ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING

Microelectromechanical Systems (MEMs) Unit Processes for MEMs Deposition

Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

9-18-2012 mem_dep.ppt

© September 18, 2012 Dr. Lynn Fuller, Professor

OUTLINE

Oxide Growth Diffusion Physical Vapor Deposition LPCVD Epitaxy Spin Coating Lift-Off Copper Plating Wafer Bonding Anodic Bonding

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

OXIDE GROWTH CALCULATOR

OXIDE THICKNESS COLOR CHART

Thick ness	Color
500	Tan
700	Brown
1000	Dark Violet - Red Violet
1200	Royal Blue Blue
1500	Light Blue - Metallic Blue
1700	Metallic - very light Yellow Green
2000	LIght Gold or Yellow - Slightly Metallic
2200	Gold with slight Yellow Orange
2500	Orange - Melon
2700	Red Violet
3000	Blue - Violet Blue
3100	Blue Blue
3200	Blue - Blue Green
3400	Light Green
3500	Green - Yellow Green
3600	Yellow Green
3700	Yellow
3900	Light Orange
4100	Carnation Pink
4200	Violet Red
4400	Red Violet
4600	Violet
4700	Blue Violet

Thickness	Color
4900	Eile Blue
5000	Blue Green
5200	Green
5400	Yellow Green
5600	GreenYellow
5700	Yellow -"Yellowish" (at times appears to be Lt gray or matel
5800	Light Orange or Yellow - Pink
60 00	Carnation Pink
6300	Violet Red
6800	"Buish" (appears violet red, Blue Green, looks Blue
7200	Blue Green - Green
7700	"Yellowish"
80 00	Orange
8200	Salmon
8500	Dull, Light Red Violet
8600	Violet
8700	Blue Violet
8900	Blue
9200	Blue Green
9500	Dull Yellow Green
9700	Yellow - "Yellowish"
9900	Orange
10000	Carnation Pink

Nitride Thickness = (Oxide Thickness)(Oxide Index/Nitride Index) Eg. Yellow Nitride Thickness = (2000)(1.46/2.00) = 1460

© September 18, 2012 Dr. Lynn Fuller, Professor

	MEM	ls Depositio	n	
DIFFU	SION MA	SKING	CAL	CULATOR
Select				
Boron or Phosp	horous		R	ay Krom, 2007
Enter				·
Temperature an	d Time			
Rochester Institute of	of Technology			Raymond Krom
Microelectronic Engi	neering			Dr. Lynn Fuller
9.5.07				Raymond Krom
Diffusion Mask Calcul	ator	Enter 1-Yes	0-No in	white boxes
		Temperature	s must b	e between 1000C and 1200C
Dement	Diffusion		or result v	will be in error.
Boron	Diffusion	1100	°C	
Phosphorous 1	Time	100	minutes	
,			Boron	1867 Angstroms
Oxide			Phosp	6399 Angstroms
Fitted to data taken fr	om Hamilton and	Howard		6399 Angstroms
Rochester Inst	itute of Technology			
Microelectroni	c Engineering			
	© September 18	3. 2012 Dr. Lvnn Full	er. Professo	r Page 10

DIFFUS	SION CON SOL	ISTANTS UBILITY	AND SO	LID
	<u></u>	UBLIY		
DIFF	USION CONSTA	NTS		
BORON	PHOSPHOROUS	PHOSPHOROUS	BORON	PHOSPHOROUS
DRIVE-IN	PRE	DRIVE-IN	SOLID	SOLID
			SOLUBILITY	SOLUBILITY
			NOB	NOP
1.07E-15 cm2/s	2.09e-14 cm2/s	7.49E-16 cm2/s	4.75E20 cm-3	6.75E20 cm-3
4.32E-15	6.11E-14	3.29E-15	4.65E20	7.97E20
1.57E-14	1.65E-13	1.28E-14	4.825E20	9.200E20
5.15E-14	4.11E-13	4.52E-14	5.000E20	1.043E21
1.55E-13	9.61E-13	1.46E-13	5.175E20	1.165E21
4.34E-13	2.12E-12	4.31E-13	5.350E20	1.288E21
1.13E-12	4.42E-12	1.19E-12	5.525E20	1.410E21
2.76E-12	8.78E-12	3.65E-12	5.700E20	1.533E21
			PLAVR	ACK NEVI
Rochester Institu Microelectronic F	te of Technology Engineering			
	© Santambar 19 2	12 Dr. Lynn Fullar Brof		
	DIFF BORON DRIVE-IN 1.07E-15 cm2/s 4.32E-15 1.57E-14 5.15E-14 1.55E-13 4.34E-13 1.13E-12 2.76E-12	DIFFUSION CONSTAT BORON PHOSPHOROUS DRIVE-IN PRE 1.07E-15 cm2/s 2.09e-14 cm2/s 4.32E-15 6.11E-14 1.57E-14 1.65E-13 5.15E-14 4.11E-13 1.55E-13 9.61E-13 4.34E-13 2.12E-12 1.13E-12 4.42E-12 2.76E-12 8.78E-12	DIFFUSION CONSTANTS BORON PHOSPHOROUS PHOSPHOROUS DRIVE-IN PRE DRIVE-IN 1.07E-15 cm2/s 2.09e-14 cm2/s 7.49E-16 cm2/s 4.32E-15 6.11E-14 3.29E-15 1.57E-14 1.65E-13 1.28E-14 5.15E-14 4.11E-13 4.52E-14 1.55E-13 9.61E-13 1.46E-13 4.34E-13 2.12E-12 4.31E-13 1.13E-12 4.42E-12 1.19E-12 2.76E-12 8.78E-12 3.65E-12	DIFFUSION CONSTAUTS BORON DRIVE-IN PHOSPHOROUS PRE PHOSPHOROUS DRIVE-IN BORON SOLUB 107IC-15 cm2/s 2.09e-14 cm2/s 7.49E-16 cm2/s 4.75E20 cm-3 4.32E-15 6.11E-14 3.29E-15 4.65E20 1.57E-14 1.65E-13 1.28E-14 4.825E20 5.15E-14 4.11E-13 4.52E-14 5.000E20 1.55E-13 9.61E-13 1.46E-13 5.175E20 4.34E-13 2.12E-12 4.31E-13 5.350E20 1.13E-12 4.42E-12 1.19E-12 5.525E20 2.76E-12 8.78E-12 3.65E-12 5.700E20

DIFFUSION AND DRIVE IN CALCULATIONS

Starting w aler kesistivity		Rho =	<u> </u>	
Starting W afer Type		n-type = 1	1 1 or 0	
		p-type = 1	0 1 or 0	
Pre Deposition Temperature			950 °C	
Pre Deposition Time			<u>15</u> min	
Drive-in Temperature			1100 °C	
Drive-in Time		I	480 min	
CALCULATE			<u>VALUE</u> UNITS	
Solid Solubility at Temperature of Pre Deposition	1		4.65E+20 cm-3	
Diffusion Constant at Temperature of Pre Depos	ition		3.93E-15 cm/sec	
Diffusion Constant at Temperature of Drive-in		l	1.43E-13 cm/sec	
CALCULATION OF DIFFUSION CONSTANTS	5			
	D0 (cm2/s)	EA (eV)		
Boron	0.76	3.46		
Phosphorous	3.85	3.66		
NOB = 3.5E17 (T) + 1.325E20				
NOP = 2.45E18(T) - 1.53E21				
CALCULATIONS			VALUE UNITS	
Substrate Doping = $1/(q \mu max Rho)$			4.42E+14 cm-3	
Ratio of Nsub/Ns =			9.51E-07	
Approximate inverse erfc from $erfc(u) = e^{-u^2} / (u(t))$	oi)^0.5)		3.47	
RESULTS			VALUE UNITS	
xi after pre deposition = $((4Dp tp)^{05})^{*}(inv erfc)$	Nsub/Ns))		0.13 um	
Pre deposition Dose. $OA = 2N_0 (Dr tr/\pi)^{-0.5}$			9.87E+14 atoms /cm2	
xi after drive-in = ((4 Dd td/OA) ln (Nsub (π Ddtd	0^0.5))^0.5		4.03 um	
average doping Nave = $Dose/xj$			2.45E+18 atoms /c m3	
mobility (μ) at Doping equal to Nave			109 cm2/V-s	
Sheet Desisten as $= 1/(q (u(Nava)))Daga)$			58 ohms	
Sheet Resistance = $I/(q (\mu(Nave)))Dose)$			01110	

© September 18, 2012 Dr. Lynn Fuller, Professor

DIFFUSION FROM A LIMITED SOURCE

© September 18, 2012 Dr. Lynn Fuller, Professor

EXAMPLE

1. A predeposit from a p-type spin-on dopant into a 1E15 cm-3 wafer is done at 1100°C for 10 min. Calculate the resulting junction depth and dose.

SOLUTION

2. The spin-on dopant is removed and the Boron is driven in for 2 hours at 1100 °C. What is the new junction depth?

SOLUTION

DIFFUSION EXAMPLE

Example: Single crystal silicon can be selectively etched. Regions with dopant concentration greater than 1e19 etch much slower than lighter doped regions. Design a process to create a 2 micrometer diaphragm.

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

DOPING POLYSILICON

When using poly as a conductor in integrated circuits it is desirable to have low resistivity. Doping at 1000 °C for 20 min using Emulsitone Co., 19 Leslie Court, Whippany, NJ 07981 Tel (201)386-0053; Emitter Diffusion Source N250 spin-on dopant gives 10-15 ohm/sq sheet resistance for 0.75 um thick poly. (The Allied Signal Inc., 1090 South Milpitas Boulevard, Milpitas, CA 95035, Tel (408)946-2411, Accuspin P-854 dopant gives higher resistivity in the range of 100 ohm/sq.)

2 um Poly Doped n+ using N-250 for 30 min $@ 1100 \text{ C} \qquad \text{rhos} = 8 \text{ ohms}$ $@ 950 \text{ C} \qquad \text{rhos} = 40 \text{ ohms}$ $@ 800 \text{ C} \qquad \text{rhos} = 10,000 \text{ ohms}$

Rochester Institute of Technology

Microelectronic Engineering

ION IMPLANT

See separate lecture notes on ion implant.

Important results are:

depth (range) vs energy spread (straggle) vs energy gaussian implant profile equation $N(x)=\{Dose/(2\pi \Delta Rp^2)^{-0.5}\}EXP^{-[(x-Rp^2)/2\Delta Rp^2]}$ Dose = It/qArea masking for selective implantation sheet resistance (ohms) = 1/ (qµDose) MOSFET threshold voltage adjust = +/- qDose/Cox'

Rochester Institute of Technology Microelectronic Engineering

VACUUM PUMPS, GAUGES AND SYSTEMS

See separate lecture notes on Backend Wafer Processing (back_end.ppt) Pages 6-34

Rotary Vane Mechanical Pump

Ion pump

Magnetically levitated turbomolecular pumps on HDPCVD system

Not shown: Diffusion Pump Cryo Pump Sublimation Pump Penning Gage

EVAPORATION CALCULATION

Notice Nation 19, 2000 Microelectronic Engineering Dr. Lynn Fuller Exaporation in this model assumes that the mass exeporated is spread out over the inside surface. of a sphere with radius equal to the distance from the evaporation source to the substrate. The surface area is 4 p if when multiplied by film thickness gives volume of material needed which is multiplied by the density to give the mass needed. Dude the mass by 2 if a dimplet bat is used allowing coating over a hemisphere instead of a sphere. m = the mass that needs to be evaporated = 4 p ih ² f c m = 3.88 gm f = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in truy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Aluminum 2.7 0 Gold 19.3 I = the denial Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 I = the denial Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 I = the denial Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 I = the denial Select only one =1, others = 0		Pachastar batituta of Tachaolas	N	More	b 10 2006		
Indexection Englisering Differential Evaporation in this model assumes that the mass evaporated is spread out over the inside surface of a sphere with radus equal to the distance from the evaporation source to the substrate. The surface area is 4 pi h ² when multiplied by film thickness gives volume of material needed which is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is used allowing coating over a hemisphere instead of a sphere. m = the mass that needs to be evaporated 4 pi h ² f c m = 3.88 gm f = the desined film thickness f = 0.1 µm d = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (p) m = 0.12 Troy Oz Deristy of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Copper 8.98 0 Tin 7.3 0 Lead 11.4 0 Dimed Boat 1 1	-	Microelectropic Engineering			l vnn Fuller		
Exaporation in this model assumes that the mass exporated is spread out over the inside surface of a sphere with radius equal to the distance from the exaporation source to the substrate. The substrate is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is used allowing coating over a hemisphere instead of a sphere. m is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is used allowing coating over a hemisphere instead of a sphere. m is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is used allowing coating over a hemisphere instead of a sphere. m the mass statu needs to be evaporated = 4 pi h ² f c m = 3.88 gm f = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Godd 19.3 1 Copper 8.96 0 Tim 7.3 0 Lead 11.4 0 Dimpled Boat 1 1 I lead 11.4 0 0 Dimpled Boat 1 1							
of a sphere with radius equal to the distance from the evoporation source to the substrate. The surface area is 4 pi h ² when multiplied by film thickness gives volume of material needed which is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is used allowing coaling over a hemisphere instead of a sphere. m = the mass that needs to be evoporated = 4 pi h ² f c m = 3.88 gm f = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm d = the desired film thickness f = 0.1 µm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz interval g = 0 Copper 8.96 O interval g = 0 interval g = 0 interval g = 0		Evaporation in this model assume	les that the mass evan	rated is spread out ov	er the inside	surface	
surface area is 4 pi h ² when multiplied by film thickness gives volume of material needed which is multiplied by the density to give the mass needed. Divide the mass by 2 f a dimpled boat is used allowing coating over a hemisphere instead of a sphere. m = the mass that needs to be evaporated = 4 pi h ² f d m = 3.88 gm f = the desired film thickness f f = 0.1 µm d = the density of the material being evaporated = 19.3 h = the height between the filament and the substrate = h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Deristy of some materials Gold 19.3 1 Copper 8.96 0 Tin 7.3 0 Lead 11.4 0 Dimpled Boat Tin 7.3 0 Lead 11.4 0 Dimpled Boat	-	of a sphere with radius equal to	the distance from the ev	aporation source to th	ne substrate.	The	
is multiplied by the density to give the mass needed. Divide the mass by 2 if a dimpled boat is Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness Image: state of a sphere. Image: state of the desired film thickness		surface area is 4 pi h ² when mu	tiplied by film thickness	gives volume of mate	rial needed v	vhich	
used allowing coating over a hemisphere instead of a sphere. m = the mass that needs to be evaporated = 4 pi h ² f c m = 3.88 gm f = the desired film thickness f = 0.1 µm d = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Copper 8.96 0 Tim 7.3 0 Lead 11.4 0 Substrate f = m f = m	•	is multiplied by the density to ai	ve the mass needed. Div	vide the mass by 2 if a	a dimpled bo	at is	
$m = the mass that needs to be evaporated = 4 pi h2 f c m = 3.88 gm f = the desired film thickness f = 0.1 µm d = the desired film thickness d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Deristy of some materials Select only one =1, others = 0 Deristy of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Copper 8.96 0 Lead 11.4 0 Dimpled Boat f = \frac{m}{4d \pi h^2}$	-	used allowing coating over a her	nisphere instead of a sp	here.			
m = the mass that needs to be eveporated = 4 pi h² f cm =3.88 gmf = the desired film thicknessf =0.1 µmd = the density of the material being evaporatedd =193h = the height between the filament and the substrateh =40 cmmass in troy oz is found = 0.3215 x mass (g)m =0.12 Troy OzDenisty of some materialsSelect only one =1, others = 0Image: Copper 8.96 0Gold19.3 1Image: Copper 8.96 0Image: Copper 8.96 0Tin7.3 0Image: Copper 8.96 0Image: Copper 8.96 0Lead11.4 0Image: Copper 8.96 0Image: Copper 8.96 0Tin7.3 0Image: Copper 8.96 0Image: Copper 8.96 0Copper 8.96 0Image: Copper 8.96 0Image: Copper 8.96 0Tin7.3 0Image: Copper 8.96 0Image: Copper 8.96 0Copper 8.96 0Image: Copper 8.96 0Image: Copper 8.96 0Tin7.3 0Image: Copper 8.96 0Image: Copper 8.96 0Copper 8.96 0Image: Copper 8.96 0Image: Copper 8.96 0Tin7.3 0Image: Copper 8.96 0Copper 8.96 0Image: Copper 8.96 0Image: Copper 8.96 0Copper 8.96 0Image: Copper 8.96 0Image:	-						
f = the desired film thickness f = 0.1 μ m d = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Lead 11.4 0 Dimpled Boat Tim 7.3 0 Lead 11.4 0 Dimpled Boat	-	m = the mass that needs to be	evaporated = 4 pi h^2 f o	m =	3.88	gm	
d = the density of the material being evaporated d = 19.3 h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 Tin 7.3 0 Lead 11.4 0	-	f = the desired film thickness		f =	0.1 µ	um	
h = the height between the filament and the substrate h = 40 cm mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Copper 8.96 0 Tin 7.3 0 Lead 11.4 0 Dimpled Boat $f = \frac{m}{4d \pi h^2}$		d = the density of the material b	eing evaporated	d =	19.3		
mass in troy oz is found = 0.3215 x mass (g) m = 0.12 Troy Oz Deristy of some materials Select only one =1, others = 0 Image: Copper 8.96		h = the height between the filam	ent and the substrate	h =	40 c	m	
mass in troy oz is found = $0.3215 \times mass (g)$ m = 0.12 Troy OzDenisty of some materialsSelect only one =1, others = 0Image: Copper 8.96 0Aluminum2.70Image: Copper 8.96 0Copper8.96 0Image: Copper 8.96 0Image: Copper 8.96 0Tin7.30Image: Copper 8.96 0Lead11.40Image: Copper 8.96 0Image: Copper 8.96 0<							
Denisty of some materialsSelect only one =1, others = 0Aluminum 2.7 0Gold19.31Copper 8.96 0Tin 7.3 0Lead11.40SubstrateImage: state of the state of th		mass in troy oz is found = 0.321	5 x mass (g)	m =	0.12	Froy Oz	
Denisty of some materials Select only one =1, others = 0 Image: constraint of the second secon							
Denisty of some materials Select only one =1, others = 0 Aluminum 2.7 0 Gold 19.3 1 Copper 8.96 0 Tin 7.3 0 Lead 11.4 0 Substrate 0 Mathematical field of the second of t				-			
Aluminum 2.7 0 Gold 19.3 1 Image: Copper 8.96 0 Image: Copper 8.96 0 Tin 7.3 0 Image: Copper 8.96 0 Image: Copper 8.96 0 Image: Copper 8.96 0 Lead 11.4 0 Image: Copper 8.96 0 0 0 0		Denisty of some materials	Select only one $=1$, oth	ners = 0			
Codd 19.3 1 Copper 8.96 0 \blacksquare Tin 7.3 0 \blacksquare Lead 11.4 0 Dimpled Boat Substrate \blacksquare \blacksquare \blacksquare f = $\frac{m}{4d \pi h^2}$ \blacksquare \blacksquare \blacksquare	-	Aluminum 2.7	0				
$\frac{ copper }{ r } = \frac{0}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$ $\frac{ copper }{ r } = \frac{1}{3.96} = 0$	-	Gold 19.3					
$f = \frac{m}{4l \pi h^2}$		Copper 8.96					
$f = \frac{m}{4d \pi h^2}$	-		0		Dimpled Re	ot.	
Substrate f $hf = \frac{m}{4d \pi h^2}f = film thickness$	-				Dillipled Bo	<u>al</u>	
$f = \frac{m}{4d \pi h^2}$	-	A	Substrate	1000			
f h $f = \frac{m}{4d \pi h^2}$	·		Guesdate			3555	
$f = \frac{m}{4d \pi h^2}$	-				1		
$f = \frac{m}{4d \pi h^2}$	-	f \ . /		1	1		
$f = \frac{m}{4d \pi h^2}$	•	• \ h /			/		
$f = \frac{m}{4d \pi h^2}$	-						
f = film thickness	•		$f = \frac{m}{44\pi h^2}$				
Current f = film thickness			+d π n*				
		Comment V	f = film thickness				
d = density	┼┶╫╲		d = density				
h = hcieht	TET Roche		h = hcight				
Micro	Micro	ෂා	m = mass				
		_	111 111035				
	—						
		© Sentem	per 18 2012 Dr Lv	nn Fuller Profes	ssor	Dogo 27	
		© Septem	per 18,2012 Dr. Ly	/nn Fuller, Profes	ssor	Page 27	

EVAPORATION TECHNIQUES

Aluminum - evaporate copper with tungsten wire basket. One pellet at 20 cm gives about 3000 A.

Copper - evaporate copper with tungsten wire basket. The basket needs to be crushed a little so the openings are small and the copper does not fall out of the basket once it is melted. One pellet at 20 cm gives about 3000 A. Dimpled Tungsten boats work great.

Chromium – use special Chromium coated tungsten wire filaments. Current through the filament heats the Cr which sublimes.

Gold - gold or gold/germanium can easily be evaporated from a basket with tightly spaced loops. The basket needs to be crushed a little so the openings are small and the gold does not fall out of the basket once it is melted. Dimpled

Tantalum boats work great.

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

CHROME EVAPORATION

Deposit chrome by evaporation (actually sublimation) from special chrome coated tungsten rods. Using the CVC evaporator. Heat rods to red hot by setting filament voltage to 190 on the dial. Then open the shutter for the desired time calculated from rate of 35 Å/sec. (at a distance of 40 cm from source to substrate)

R.D.Mathis P.O. Box 92916 Long Beach, CA 90809-2916 <u>www.rdmathis.com</u>

Part No. ?? Cost \$250/50 qty

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

DEPOSITION OF SILICON MONOXIDE (SiO)

Evaporate SiO with Ta boat and cover with hole. The material sublimes and a film will be deposited. It looks like glass and can be measured on the ellipsometer. The ellipsometer gave an index of refraction of 1.88

Using the CVC evaporator X mg at 40 cm gives about 300 Å. Set to 250 on the dial.

R.D.Mathis P.O. Box 92916 Long Beach, CA 90809-2916 <u>www.rdmathis.com</u>

> Rochester Institute of Technology Microelectronic Engineering

Part No. Cost

		MEMs Depositio	n		
	EVA	PORATIO N	DATA		
Material Formula	Melt pt.	Temp °C @	Vapor Pressui	e 1E (16.4
		Ĵ	1E-8	1E-0	1E-4
Aluminum	Al	660	677	812	1010
Alumina	Al2O3	2045	1045	1210	1325
Antimony	Sb	630	279	345	425
Arsenic	As	814	107	152	210
Beryllium	Be	1278	710	878	1000
Boron	B	2100	1278	1548	1797
Cadmium	Cd	321	64	120	180
Cadmium Sulfide	CdS	1750			550
Chromium	Cr	1890	837	977	1177
Cobalt	Со	1495	850	990	1200
Gallium	Ga	30	619	742	907
Germanium	Ge	937	812	957	1167

MRC Co., "Evaporation and Sputtering Data Book," Orangeburg, NY http://www.epimbe.com/pages/vp

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

EVAPORATION DATA

Material Formula Melt pt.

Temp °C @ Vapor Pressure

	_		°C	_	1E-8	1E-6	1E-4
Gold	Au		1062		807	947	1132
Hafnium Oxide	HfO2		2812				2500
Nickel	Ni		1453		927	987	1262
Palladium	Pd		1550		842	992	1192
Platinum	Pt		1769		1292	1492	1747
Selenium	Se		217		89	125	170
Silicon	Si		1410		992	1147	1337
Silicon Dioxide	SiO2		1800				1025
Silicon Nitride	Si3N4						800
Silver	Ag		961		574	617	684
Tantalum	Ta		2966		1960	2240	2590
Titanium Ti		1668		1067	1235	1453	
Tungsten W		3410		2117	2407	2757	
Zirconium	Zr		1852		1477	1702	1987

MRC Co., "Evaporation and Sputtering Data Book," Orangeburg, NY http://www.epimbe.com/pages/vp

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

SPUTTERING

DC Sputtering - Sputtering can be achieved by applying large (~2000) DC voltages to the target (cathode). A plasma discharge will be established and the Ar+ ions will be attracted to and impact the target sputtering off target atoms. In DC sputtering the target must be electrically conductive otherwise the target surface will charge up with the collection of Ar+ ions and repel other argon ions, halting the process.

RF Sputtering - Radio Frequency (RF) sputtering will allow the sputtering of targets that are electrical insulators (SiO2, etc). The target attracts Argon ions during one half of the cycle and electrons during the other half cycle. The electrons are more mobile and build up a negative charge called self bias that aids in attracting the Argon ions which does the sputtering.

Rochester Institute of Technology Microelectronic Engineering

SPUTTERING

Magnetron Sputtering - Magnets buried in the baseplate under the target material cause the argon ions and electrons to concentrate in certain regions near the surface of the target. This increases the sputtering rate.

SPUTTER TARGETS

PE 2400 Targets

Au Ta2O5 Zr Cr SiO2 Qty2 Qty2 Ta Si Mg TiO2 NiFe Nb2O5 CrSiO In2O5 Qty2 Nb Permalloy SnO2 Fe A12O3 AlNi MgF2 NiFeMg MgO Ni Target Insulators 3 Co **Backing Plates6**

2" Unbonded for Denton Gold Palladium

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor
SPUTTER TARGETS

8" Bonded for CVC-601

Aluminum 100% Aluminum/1% Silicon Chrome Chrome Oxide Copper Molybdenum Tantalum Titanium Titanium10%/Tungsten 90% Silicon Dioxide Silicon Indium Tin Oxide **8''Unbonded for CVC-601** Molybdenum/Titanium Titanium/Al 1%/Silicon 2%

4" Unbonded for CVC 601

Chrome Indium 90%/Tin 10% Nickel Tantalum Tin Nickel-Chromium 80%/20% 108E-6 ohm cm, TCR 110 E-6/°C \$450- 4"x1/4" Mel Hollander, Research and PVD Materials Corp. (973) 575-4245

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

RIT SPUTTERING DATA

Material	Head	Power (watts)	Rate
Aluminum	8"	2000	240 Å/min.
Nickel	4"	500	170
Chromium	8"	1350	350
InSn + O2	4"	100	80
Copper	8"	325	110
Gold*	2"	40 mA,50mTorr	250
Tantalum	4"	500	190
Titanium	8"	1350	220
Tungsten	4"	500	100
Tungsten	8"	1000	115
Palladium#	2"	10mA, 90 mTorr	100

This data is for the CVC 601 Sputter System at 5 mTorr Argon Pressure, Base Pressure Prior to Sputter <1E-5 *Denton Sputter Machine

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

STRESS IN SPUTTERED FILMS

Compressively stressed films would like to expand parallel to the substrate surface, and in the extreme, films in compressive stress will buckle up on the substrate. Films in tensile stress, on the other hand, would like to contract parallel to the substrate, and may crack if their elastic limits are exceeded. In general stresses in films range from 1E8 to 5E10 dynes/cm2.

STRESS IN SPUTTERED TUNGSTEN FILMS

Tungsten

CVC 601 4" Target 500 Watts 50 minutes 5 mTorr Argon Thickness ~ 0.8 μm

Rochester Institute of Technology

Microelectronic Engineering

Picture from scanner in gowning

© September 18, 2012 Dr. Lynn Fuller, Professor

REACTIVE SPUTTERING

Reactive Sputtering - introducing gases such as oxygen and nitrogen during sputtering can result in the deposition of films such as indium tin oxide (ITO) or titanium nitride TiN (other examples include AlN, Al_2O_3 , AnO Ta_2O_5)

Unwanted Background Gases in Sputtering - Most Films are very reactive when deposited. Water and oxygen cause rougher films, poorer step coverage, discoloration (brown aluminum), poorer electrical properties, etc.

MEMs Deposition		
CVD CHEMISTRY		
Epi	$SiCl4 + 2H2 \longrightarrow Si + 4HCl$	
Polysilicon	SiH4 (gas) → Si (solid) + 2H2	
Silicon Nitride	SiCl2 H2 + NH4 \longrightarrow Si3N4 + HCl	
Low Temperature Oxide	$SiH4 + O2 \longrightarrow SiO2 + H2$	
Tungsten (Selective on Si not on SiO2)	WF6 + 3H2 \longrightarrow W + 6HF	
TEOS (tetraethyl orthosilicate)	$Si(C2H5O)4 \longrightarrow SiO2 + 4C2H4 + 2 H2O$	
TiN (TDMAT) reduction of Ti[N(CH2CH3)2]4		
Copper CVD	reduction of ???	
Rochester Institute of Technology Microelectronic Engineering		
© Septem	ber 18, 2012 Dr. Lynn Fuller, Professor Page 44	

MEMs Deposition RIT LPCVD TOOLS 4" LPCVD 6" LPCVD Top Tube for LTO Bottom Tube for Poly and Nitride

© September 18, 2012 Dr. Lynn Fuller, Professor

LTO

Wafers are loaded back to back in caged boat. The boat is filled with dummy wafer to total 25 wafers. Monitor wafer is placed in the middle.

Caged Boat

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

PECVD OXIDE FROM TEOS

TEOS Program: (Chamber A) Step 1 Setup Time = 15 secPressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 0 watts TEOS Flow = 400 sccO2 Flow = 285 sccStep 2 – Deposition $\hat{\text{Dep Time}} = 55 \text{ sec } (5000 \text{ Å})$ Pressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 205 watts TEOS Flow = 400 sccO2 Flow = 285 sccStep 3 – Clean Time = $10 \sec$ Pressure = Fully Open Susceptor Temperature= 390 C Susceptor Spacing= 999 mils RF Power = 50 watts TEOS Flow = 0 sccO2 Flow = 285 scc

© September 18, 2012 Dr. Lynn Fuller, Professor

STRESS IN POLY AND NITRIDE FILMS

Stress in poly films can cause buckling and bending of beams and cantilever structures. When doping poly after deposition the high temperatures (1000 C) anneal stress. Undoped poly structures require an anneal.

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

STRESS IN NITRIDE FILMS

Stress in an 8000 A Nitride Film causing fracture

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

MEMs Deposition LOW STRESS SILICON RICH Si3N4 ADE Measured stress for various Dichlorosilane: Ammonia Flow Ratios Flow Stress x E 9 dynes/cm2 10:1 +14.63 5:1 +14.81 2.5:1 +12.47 Stress; $\sigma = (E/(6(1-v)))*(D^2/(rt))$ 1:1 +10.13 where E is Youngs modulus, 1:2.5 +7.79* v is Poissons ratio, 1:5 +3 D and t are substrate and film thickness 1:10 r is radius of curvature (+ for tensile) \mathbf{O} *standard recipe T.H Wu, "Stress in PSG and Nitride Films as Related to Film Properties and Annealing", Solid State Technology, p 65-71, May '92 $10 \text{ dyne/cm}^2 = 1 \text{ newton/m}^2 = 1 \text{ Pascal}$ **Rochester Institute of Technology** Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

MEMs Deposition **MEASUREMENT OF STRESS IN Si3N4** Kenneth L. Way, Jr. did his senior project on stress in silicon nitride films as a function of the ratio of ammonia to dichlorosilane. Samples were coated with various flows and stress was measured at ADE corporation. The silicon nitride was etched off of the backside of the wafer so that the stress curvature was due to the layer on the front side only. Dr. Lane said the nitride runs at 1:10 (ammonia:dichlorosilane) ratios are rough on the pumping system. **Compressive Stress Tensile Stress** Dr. Grande sent samples to Kodak for stress measurement. He found stress of +900 MPa Tensile for the standard Nitride recipe for 1500 A thickness, 1-29-2000 **Rochester Institute of Technology** Microelectronic Engineering $10 \text{ dyne/cm}^2 = 1 \text{ newton/m}^2 = 1 \text{ Pascal}$ © September 18, 2012 Dr. Lynn Fuller, Professor Page 54

NITRIDE THICKNESS COLOR CHART

-	<u>Thickness</u>	Color
	200	Silver
	400	Brown
	550	Yellow-brown
	730	Red Violet
	770	Deep Blue
	930	Blue
	1000	Pale Blue
	1100	Very Pale Blue
	1200	Silver
	1300	Light Yellow
	1500	Yellow
	1800	Orangfe-Red
L	1900	Red Violet
	2100	Dark Red
	2300	Blue
	2500	Blue-Green
L	2800	Light Green
L	3000	Orange-Yellow
	3300	Red Violet
L		
Rocheste		
Microele		

© September 18, 2012 Dr. Lynn Fuller, Professor

APPLY PARYLENE

Approximately 1 gm of Parylene C gives ~3000Å film thickness, Deposit 5 wafers per run.

Adhesion Promotor

(gammamethacryloxypropyltrimethoxysilane) spin coat 3000 rpm 1 min. Bake 110 C for 2 min. Then load into Parylene Deposition Tool.

See: http://www.scscookson.com/parylene/properties.cfm

© September 18, 2012 Dr. Lynn Fuller, Professor

PECVD OF CARBON FILM (DIAMOND LIKE FILM)

Drytech Quad Tool CH4 flow 45 sccm 50 mTorr 200 Watt Deposition Rate ~ 320 Å/min Index of Refraction = 2.0

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

LPCVD

The placement of the wafers in the boat and the placement of the boat in the furnace and the temperature of the furnace all affect the deposition rate. Rates from 35 A/min to 100 A/min have been observed with basically the same LPCVD recipe. 80 A/min was obtained by simply spacing the dummy wafers and the device wafers in every other slot in the boat. Starting in the 5th slot place 5 dummy wafers in every other slot followed by 5 device wafers and two dummies all spaced every other slot. Place the boat such that the 1st device wafer is slightly closer to the door so that all device wafers are forward with respect to the center of the furnace. 5 or 10 degrees hotter will also give a higher deposition rate. For thick layers do the deposition in two runs and switch the order to give more uniform deposition. Flats up and all wafers pretty much vertical also helps uniformity. These films are not as dense as thermal oxide. They etch faster in BHF and KOH etches.

POLYIMIDE

Polyimide has a melting point of 450 C, can be spin coated and imaged with lithographic processes making it useful for many applications.

Using DuPont Corporations PI-2555 we can get film thickness between 2.5 μ m @ 5000 rpm and 5.0 μ m @ 1500 rpm. It is cured by placing on 120 °C hot plate for 30 min. and then on a 350 °C hot plate for 30 min. Multilayer coatings can give thickness greater than 10 μ m. (a 500 gm bottle costs ~\$250) Du Pont Co., Electronic Materials Division, Barley Mill Plaza, Reynolds Mill Building, Wilmington, DE 19898 (800)441-7543

OCG Microelectronic Materials, Belgium, makes a polyimide "Proimide 114A" which we have used.

These film are easily imaged using an aluminum barrier layer and conventional photoresist (such as Shipley System-8) followed by Oxygen Reactive Ion Etch.

COPPER PLATING

Mix about 65g of Copper Sulfate (CuSO₄) crystals to 200 ml of water plus water. Make sure there are no undissolved solids in the mixture. When done, the solution should look dark blue. To increase the conductivity of the solution, add about 5 ml of Sulfuric acid using a pipette.

Wet the O-ring to make a better seal.

Set the DC voltage supply to get a current density of about 3 mA/cm2. (15 mA for 1 inch diameter circular area of exposed copper) Plate copper for about 45 min.

$$CuSO_4 + H_2O => Cu^{2+} + SO^{2-}_4 + H_2O$$

COPPER PLATING

Copper Sulfate (CuSO₄) + water- CuSO₄ + $H_2O =>Cu^{2+}+SO^{2-}_4+H_2O$

When a voltage is applied and a current flows, the copper ions (Cu^{2+}) will move towards the negative electrode (cathode), where it gains an electron and becomes a copper molecule (2Cu). At the same time the sulfate ion (SO^{2-}_4) will be attracted to the anode where it becomes a sulfate molecule.

Adhesion and uniformity of the plating is a function of the rate of deposition and the substrate material. It was found that Cu will not plate on aluminum or chrome but will plate on nickel but nickel will not stick to aluminum so the following film stack was used to plate onto silicon (for solder bump contacts). Plated Copper (2 to 10 μ m) on evaporated Copper (2500 A) on Nickel (2400 A) on Chrome (1000 A) on Aluminum (7000 A) on Silicon.

COPPER PLATING APPARATUS

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

GOLD PLATING

Electroless gold solution can be used on copper or nickel films. This chemically replace copper atoms with gold atoms. Can only plate up to the original copper film thickness. Immerse copper in heated 80 C gold plating bath for 10 min.

Electroplating of gold is also common.

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

EVALUATION OF FILM PROPERTIES

Thickness Stress Morphology Stociometery Grain Size Contact Angle More

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

SEM OF FILM MORPHOLOGY

Polysilicon Substrate

6-7-99

Rochester Institute of Technology Microelectronic Engineering Polymer Film on Poly

© September 18, 2012 Dr. Lynn Fuller, Professor

WAFER BONDING

Silicon Direct: No Voltage, Temp 800 to 1100 C, No Intermediate Layer, Very Clean Surface, Very Flat Surface

Anodic (Glass to Silicon): Voltage 300 to 2000, Temp 300 to 500 C, No Intermediate Layer, Special Glass Required (7740)

Sputtered Pyrex: Voltage 20 to 200, Temp 300 to 500, Layer 1 to 5 µm

Thermal Oxide: Voltage 10 to 30, Temp 1100 C, Layer 1 to 3 µm

Spin On Glass: No Voltage, Temp 200 to 500 C, Layer 30 to 100 nm, borosilicate or phosphoro/borosilicate spin on glass.

Eutectic: No Voltage, Temp just below Eutectic Point, Scrubbing Action and Pressure Needed,

> Rochester Institute of Technology Microelectronic Engineering

> > © September 18, 2012 Dr. Lynn Fuller, Professor
DIRECT Si-Si FUSION BONDING

Direct fusion bonding - two wafers with or without SiO2 can be directly bonded by placing them together and heating to 800 C and followed by anneal at temperatures up to 1100 C in oxygen or nitrogen. The two surfaces can be hydrophilic or hydrophobic. (The RCA clean makes the surface of bare silicon wafers hydrophilic. An HF dip makes the surface hydrophobic.)

See Karl Suss tools for wafer bonding www.suss.com

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

SURFACE PREPARATION

RCA clean followed by 10 min HF gives contact angle of 52°, Hydrophobic Surface

RCA clean gives contact angle of 4.5°, Hydrophilic Surface

Contact angle measurement of a water drop on a silicon surface

(A) RCA clean NH₄OH:H₂O₂:H₂O = 1:1:6 for 10 min at 75 °C, HCl:H₂O₂:H₂O = 1:1:6 for 10 min at 75 °C,
(B) H₂O:H₂O₂:NH₄OH = 6:1:4 for 10 min at 55 °C
(C) RCA clean and 65% HNO₃ for 10 min
(D) RCA clean and 2% HF for 10 min

- (E) H_2SO_4 : $H_2O_2 = 5:1$ for 10 min
- (F) 30% H2SO4 for 10 min

At the end of the pretreatments the wafers were always rinsed in deionized water.

pretreatment	direct after pretreatment	5 h	27 h	3 d	6 J
A	4.5°	5.5*	9°	16°	20°
В	5.5°	4°	5.5°	7.5°	12*
С	1°	4°	4°	12.5°	16.5
D	52°	61°	63.5°	59.5°	57"
E	1.5°	4°	6°	17°	22°
F	51°	46°	45°	.47.5°	45°

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

WAFER BONDING RESULTS

Shiny surfaces against each other,

- 1100 C in Furnace14
- time = 30 minutes
- dry O2 (5 lpm)

Rochester Institute of Technology Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

ANODIC BONDING

Anodic bonding is used to permanently bond a glass sheet to a silicon wafer at low temperature (~400C) using a combination of heat and high electric field.

FUEL INJECTOR PROJECT

Rochester Institute of Technology

Microelectronic Engineering

© September 18, 2012 Dr. Lynn Fuller, Professor

MEMs Deposition WET OXIDE GROWTH CHART EXAMPLE 1 10 6000Å -X_{ox},(um) 201 **10**⁻¹ 24 60 900 10⁻² 100 10 1,000 t, Time, (min) Rochester Institute of Technology **50 min** Microelectronic Engineering © September 18, 2012 Dr. Lynn Fuller, Professor Page 84

© September 18, 2012 Dr. Lynn Fuller, Professor