
Computer Vision and Image Understanding 114 (2010) 942–951
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu
3D face reconstructions from photometric stereo using near infrared
and visible light

Mark F. Hansen *, Gary A. Atkinson, Lyndon N. Smith, Melvyn L. Smith
Machine Vision Laboratory, University of the West of England, Bristol BS16 1QY, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 August 2009
Accepted 1 March 2010
Available online 7 April 2010

Keywords:
3D reconstruction
Near infrared
Photometric stereo
Skin reflectance
3D face recognition
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.001

* Corresponding author.
E-mail addresses: mark.hansen@uwe.ac.uk (M.F. H

ac.uk (G.A. Atkinson), lyndon.smith@uwe.ac.uk (L.N.
ac.uk (M.L. Smith).
This paper seeks to advance the state-of-the-art in 3D face capture and processing via novel Photometric
Stereo (PS) hardware and algorithms. The first contribution is a new high-speed 3D data capture system,
which is capable of acquiring four raw images in approximately 20 ms. The results presented in this paper
demonstrate the feasibility of deploying the device in commercial settings. We show how the device can
operate with either visible light or near infrared (NIR) light. The NIR light sources offer the advantages of
being less intrusive and more covert than most existing face recognition methods allow. Furthermore, our
experiments show that the accuracy of the reconstructions is also better using NIR light. The paper also
presents a modified four-source PS algorithm which enhances the surface normal estimates by assigning
a likelihood measure for each pixel being in a shadowed region. This likelihood measure is determined by
the discrepancies between measured pixel brightnesses and expected values. Where the likelihood of
shadow is high, then one light source is omitted from the computation for that pixel, otherwise a
weighted combination of pixels is used to determine the surface normal. This means that the precise sha-
dow boundary is not required by our method. The results section of the paper provides a detailed analysis
of the methods presented and a comparison to ground truth. We also analyse the reflectance properties of
a small number of skin samples to test the validity of the Lambertian model and point towards potential
improvements to our method using the Oren–Nayar model.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Face recognition is now one of the most active areas of com-
puter vision research. A wide range of different approaches have
been proposed for the detection, processing, analysis and recogni-
tion of faces within images [1]. A recent trend has been to incorpo-
rate 3D information to aid recognition [2]. Unlike for 2D methods,
the process of data capture is a complex procedure for 3D methods
and may involve expensive and bulky hardware with computation-
ally intensive algorithms.

In this paper, we make significant contributions to 3D face cap-
ture and processing by presenting a novel Photometric Stereo (PS)
hardware device, a new PS algorithm for mitigating the effects of
shadows within images, and a detailed set of experiments to assess
the accuracy and practicality of the device. The new variation of PS
estimates a field of surface normals by selecting the optimal com-
bination of light sources to reduce the effects of shadow without
requiring knowledge of the exact shadow boundaries. This is dem-
onstrated on a novel high-speed practical 3D facial geometry
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capture device. We have also been successful at facial PS using near
infrared (NIR) light. This offers several benefits to existing methods
including exploiting skin phenomenology, creating a more covert
capture system and making the system less intrusive. Extensive
experimental results of these proposed advances are presented,
including an analysis of skin reflectance qualities under NIR and
visible light in terms of the Lambertian assumption.

In summary, the contributions of this paper are fourfold:

1. The development of 3D data capture hardware suitable for
practical face recognition environments.

2. The development of a new algorithm for choosing the optimal
light source configuration for each pixel in order to reduce the
effects of shadows.

3. Detailed experiments to test the accuracy of the device on a
variety of faces under visible and NIR light sources in terms of
ground truth reconstructions and the Lambertian assumption.

4. Detailed experiments to assess the validity of the Lambertian
assumption and a test to determine any possible improvements
that may be possible using the Oren–Nayar reflectance model [3].

The remainder of this section provides an overview of related
work and outlines the contributions to the state-of-the-art. Section
2 presents details of the hardware arrangement and image
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acquisition process and our method to mitigate the effects of shad-
ows. Detailed experimental results are then provided in Section 3.
The implications and potential limitations of the work are dis-
cussed in Section 4.

1.1. Related work

The use of 3D information for face recognition has been attract-
ing increasing attention in recent years [2,4,5]. This is due to the
ability to overcome certain limitations associated with 2D recogni-
tion, e.g. problems of illumination and pose variance. Methods
using 3D specific information also allow for representations which
offer robustness to facial expression. Such methods include the 3D
morphable model of Blanz and Vetter [6] and the geodesic repre-
sentations of Bronstein et al. [7] and Mpiperis et al. [8]. Frequently,
research which directly compares 2D and 3D recognition reports
improved success rates for 3D recognition and that the best results
occur when 2D and 3D information is fused [2]. As demand for
practical face recognition systems is likely to increase, it is impor-
tant that the most accurate methods are used and that the acqui-
sition devices are both practical and affordable. There are a
number of existing ways to capture and reconstruct 3D face infor-
mation and the benefits and limitations of the most common ap-
proaches will now be discussed with the aim of putting our
device into context.

Structured light scanning is perhaps the best known approach
to generating 3D models of faces. This was used for generating
the morphable head model in [6] and also for all the 3D faces used
in the FRGC2.0 dataset [9], currently the largest publicly available
3D face database. For face capture, this technique works by scan-
ning the object with a horizontal plane of laser light, capturing
the line of light on a sensor and then calculating the location of
each point via triangulation. The technique provides potentially
very accurate scans; the Minolta Vivid 910 device [10] used for
the FRGC2.0 dataset has a quoted accuracy of ±0.10 mm. However,
these devices take about 2.5 s to capture the data, during which
time the subject could move, thus distorting the reconstruction.
It therefore requires a great deal of cooperation from the subject.
They are also sensitive to high levels of ambient illumination. For
these reasons, and the fact that they are financially costly, laser
scanners are currently not suitable for many practical applications.
The speed of acquisition can be improved by using striped patterns
projected across the whole surface instead of using a scanning line.
Distortions in this pattern can then used to calculate the 3D geom-
etry of the surface [11], however accuracy is likely to be compro-
mised and calibration can be time consuming.

The commercially available 3dMD system [12], which is used in
this paper to acquire ground truth models, is an example of a pro-
jected pattern range finder. This device uses a number cameras to
take images of an object from different positions. It uses a pro-
jected pattern to solve the correspondence problem between the
images. The benefits of this system are its high accuracy (reported
as <0.2 mm) and the speed of image acquisition (1.5 ms). However,
the processing time is approximately 90 s for a face. This type of
system is also expensive and requires a time consuming calibration
procedure.

Shape-from-shading (SFS) is a technique for estimating 3D
geometry from a single image [13]. Gradients of the surface are
estimated from the patterns of intensity changes in an image.
However the problem is ill-posed, meaning that there is no guaran-
tee of a unique solution for a given image [14]. The main advantage
of SFS is that it does not require any specialist capture apparatus
such as laser scanners or projected pattern devices; merely a single
ordinary camera. For this reason, finding solutions for the SFS prob-
lem are attractive to researchers. One way of overcoming the ill
posed problem of SFS is to photograph the object multiple times
under different illumination. This technique is known as Photo-
metric Stereo (PS) and was first devised by Woodham [15] who
showed that for any Lambertian surface, three differently illumi-
nated images are sufficient to remove the ambiguity associated
with a single image. Further details of this method will be given
in Section 2.3.

A unique surface normal can be estimated by using three PS
images provided that none of the light sources cast a shadow
and the surface is Lambertian. In the case of a human face, shadows
are frequently cast by features such as the nose. Indeed overcom-
ing the detrimental effects of shadow on PS has been the subject
of a number of papers. Smith and Hancock [16] use a statistical
model to recover geometry in the presence of shadows. Hernández
et al. [17] use two images where shadow is not present to estimate
the value of the third where the shadow is present via integration.
Coleman and Jain [18] use four light sources to over-determine the
surface orientation. If a shadow is present in one image, it can sim-
ply be discarded. Similarly, Solomon and Ikeuchi [19] use four
sources, but determine shadows and specularities by consider-
ations of anomalies in albedo estimates that cannot be statistically
attributed to camera noise. Barsky and Petrou [20] suggest a simi-
lar alternative solution to highlights and shadows by using a four
source coloured light PS technique.

Georghiades extended PS beyond Lambertian surfaces to incor-
porate the Torrance and Sparrow model of reflectance [21] and cre-
ated very accurate reconstructions [22]. However, a large number
of images were required for the reconstruction which significantly
increases surface computation and image acquisition time. Sun
et al. [23] use five lights to handle shadows and specularities on
non-Lambertian surfaces and show that a minimum of six lights
are required in order fully realise any convex surface using photo-
metric stereo. Using 20 images of a face, Ghosh et al. [24] build up a
very detailed model of the skin’s reflectance taking into account
specular reflection and single, shallow and deep scattering. How-
ever, the images are captured over ‘‘a few seconds” which makes
this approach unsuitable for our needs (i.e. practical applications).
Also, their method would add a large amount of complexity for rel-
atively little gain as skin follows Lambert’s Law reasonably well (as
shown in this paper for example).

Of the vast amount of research into automatic face recognition
during the last two decades [1], relatively little work has involved
PS. Kee et al. investigate the use of 3-source PS under dark room
conditions [25]. They were able to determine the optimal light
source arrangement and demonstrate a working recognition sys-
tem. Zhou, Chellappa and Jacobs apply rank, integrability and sym-
metry constraints to adapt PS to face-specific applications [26].
Zhou et al. extended a PS approach to unknown light sources
[27]. Georghiades et al. show how reconstructions from PS can
be used to form a generative model to synthesise images under no-
vel pose and illumination [28].

Comparing point clouds, the shape index, depth maps, profiles
and surface normals in terms of face recognition performance,
Gökberk et al. [5] concluded that surface normals provide the best
features for face recognition. It is surprising therefore, that so few
applications to date utilise PS, which inherently generates surface
normals. The reason for this is likely to be that the availability
and affordability of cameras with high enough frame rates, sensi-
tivity and synchronisation capabilities for PS have only recently
reached the market. Such cameras are necessary in commercial
and industrial applications to effectively freeze the motion of the
person while they may be moving by capturing several images in
a short burst.

The majority of past work on PS has been conducted using vis-
ible illumination. As explained above, we also consider NIR light in
this paper. Studies into the optical properties of skin have shown it
to be increasingly reflective in the NIR light band up to wave-



944 M.F. Hansen et al. / Computer Vision and Image Understanding 114 (2010) 942–951
lengths of about 1.1 lm [29]. This suggests that NIR, which is more
covert and less intrusive, is a viable alternative to visible light. Fur-
thermore, NIR can be used as a replacement for visible light be-
cause its proximity to the visual spectrum means that it is likely
to behave in a similar manner on skin. We might expect some fine
surface detail to be lost due to sub-surface scattering as reported
by Zivanov et al. [30], but this is unlikely to affect overall face
shape estimation. In addition to our work, infrared light has been
used previously in 2D face recognition to mitigate the negative im-
pact of ambient illumination [31,32] and to aid eye detection algo-
rithms using the ‘‘bright eye” effect [33].
1.2. Contributions

The contributions of this paper to the state-of-the-art in 3D face
capture and processing are via a novel system of hardware and
algorithms. The new PS-based 3D face shape capture device is suit-
able for practical recognition environments and consists of four
illumination sources placed evenly around a high-speed camera,
as shown in Fig. 1. Individuals walk through the archway towards
the camera located on the back panel and exit through the side.
Compared to existing technologies, our device is cheap to build
and involves exceptionally short image capture and processing
times. The device is also able to operate at high resolution, is robust
to ambient illumination and requires only minimal calibration. All
images are captured in approximately 20 ms, resulting in only very
small misalignment between frames. This allows subjects to be im-
aged as they casually walk through the archway.

We have tested our device using both visible and NIR illumina-
tion sources and found the latter to yield more accurate recon-
structions when compared with ground truth. To the best of our
knowledge, no published research has looked at using NIR light
sources in PS for the purpose of face recognition. These consider-
ations make our method attractive for use in many commercial
and industrial settings such as at entrances to high security areas,
airport check-in and border control.

For the main algorithmic contribution of this paper, we show
how the effects of shadow can be mitigated using a related ap-
proach to that of Solomon and Ikeuchi [19] and Barsky and Petrou
[20]. The method relies on estimating the likelihood of each pixel
Fig. 1. The geometry capture device. Enlarged areas from top to bottom: a NIR light
source, a visible light source and an ultrasound trigger. The camera can be seen on
the back panel.
being in shadow and weights the contributions of the light sources
in the PS computation accordingly. One advantage of our method is
that neither the exact shadow boundary nor the camera noise
parameters are required.

The final contribution of the paper is a detailed analysis of the
quality of reconstructions and the nature of the skin reflectance
properties. The device is tested on a variety of subjects and the
RMS height errors and ‘2-norm errors are presented. Ground truth
data is supplied by a 3dMD scanner. A quantitative analysis on the
validity of the Lambertian assumption on skin reflectance is then
presented. The extent of the discrepancies between the measured
skin reflectance and Lambert’s Law are demonstrated graphically
and shown to be relatively minor for non-grazing angles. Lastly,
we show that skin is more Lambertian under NIR illumination,
solidifying our earlier claims about the feasibility of NIR as an
alternative to visible light. This reflectance analysis also demon-
strates the possibilities of improving the reconstructions by incor-
porating the Oren–Nayar reflectance model into the method.
2. Method

This section first outlines the overall PS image acquisition hard-
ware, before moving on to describe the reconstruction process. We
also discuss the differences between our use of visible and NIR
light sources. The problem of shadowing is then addressed, by pre-
senting a new PS method to automatically select the optimal light
source configuration.
2.1. Hardware

This section details the acquisition device hardware. The device,
shown in Fig. 1, is designed for practical 3D face geometry capture
and recognition. The presence of an individual is detected by an
ultrasound proximity sensor placed before the archway. This can
be seen in Fig. 1 on the horizontal beam towards the left-hand side
of the photograph. The sensor triggers a sequence of high speed
synchronised frame grabbing and light source switching.

The aim is then to capture five images at a high frame rate: four
images illuminated by the main light sources in sequence and an
additional control image with only ambient illumination. Either
one image per visible light is captured, or one image per NIR
source. Note that the ambient lighting is uncontrolled (for the
experiments presented in this paper, overhead fluorescent lights
are present). The four visible light sources are low-cost Jessops
M100 flashguns (colour temperature 5600 K), while the NIR lights
are stripped down X-vision VIS080IR lensed 7-LED clusters, which
emit light at �850 nm.

It was found experimentally that for people walking through
the device, a minimum frame rate of approximately 150 fps was
necessary to avoid significant movement between frames. The de-
vice currently operates at 200 fps, and it should be noted that it is
only operating for the period required to capture the five images.
That is, the device is left idle until it is triggered. A monitor is in-
cluded on the back panel to show the reconstructed face or to dis-
play other information.

For visible light, the following sequence of events takes place to
capture the five images as an individual passes through the device.

1. Await signal from ultrasound sensor.
2. Send trigger to camera.
3. Await integration enabled signal from camera.
4. Discharge first flashgun.
5. Await end of integration enabled signal.
6. Repeat from step 2 for the remaining light sources.
7. Capture control image with ambient lighting only.
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All interfacing code is written in NI LabVIEW. The ultrasound
sensor is a highly directional Baumer proximity switch. When its
beam is broken within a distance of 70 cm, it transmits a signal
to an NI PCI-7811 DIO card fitted to a computer. When this signal
is received, a trigger is sent to the camera. This is a Basler 504 kc
camera with a 55 mm, f5.6 Sigma lens, placed 2 m from the subject.
As with many silicon-based sensors, the Basler chip is responsive
to both visible and NIR irradiance. The trigger is transmitted to
the camera from a frame grabber via Camera Link�. The frame
grabber is an NI PCIe-1429, which communicates with the DIO card
via a RTSI bus for triggering purposes.

To ensure that the signal has reached the camera, and that the
camera has commenced frame capture (i.e. is integrating), a second
connection from the camera to the DIO card as added. This connec-
tion is TTL-high while the camera is integrating. When the
computer receives this signal, the first light source is to be imme-
diately illuminated. A flashgun is discharged by making a short cir-
cuit between its input pins. This is achieved here by sending a short
pulse from the DIO card to the input pins via a phototransistor
opto-isolator IC. This electrically isolates the sensitive DIO card
from the high voltages of the flashgun terminals. Finally, the DIO
card awaits the falling edge of the camera integration enabled sig-
nal before moving on to the next light source.

For NIR light, a slightly different procedure is adopted whereby
synchronous TTL signals are sent to the camera and LEDs. This is
because the LEDs can be illuminated for the duration of the camera
exposure, while the flashguns only last for a small fraction of the
exposure. The NIR LEDs are powered independently from the DIO
card and interfaced via a simple transistor circuit. As the LEDs
are illuminated for only 5 ms, it is possible to overpower them,
in order to increase their brightness without causing damage. We
therefore apply 20 V across the LEDs, compared to the recom-
mended 12 V.
2.2. Visible and NIR comparison

One possibly negative aspect of the visible light set-up is that
the firing of flashguns is obvious to the subject and possibly intru-
sive to any surrounding people. A possible advantage of NIR is that
there may be additional subcutaneous or vascular structures pres-
ent in the raw images taken under NIR light which may be used to
aid recognition. Unfortunately, we found that such features were
not visible in the wavelength band considered in this paper, but
we aim to study this further in future work. NIR light is also more
covert for a face recognition environment and subjects are less in-
clined to ‘‘pose” for the camera, meaning that more neutral expres-
sions are likely. Finally, it is worth noting the advantage that many
camera sensors are inherently more sensitive to NIR light.

One disadvantage of NIR illumination is the relative difficulty in
obtaining the necessary brightness for the required short exposure
times. While the flashguns were easily bright enough with an
exposure time of 1 ms, an exposure of 5 ms was needed for the
NIR LEDs (i.e. the maximum possible exposure for the given frame
rate). Although this was adequate for our experiments, we had to
Fig. 2. Left: four raw images. Right: reconstructions using standar
use LED lenses that provided a narrow divergence angle, meaning
that the face had to be more precisely positioned to obtain full illu-
mination. For the visible light sources, the images were bright en-
ough even for large diversion angles, removing the need for
accurate positioning of apparatus and allowing subjects to pass
through the archway without having to consider their exact loca-
tion with respect to the camera.

To account for ambient illumination, the control image is sub-
tracted from the other four images. These images are then norma-
lised in terms of intensity before reconstruction takes place. This
was done by linearly scaling the greylevels of each image so that
the mean intensity was equal for each image. A detailed compari-
son of the resulting reconstructions is presented in Section 3.2.

2.3. Photometric stereo

Fig. 2 shows an example of four raw images of an individual
using our prototype operating with the visible light sources. The
person was slowly (�1 m/s) but casually walking through the de-
vice. Each image has pixel dimensions of 500 � 400 and there are
typically just a few pixel lengths misalignment between the first
and last images. The face detection method of Lienhart and Maydt
[34] is used to extract the face from the background of the image.

The four intensity images are processed using a MATLAB imple-
mentation of a standard PS method [35, Section 5.4]. Denote the
general operation of PS by

fnig ¼ PðfI1;ig; fI2;ig; . . . ; L1; L2; . . .Þ ð1Þ

where {ni; i = 1, . . . ,N} is the resulting set of surface normals, N is the
total number of pixels, {Ik,i; i = 1, . . . ,N} is the set of intensities for
image k, and Lj is the jth light source vector. For the bulk of this pa-
per, we use four light sources, resulting in set of surface normals

fnig ¼ PðfI1;ig; fI2;ig; fI3;ig; fI4;ig; L1; L2; L3; L4Þ ð2Þ

The general equation for PS using four sources for pixel i is

I1;i

I2;i

I3;i

I4;i

2
6664

3
7775 ¼ qi

LT
1

LT
2

LT
3

LT
4

2
66664

3
77775ni ð3Þ

where qi is the reflectance albedo. The intensity values and light
source positions are known, and from these the albedo and surface
normal components can be calculated by solving (3). The resultant
dense field of surface normals are then integrated to form height
maps using the well-known Frankot and Chellappa method [36].
Fig. 2 shows the resultant reconstruction.

2.4. Optimising light sources

In many cases of PS usage, it is desirable to use all available light
sources in the reconstruction in order to maximise robustness.
However, where one or more sources do not illuminate the entire
surface due to a self/cast shadow, it becomes disadvantageous to
d PS (Eq. (3)), and the optimal source algorithm (Section 2.4).



946 M.F. Hansen et al. / Computer Vision and Image Understanding 114 (2010) 942–951
use all the sources. In the case of a face, this is most likely to hap-
pen around the nose and outer edges of the cheeks, as shown in
Fig. 2. In cases where the light source zenith angles (the angles be-
tween the viewpoint vector and the light source vectors) are small
and the face is looking directly towards the camera, shadows tend
not to be too problematic. When this is not the case, then more of
the face is in shadow and the reconstructions become distorted. In
such cases, it becomes beneficial to omit one or more sources from
the PS computation at certain pixels. Assume for now that the faces
are frontal, but that the light sources are repositioned to the arch-
way (see Fig. 1) to increase the size of the shadows.

For this paper, we assume that no points on the face are shad-
owed by more than one source. In other words, each pixel is visible
to at least three sources. In practice, a few areas to the sides of the
nose and the extreme edges of the cheeks are sometimes shad-
owed by two sources, but we found that these areas get smoothed
over by the subsequent surface integration and therefore have lit-
tle bearing on the overall reconstructions. Ideally, we would like to
determine which points are visible to which sources and only use
these lights in the PS computation. However, performing this task
precisely is difficult [20] and the resulting fields of surface normals
tend to exhibit discontinuities around the estimated shadow
boundaries. We therefore propose to adopt the following surface
normal for an arbitrary pixel i:

nopt;iðeiÞ ¼ ein3;i þ ð1� eiÞni ð4Þ

where e is a measure of the likelihood of a pixel being in shadow
and n3 is the surface normal estimated from the optimal three light
sources. Where e = 0, the pixel is definitely not in shadow and all
four light sources are used. Where e = 1, the pixel definitely in sha-
dow and only three sources are used. For intermediate values of e, a
mixture of n and n3 are used. This has the dual effect that the sha-
dow boundary does not need to be known precisely and that the
discontinuities mentioned above become smoothed out.

Methods are therefore needed to determine n3 (i.e. which are
the best three light sources to use) and e for each pixel. For the for-
mer of these, it is adequate to simply use the three light sources
that cause the brightest pixel for each point.

Each pixel has four measured intensities, one for each light
source. Let us call the brightest intensity Ia, with corresponding
light source vector La. We shall call the second brightest pixel Ib

and so on. We can therefore write our estimates of n3 as

fn3g ¼ PðfIag; fIbg; fIcg; La; Lb; LcÞ ð5Þ

where we are omitting the index suffix, i, for the sake of simplifying
the notation.

We know that for a pixel which is in a self shadow, the angle be-
tween Ld and the surface normal is greater than 90�. We can there-
fore define a self shadow condition as follows:

arccosðLd � n3ÞP 90� ð6Þ

where this condition is satisfied, we know that the fourth light
source is of no use and so we set e = 1. Where the condition is not
met, then cast shadows may or may not be present.
Fig. 3. Estimated geometry of three differe
To obtain a suitable value of e for pixels that do not satisfy con-
dition (6), we compare the value of Id to the value that which we
would expect to measure in the absence of a cast shadow. Call this
value Iex. It is possible to estimate this quantity using a combina-
tion of n3, Ld, the albedo found from the brightest three pixels (call
this q3), and Lambert’s Law:

Iex ¼ q3Ld � n3 ð7Þ

For areas potentially in cast shadow from one source, we use
the ratio between Id and Iex to determine e. For areas deep in cast
shadow, the expectation is that Id� Iex. For these regions we
would like e � 1, while for pixels away from shadow, we have
Id � Iex, so we require e � 0. Combining this logic with condition
(6) we arrive at our final definition of e:

e ¼
1 arccos Ld � n3ð ÞP 90�

max 1� Id
Iex
;0

� �
otherwise

(
ð8Þ

where the ‘‘max” is required to deal with points that are not in sha-
dow, but where Id happens to be slightly greater than Iex.

Fig. 2 shows the surface reconstructions resulting from both
standard PS and using the method presented here. The new meth-
od was able to more accurately recover the regions of the face that
are in shadow. This is especially true for areas of large surface ze-
nith angle, such as the sides of the nose and outer edges of the face.
The method proposed here is also able to restore a greater defini-
tion in the fine details of the face. Note however, that the method
breaks down slightly near the far edges of the cheek, where the re-
gion is shadowed by two light sources. The result is that disconti-
nuities in the reconstructed height appear in such regions. Further
analysis of the method will be presented in Section 3.2, which also
includes a comparison with the Solomon and Ikeuchi method [19].
3. Results

3.1. Basic reconstructions

Fig. 3 shows a series of reconstructions from the method de-
scribed in Section 2 using visible light. The device was placed at
the entrance to a workplace to ensure casual (and thus realistic)
usage. The general 3D structures of the faces have clearly been well
estimated. Note however, that the spectacles of one of the subjects
have been ‘‘blended” into the face. This is a combined consequence
of the rim of the spectacles being highly specular and the surface
being non-integrable for this region of the image [36]. Although,
we would ideally be able to estimate the shape of the spectacles
accurately, the blending effect can potentially be beneficial to face
recognition algorithms because it means that such details have a
lesser impact on the overall reconstruction. A set of images and
reconstructions using both visible and NIR light sources can be
seen in Fig. 4. It is clear that NIR is also capable of providing good
estimates of the 3D geometry of the face.

We now compare the accuracy of the face reconstructions
against ground truth data. To do this, we scanned eight different
faces using a commercial 3dMD projected pattern range finder
nt subjects using visible light sources.



Fig. 4. Example raw images and reconstructions using visible (top) and NIR light sources for four subjects. For these experiments only, the subjects were asked to rest their
chin on a support in order to ensure that all subjects are compared to each other in fair conditions.
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[12]. The 3dMD models were rescaled so that the distance between
tear ducts was the same as in the visible PS reconstruction. All
reconstructions were then cropped to 160 � 200 px regions cen-
tred on the nose tip that encompass the eyebrows and mouth. Part
of the forehead is omitted by this choice of cropping region as it is
frequently occluded by hair and is therefore deemed unreliable for
face recognition. An example of the face regions used for compar-
ison can be seen in Fig. 5, which also shows a ground truth recon-
struction acquired using a 3dMD scanner. The face regions from
visible and NIR light sources are then aligned to ground truth using
the Iterative Closest Point (ICP) algorithm [37].

Individual RMS and ‘2-norm error results between the recon-
structions and ground truth are displayed in Fig. 6. The eight sub-
jects consist of 6 males and 2 females and a mixture of Caucasian
Fig. 5. 3D reconstructions for one subject from a 3dMD scanner (left) which is used
as ground truth, PS using visible light sources (middle), and PS using NIR sources
(right).
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Fig. 6. RMS (left) and ‘2-norm (right) errors between Ground Truth (GT) and visible PS
significance to the pattern that can be inferred from the ‘2-norm errors figure.
and Asian ethnicities. The variations in residual errors and ‘2-norm
distances between visible and NIR reconstructions are significant
according to paired t-tests (p = 0.05). This demonstrates that PS
using NIR as a light source is a perfectly valid approach and leads
to more accurate reconstructions.

In order to get an indication of the regions where the greatest
differences occur between ground truth and PS reconstructions,
the residuals and ‘2-norm errors at each pixel are plotted in
Fig. 7. Typically, the largest variations occur in regions with the
highest curvatures, such as eye sockets, nose tips and the sides of
the nose.

In attempting to produce the most accurate reconstructions
possible via PS, it was found that the estimated surface normals
could be enhanced by using normals acquired by re-differentiating
the reconstructed height map estimate. It is unclear as to why this
should be the case but preliminary analysis indicates that the rea-
son may be due to the imposition of integrability constraints and
the fitting of limited basis functions in the Fourier domain [36],
as required by our adopted integration method. These factors
may cause errant normals to be ‘‘smoothed out” leading to a more
accurate reconstruction. However, if this method of improving
reconstructions is used, a second integration step would be needed
thus removing one of the benefits of PS for face recognition: that
the surface normals (and hence distinctive differential surface fea-
tures) are recovered directly. More research is required into this
area in order to confirm that the improvements result from the im-
posed integrability constraints.
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and NIR PS for each subject. NB: The order of subjects is arbitrary, i.e. there is no



Fig. 7. Representative examples of the residuals and the ‘2-norm errors at each pixel. Left to right: residuals for visible and NIR respectively, ‘2-norm errors for visible and NIR
respectively. Lighter areas represent larger errors.
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3.2. Mitigating shadow effects

To demonstrate the improvements in surface normal estimates
using the novel technique described in Section 2.4, we have man-
ually selected a square region of the image that contains a strong
shadow. Fig. 8 illustrates the surface normals of this region esti-
mated by various methods. Two improvements of the proposed
method compared to standard PS are noteworthy. Firstly, slightly
finer details of the face are estimated using the new method. Sec-
ondly, the area immediately to the left of the nose is badly corrupt
in the standard PS estimate, whereas the shadow is barely notice-
able for the new method. To quantify the improvement, the ‘2-
norm error was calculated between the two estimates and ground
truth. Using standard PS for the region in Fig. 8, the ‘2-norm error
was 0.32, while for the new method, the error dropped to 0.30. The
difference in error between methods for the entire face is negligi-
ble as most regions are not in strong shadows.

Although the difference in ‘2-norm error is very small, this
could be significant in certain applications as the nose and sur-
rounding regions of the face offer useful biometrics. This area is
seldom occluded by headgear/spectacles, varies considerably be-
tween individuals [38] and is relatively invariant to expression.
Interestingly also, psychological research has shown that the nose
is a preferred fixation point for humans attempting face recogni-
tion [39]. We should point out however, that although the surface
normals and depth are improved through our method, the discon-
tinuities in surface orientation at two-source shadow boundaries
may cause reduced Sobolev-norm errors in some cases. In future
work, we hope to reduce Sobolev-norm errors by treating two-
source shadowed regions in a different manner to one-source
shadowed regions.

For comparison, we have also implemented the Solomon and
Ikeuchi PS method [19]. Their method is similar to ours in that
combinations of three light sources are used to address shadow-
ing/specularity issues. Where the albedo estimates from each com-
bination of sources differs by an amount related to the standard
deviation of camera noise at each pixel, ri, it is assumed that a sha-
dow or specularity is present. For simplicity here, we assumed that
ri is constant for all i and estimated the camera noise from 100
images of a planar white surface at close range. The ‘2-norm error
Fig. 8. Image of the vertical component of the surface normal (lighter areas indicate mor
using standard four-source PS, using the proposed new algorithm, using the Solomon a
for the region in Fig. 8 was 0.29 using the calculated value of
ri = 0.54" i. Therefore, our method is comparable to the Solomon
and Ikeuchi method in terms of accuracy. However, our method
does not require camera noise information in order to attain opti-
mum quality.

The method described in this section can enhance PS shape esti-
mates for images that contain shadows. This means that PS can be
used for facial reconstruction with somewhat arbitrarily positioned
light sources. For the sake of simplicity, we will assume that the
sources are positioned as in Fig. 1 for the rest of the paper and con-
duct the remainder of our analysis work using standard PS.

3.3. Reflectance analysis

To determine whether Lambert’s law is obeyed more strictly
under NIR light than visible, we have plotted graphs of I/q against
h, the angle between the light source and the normal vector. For a
purely Lambertian surface, the relationship between the two
should follow a cosine law. The results can be seen in Fig. 9. To gen-
erate the graph, values of I, q and h were estimated for each pixel of
each image for each of eight faces. The angle h is calculated for each
point of the face from the 3dMD scan data and the known light
source vectors. The average values of I/q are used for each 1� incre-
ment in h. The line at h = 60� indicates a reasonable cut-off point
after which data points become too sparse to be significant. The
RMS difference between the measured curves and the cosine curve
in the range of 0 6 h 6 60 is 0.04 (s.d. 0.11) for NIR light and 0.06
(s.d. 0.12) for visible. For completeness, the RMS difference across
the whole curve is 0.11 (s.d. = 0.13) for NIR light and 0.17 (s.d. =
0.12) for visible. The figure demonstrates that skin under NIR light
is marginally more Lambertian than under visible light.

Although the data suffers from significant noise levels (as indi-
cated by a standard deviation exceeding 10% of the range for both
conditions), the NIR condition has a lower RMS error and is there-
fore closer to the Lambertian curve than for visible light. This dif-
ference is significant given the large numbers of pixels and
subjects used in the trials. This represents an average pixel inten-
sity error of 10 greylevels for NIR and 15 for visible light across
the image, assuming a maximum of 256 grey level intensities. This
supports the hypothesis that skin is more Lambertian under NIR
e downward pointing normals) for a region of a face in shadow. From left: estimates
nd Ikeuchi method, using the 3dMD scanner.
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Fig. 9. Mean I/q values averaged over eight subjects against h. To the right of the
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Table 1
The RMS collective error across all eight reconstructions and for the first two
reconstructions shown in Fig. 4 separately. The standard deviations are shown in
brackets.

Visible NIR

RMS, h 6 60� RMS, overall RMS, h 6 60� RMS, overall

All faces 0.06 (r = 0.11) 0.16 (r = 0.12) 0.04 (r = 0.12) 0.11 (r = 0.13)
Subject 1 0.07 (r = 0.09) 0.16 (r = 0.18) 0.05 (r = 0.12) 0.10 (r = 0.22)
Subject 2 0.07 (r = 0.10) 0.17 (r = 0.18) 0.04 (r = 0.13) 0.12 (r = 0.21)
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illumination. We believe that this result is related to the fact that
NIR light penetrates more deeply into the skin than visible light
[40], which facilitates a more uniform scattering than surface
reflection. Note however, that neither the Lambertian model nor
the Oren–Nayar model (see below) take account of internal scatter-
ing or Fresnel effects. The results in Section 3.1 demonstrate that
the more Lambertian behaviour associated with NIR light also
leads to more accurate reconstructions.

A more detailed analysis for two individual subjects is shown in
Fig. 10 and Table 1. What can be noted immediately is the similar-
ity across the plots. There are small differences in I/q caused by dif-
ferent light sources but this appears to have little negative impact
on the reconstructions and is likely to be due to environmental ef-
fects. The figure suggests that PS using both visible and NIR is ro-
bust to different skin types and light intensities. A more
thorough analysis of the effects of gender and race on reflectance
properties will be the subject of future work.
3.3.1. Comparison to the Oren–Nayar model
We have also compared our reflection measurements to the

Oren–Nayar reflectance model [3], as shown in Fig. 9. The Oren–
Nayar model represents the reflecting surface as an array of
V-shaped groves of random orientation, commonly called ‘‘micro-
facets”. The distribution of microfacet orientations is characterised
by a roughness parameter and each facet is assumed to act as per-
fect Lambertian reflector. This model is able to account for the
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Fig. 10. I/q values from individual light sources plotted against h for the first two recons
Subject 2 under visible, Subject 2 under NIR. The light sources are labelled clockwise fro
common feature of limb-brightening and is itself based on the
earlier Torrance–Sparrow model [41] where each microfacet is as-
sumed to be mirror-like.

We have chosen to use the Oren–Nayar model as skin is not a
smooth surface (especially on older people) and the model has
been shown previously to be successful on a range of materials
of varying degrees of roughness [3]. We do not believe that the
microscopic structure of skin closely matches the Oren–Nayar
model, but are merely demonstrating how alternate methods for
reflection may improve our framework in future work. Investigat-
ing the various degrees of freedom of the BRDFs is also reserved for
future work. Furthermore, there are additional models for skin
reflectance which take account of a huge range of physical phe-
nomena [42,43], but these are out of the scope of this paper.

The Oren–Nayar curve in Fig. 9 represents an example intensity
profile for reference with a roughness parameter of 0.2. Clearly,
this model fits the measured reflectance data significantly more
accurately than the Lambertian curve, suggesting that the model
could be incorporated into the method in the future. This will how-
ever, add significant complexity and computation time to the
algorithm. This is because a minimisation method must be imple-
mented in order to recover all the model parameters and to accom-
modate the increased number of angular degrees of freedom in the
model.
4. Discussion

The results presented in Section 3 demonstrate that PS is an
effective method for producing 3D facial reconstructions in terms
of quality. Our method also requires a relatively short computation
time. Using the device with standard PS, LabVIEW interfacing, Mat-
Lab processing and a typical modern PC, the time between device
trigger and the reconstructed height map was approximately 4 s.
Use of the optimised light source algorithm adds a further 3 s of
computation time. The construction of the hardware also lends it-
self well to relatively unobtrusive data capture with a minimum
0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

tructions shown in Fig. 4. Left to right: Subject 1 under visible, Subject 1 under NIR,
m the bottom-left in Fig. 1.
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amount of effort from the subject. Of particular interest are the fol-
lowing points:

1. The PS technique offers a valid alternative to existing, more
expensive and processor intensive, 3D face capture methods.

2. The PS technique is robust to common facial features such as
spectacles, makeup and facial hair (see also [44]).

3. NIR light sources produce reconstructions that are more accu-
rate than visible light sources.

4. The optimised light source method described in Section 2.4 per-
mits arbitrary light source arrangements and the presence of
shadows.

Our system offers several benefits over commonly used existing
laser triangulation and projected pattern 3D shape capture
devices:

1. It is significantly cheaper to construct.
2. Acquisition time is shorter than laser triangulation systems.
3. Data processing time is shorter than projected pattern systems.
4. The method is robust to typical ambient illumination conditions.
5. It is very robust against accidental collisions (because it is toler-

ant to errors in the light source vectors).
6. Very fine details of the face can be reconstructed.
7. Calibration is very quick and simple and only needs to be per-

formed after the initial light source positioning.
8. Due to the optimised light source method, the light sources can

be positioned conveniently for different physical environments.
9. Although our system cannot reconstruct hair with high levels of

accuracy, it can at least provide some details of its overall shape
(see Fig. 3, for example). In contrast, laser triangulation and pro-
jected pattern systems usually fail completely with hair.

At present, the 3D reconstructions are not yet as accurate as those
from projected pattern range finders. The reconstructions tend to be
flatter than their real-world counterparts, with most protrusions
understated. They do however provide extremely fine detail of a face
such as wrinkles and pores. Even though the reconstructions suffer
from a flattening of the features, they would still appear to be viable
for recognition purposes (each reconstruction is clearly of a distinct
identity) and the additional fine details could potentially be used as
supplementary information to aid recognition.

The reconstructions under NIR were shown to be more accurate
than those under visible light, but provided no additional 2D tex-
ture information. They also diminish the need for flashing lights,
making the system less intrusive compared to visible light.

Zivanov et al. [30] offer an alternative argument to ours, stating
that shorter wavelength light gives better results. Their justifica-
tion is that shorter wavelengths undergo less internal scattering
and thus provide a crisper, more defined reconstruction. It would
appear therefore that a compromise must be reached in deciding
between fine detail (using Zivanov’s short wavelength suggestion)
and overall geometry and covertness (using our NIR method).

4.1. Limitations and future research

One current limitation of the hardware described in this paper
is that it does not cope with large deviations of peoples’ height. Ex-
tremely tall or short people, or wheelchair bound persons would
probably trigger the device correctly, but the location of the face
could be outside of the field of view of the camera. Two possible
solutions for this are (1) to use two cameras and trigger sensors
at different heights or (2) to increase the field of view of the cam-
era. The first solution would work by using the most suitable cam-
era depending on which sensor had been triggered. While this is a
straightforward solution it would increase the cost of the equip-
ment considerably as the camera is the most expensive piece of
apparatus. Increasing the field of view is also straightforward and
would provide an adequate solution so long as wide-angle lens dis-
tortions did not become evident and that the face remains large en-
ough on the image to provide discriminating information for the
later recognition process.

Another improvement which could be made involves detecting
the coordinates of the face and adjusting the light source vectors
accordingly to improve the accuracy of the PS reconstruction. In
the current system the light source unit vectors are calculated from
a point at the centre of the camera’s field of view and this is used
for all reconstructions regardless of where the face is actually lo-
cated. For this reason, the light source unit vectors are less accurate
if the person walking through the device does not locate their face
near the centre of the camera’s field of view. The exact error caused
by this inaccuracy is unknown, but amending the light source an-
gles on a per person basis will improve the surface normal
estimates.
5. Conclusion

This paper has brought together a number of advances in state-
of-the-art 3D capture and processing technology. We have pre-
sented an algorithm for selecting the optimal light sources used
for PS reconstruction which has the advantage over similar algo-
rithms of not requiring knowledge of the exact shadow boundary.

The novel 3D facial geometry capture device has proved to be
capable of reconstructing 3D models of faces under realistic work-
place conditions using both visible and NIR light sources. It is
cheaper, more robust and requires less calibration than alternative
3D acquisition devices. Although its reconstructions are less accu-
rate than those of the state-of-the-art commercial 3dMD system,
they are suitable for face recognition, which will be the focus of
further study. The paper has also shown how human skin is more
Lambertian under NIR light which is offered as an explanation for
the associated improved accuracy of the reconstructions. A de-
tailed error analysis for these results was also presented.
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