM10/11 prescaler (TIMx_PSC)

Address of	offset:	0x28
------------	---------	------

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PSC[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to f_{CK_PSC} / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event.

14.5.9 TIM10/11 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.

Refer to Section 14.3.1: Time-base unit on page 373 for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

14.5.10 TIM10/11 capture/compare register 1 (TIMx_CCR1)

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR1[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:

CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:

CCR1 is the counter value transferred by the last input capture 1 event (IC1).

14.5.11 TIM11 option register 1 (TIM11_OR)

Address offset: 0x50

Reset value: 0x0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Pos	nund							TI1_R	MP[1:0]
						Nest	liveu							n	w

Bits 15:2 Reserved, must be kept at reset value.

Bits 1:0 **TI1_RMP[1:0]**: TIM11 Input 1 remapping capability Set and cleared by software. 00,01,11: TIM11 Channel1 is connected to the GPIO (refer to the Alternate function mapping table in the datasheets). 10: HSE_RTC clock (HSE divided by programmable prescaler) is connected to the TIM11_CH1 input for measurement purposes.

14.5.12 TIM10/11 register map

TIMx registers are mapped as 16-bit addressable registers as described in the tables below:

Offset	Register	31	30	29	28	27	26	25	24	iĉ	23	77	21	20	19	10	1	16	24	2	14	13	12	11	10	თ		• ~	•	9 4	0	4	ო	7	-	0
0x00	TIMx_CR1					<u> </u>						R	Res	erv	ed									<u> </u>		C [1	KD 1:0	ARPE		Re	ser	ve	d	URS	NDIS	CEN
	Reset value																									0	(0						0	0	0
0x08	TIMx_SMCR																	R	ese	rve	ed															
	Reset value																																			1
0x0C	TIMx_DIER																Re	ser	ved																CC1IE	UIE
	Reset value																									1	1								0	0
0x10	TIMx_SR											R	Reso	erv	ed											CC10F				Rese	rve	ed			CC1IF	UIF
	Reset value																									0									0	0
0x14	TIMx_EGR		Reserved OC1M																	cc1G	DU 0															
																					t			1		i	0	0								
	Output compare mode	Reserved OC1M [2:0]															OC1PE	OC1FE	CC [1	:0]																
0x18	Reset value	Reset value																ľ	0 0)	0	0	0	0	0											
	TIMx_CCMR1 Input capture mode	0 0															Ю Р [1	C1 SC :0]	CC [1	:0]																
	Reset value																											0		0 0)	0	0	0	0	0
0x1C		1													F	Res	serve	ed																1		1
0x20	TIMx_CCER															Re	eser	/ed															CC1NP	eserved	CC1P	CC1E
	Reset value																																0	Å	0	0
0x24	TIMx_CNT							I	Res	erv	/ed																CN	T[15	:0]						
	Reset value																		0		0	0	0	0	0	0	0	0		0 0)	0	0	0	0	0
0x28	TIMx_PSC							I	Res	erv	/ed												T				PS	C[15	:0]				1		
	Reset value																		0		0	0	0	0	0	0	(0 0		0 0)	0	0	0	0	0
0x2C	TIMx_ARR							I	Res	erv	/ed																AR	R[15	:0]						
	Reset value																		0		0	0	0	0	0	0	(0		0 0)	0	0	0	0	0
0x30															F	Res	erve	ed																		
0x34	TIMx_CCR1							I	Res	erv	/ed															C		R1[18	5:0	0]						
	Reset value																		0		0	0	0	0	0	0	(0		0 0	٦.	0	0	0	0	0
0x38 to 0x4C															F	Res	erve	ed																		

Table 61. TIM10/11 register map and reset values

DocID025350 Rev 4

Offset	Register	31	30	29	28	27	26	25	24	22 22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	с	2	1	0
0x50	TIMx_OR														Res	serve	ed														11 RMP	
	Reset value																														0	0

Table 61. TIM10/11 register map and reset values (continued)

Refer to *Table 1 on page 38* for the register boundary addresses.

