Re: Zero point fields and the strong nuclear force.

From: Damien Broderick (d.broderick@english.unimelb.edu.au)
Date: Tue Feb 06 2001 - 22:40:51 MST


At 05:55 PM 6/02/01 +1100, I wrote:

>Ardeshir Mehta <http://homepage.mac.com/ardeshir/education.html>

He replies to a critical comment I sent him:

==============

I found out only after I wrote the
paper that certain geometries exhibit repulsive Casimir forces. For
example, two hollow hemispheres brought together are repelled,
not attracted. But I figured out why that was so. If the ZPF theory
is correct -- as I suspect it is -- then as you bring the hemispheres
together, the ZPF radiation inside them bounces off the inside of
one hemisphere and into the inside of the other, and back again and
again until it gets completely absorbed (as *eventually* it must be).
But this actually serves to *increase* the radiation pressure inside
the hemispheres, as compared to the outside. The ZPF radiation
outside, once it bounces off the outside of each hemisphere, goes
away, never to return: only fresh ZPF radiation serves to bring the
two hemispheres together. So the inside of the hemispheres bene-
fits not only from freshly-created ZPF radiation -- which is being
created all the time -- but also to some extent from reflected radia-
tion: radiation, that is, which was created a few instances earlier.
(We're talking about periods of time too tiny to measure, natu-
rally.) And of course, even if both hemispheres are brought com-
pletely together, the space inside them still remains large enough to
allow fairly long wavelengths of ZPF radiation to form.

On the other hand, when flat plates are pushed together, the space
between them decreases uniformly, and the wavelengths of ZPF
radiation get more and more restricted. Eventually hardly any ZPF
radiation exists between them, while the ZPF radiation outside
them is undiminished. This explains the difference between the
Casimir effect on flat plates as opposed to two hollow hemi-
spheres.

As for the exact solutions for Casimir forces for adjacent spheres,
that is not repulsive. But it would be, I think, erroneous to use the
theoretical (i.e., exact) figures in my paper -- at least at this stage.
The reason is that we have no knowledge of the exact shape of sub-
atomic particles, nor about their transparency or opacity. (I men-
tioned this to some extent in my paper.)

My paper tries as a first attempt to think up what must logically
happen if the ZPF theory is correct. As I wrote, if there is any
ZPF at all, there must be *some* effect of the ZPF on the nucleus,
and on the proton and quark: just what that effect is may not be
known theoretically and it may be necessary to conduct experi-
ments to find it out, but that there *must* be some effect cannot be
possibly be denied -- if, of course, the ZPF exists at all.

=======================

to which I responded:

=======================

>My paper tries as a first attempt to think up what must logically
>happen if the ZPF theory is correct.

That's what I liked.

>As I wrote, if there is any
>ZPF at all, there must be *some* effect of the ZPF on the nucleus,
>and on the proton and quark

Well, assuming you're not making the, ahem, vulgar error of imputing
qualities to the quantal world that are inappropriate there--billiard ball
partons, say. In places you acknowledge that the fundamental thingees are
probabilistic and blurry, in some respects, but your central model is kinda
Newtonian. Well, maybe that's true, but I think Heisenberg smashes the
balls. Unless that's just a computational artifact created by stochastic
ZPF zitterbewegung.

But what would I know? :)

==================================

Damien Broderick



This archive was generated by hypermail 2.1.5 : Sat Nov 02 2002 - 08:05:39 MST