[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Elliptic Curve Y**2 = x**3 + a * x**2 + b
On Thu, 29 Aug 1996, Tom Rollins wrote:
> Questions are:
>
> 1: How can I take the suqare root mod p ?
Here's some C++ code for taking modular square roots:
Integer ModularSquareRoot(const Integer &a, const Integer &p)
{
if (p%4 == 3)
return a_exp_b_mod_c(a, (p+1)/4, p);
Integer q=p-1;
unsigned int r=0;
while (q%2==0) // while q is even
{
r++;
q >>= 1;
}
Integer n=2;
while (Jacobi(n, p) != -1)
++n;
Integer y = a_exp_b_mod_c(n, q, p);
Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
Integer b = (x.Square()%p)*a%p;
x = a*x%p;
Integer tempb, t;
while (b != 1)
{
unsigned m=0;
tempb = b;
do
{
m++;
b = b.Square()%p;
if (m==r)
return Integer::ZERO;
}
while (b != 1);
t = y;
for (unsigned i=0; i<r-m-1; i++)
t = t.Square()%p;
y = t.Square()%p;
r = m;
x = x*t%p;
b = tempb*y%p;
}
assert(x.Square()%p == a);
return x;
}
> 2: How to determine if a solution exists for a
> selected value of x ?
The Jacobi symbol tells you whether x has a square root mod p:
// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is
// quadratic residue mod b, -1 otherwise
// check a number theory book for what Jacobi symbol means when b is not
// prime
int Jacobi(const Integer &aIn, const Integer &bIn)
{
assert(bIn[0]==1);
Integer b = bIn, a = aIn%bIn;
int result = 1;
while (!!a)
{
unsigned i=0;
while (a[i]==0)
i++;
a>>=i;
if (i%2==1 && (b%8==3 || b%8==5))
result = -result;
if (a%4==3 && b%4==3)
result = -result;
swap(a, b);
a %= b;
}
return (b==1) ? result : 0;
}
> 3: Is the a simpler method than find a square root ?
I don't think so. Let me know if you do find one.
Wei Dai