summaryrefslogtreecommitdiff
path: root/arXiv.org.js
blob: dd3821fb93b2579d1be66f0a43dec3d7642208bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
{
	"translatorID": "ecddda2e-4fc6-4aea-9f17-ef3b56d7377a",
	"label": "arXiv.org",
	"creator": "Sean Takats and Michael Berkowitz",
	"target": "^https?://(?:[^\\.]+\\.)?(?:(?:arxiv\\.org|xxx.lanl.gov)/(?:find/\\w|list/\\w|abs/)|eprintweb.org/S/(?:search|archive|article)(?!.*(?:refs|cited)$))",
	"minVersion": "3.0",
	"maxVersion": "",
	"priority": 100,
	"inRepository": true,
	"translatorType": 4,
	"browserSupport": "gcsv",
	"lastUpdated": "2014-06-07 08:29:23"
}

function detectWeb(doc, url) {
	var searchRe = /^https?:\/\/(?:([^\.]+\.))?(?:(?:arxiv\.org|xxx\.lanl\.gov)\/(?:find|list)|eprintweb.org\/S\/(?:archive|search$))/;
	
	if(searchRe.test(url)) {
		return "multiple";
	} else {
		return "journalArticle";
	}
}

function doWeb(doc, url) {
	if(detectWeb(doc, url) == 'multiple') {
		var rows = ZU.xpath(doc, '//div[@id="dlpage"]/dl/dt');
		var getTitleId;
		if(rows.length) {
			// arXiv.org format
			getTitleId = function(row) {
				var id = ZU.xpathText(row, './/a[@title="Abstract"]').trim().substr(6); // Trim off arXiv:
				var title = ZU.trimInternal(
					ZU.xpathText(row, './following-sibling::dd[1]//div[@class="list-title"]/text()[last()]'));
				return {
					title: title,
					id: id
				};
			};
		} else if( (rows = ZU.xpath(doc, '//table/tbody/tr[./td[@class="lti"]]')).length ) {
			// eprintweb.org format
			getTitleId = function(row) {
				var title = ZU.trimInternal(ZU.xpathText(row, './td'));
				var id = ZU.xpathText(row, './following-sibling::tr[.//a][1]/td/b').trim().substr(6);
				return {
					title: title,
					id: id
				};
			};
		} else {
			throw new Error("Unrecognized multiples format");
		}
		
		var items = {};
		for(var i=0; i<rows.length; i++) {
			var row = getTitleId(rows[i]);
			items[row.id] = row.title;
		}
		
		Z.selectItems(items, function(items) {
			if(!items) return;
			
			var urls = [];
			for(var id in items) {
				urls.push('http://export.arxiv.org/oai2'
					+ '?verb=GetRecord&metadataPrefix=oai_dc'
					+ '&identifier=oai%3AarXiv.org%3A' + encodeURIComponent(id)
				);
			}
			
			ZU.doGet(urls, parseXML);
		})
	} else {
		var id = ZU.xpathText(doc, '//td[contains(@class,"arxivid")]/a')
			|| ZU.xpathText(doc, '//b[starts-with(normalize-space(text()),"arXiv:")]');
		if(!id) throw new Error('Could not find arXiv ID on page.');
		
		id = id.trim().replace(/^arxiv:\s*|v\d+|\s+.*$/ig, '');
		var url = 'http://export.arxiv.org/oai2?verb=GetRecord&metadataPrefix=oai_dc'
			+ '&identifier=oai%3AarXiv.org%3A' + encodeURIComponent(id);
		ZU.doGet(url, parseXML);
	}
}

var ns = {
	oai_dc: 'http://www.openarchives.org/OAI/2.0/oai_dc/',
	dc: 'http://purl.org/dc/elements/1.1/',
	xsi: 'http://www.w3.org/2001/XMLSchema-instance',
	n: 'http://www.openarchives.org/OAI/2.0/' // Default
};

function parseXML(text) {
	//Z.debug(text);
	var newItem = new Zotero.Item("journalArticle");
	
	var xml = (new DOMParser()).parseFromString(text, "text/xml");
	var dcMeta = ZU.xpath(xml, '//n:GetRecord/n:record/n:metadata/oai_dc:dc', ns)[0];

	newItem.title = getXPathNodeTrimmed(dcMeta, "dc:title");
	getCreatorNodes(dcMeta, "dc:creator", newItem, "author");		
	newItem.date = getXPathNodeTrimmed(dcMeta, "dc:date");
	
	var descriptions = ZU.xpath(dcMeta, "./dc:description", ns);
	
	//Put the first description into abstract, all other into notes.
	if (descriptions.length>0) {
		newItem.abstractNote = ZU.trimInternal(descriptions[0].textContent);
		for(var j=1; j<descriptions.length; j++) {
			var noteStr = ZU.trimInternal(descriptions[j].textContent);
			newItem.notes.push({note:noteStr});		
		}	
	}	
	var subjects = ZU.xpath(dcMeta, "./dc:subject", ns);
	for(var j=0; j<subjects.length; j++) {
		var subject = ZU.trimInternal(subjects[j].textContent);
		newItem.tags.push(subject);		
	}	
					
	var identifiers = ZU.xpath(dcMeta, "./dc:identifier", ns);
	for(var j=0; j<identifiers.length; j++) {
		var identifier = ZU.trimInternal(identifiers[j].textContent);
		if (identifier.substr(0, 4) == "doi:") {
			newItem.DOI = identifier.substr(4);
		}
		else if (identifier.substr(0, 7) == "http://") {
			newItem.url = identifier;
		}
	}

	var articleID = ZU.xpath(xml, "//n:GetRecord/n:record/n:header/n:identifier", ns)[0];
	if(articleID) articleID = ZU.trimInternal(articleID.textContent).substr(14); // Trim off oai:arXiv.org:
	
	var articleField = ZU.xpathText(xml, '//n:GetRecord/n:record/n:header/n:setSpec', ns);
	if (articleField) articleField = "[" + articleField.replace(/^.+?:/, "") + "]";
	
	if (articleID && articleID.indexOf("/") != -1) {
		newItem.publicationTitle = "arXiv:" + articleID;
	} else {
		newItem.publicationTitle = "arXiv:" + articleID + " " + articleField;
	}
	
	newItem.extra = 'arXiv: ' + articleID;
	
	newItem.attachments.push({
		title: 'arXiv:'+articleID + " PDF",
		url: "http://www.arxiv.org/pdf/" + articleID + ".pdf",
		mimeType: "application/pdf"
	});
	newItem.attachments.push({
		title: "arXiv.org Snapshot",
		url: newItem.url,
		mimeType:"text/html"
	});
	
	//retrieve and supplement publication data for published articles via DOI
	if (newItem.DOI) {
		var translate = Zotero.loadTranslator("search");
		// CrossRef
		translate.setTranslator("11645bd1-0420-45c1-badb-53fb41eeb753");
		
		var item = {"itemType":"journalArticle", "DOI": newItem.DOI};
		translate.setSearch(item);
		translate.setHandler("itemDone", function(obj, item) {
			//Z.debug(item)
			newItem.volume = item.volume;
			newItem.issue = item.issue;
			newItem.pages = item.pages;
			newItem.date = item.date;
			newItem.ISSN = item.ISSN;
			if (item.publicationTitle) {
				newItem.publicationTitle = item.publicationTitle;
			}
			newItem.date = item.date;
		});
		translate.setHandler("done", function() {
			newItem.complete();
		});
		translate.setHandler("error", function() {});
		translate.translate();
	} else {
		newItem.complete();
	}
}


function getXPathNodeTrimmed(dcMeta, name) {
	var node = ZU.xpath(dcMeta, './'+name, ns);
	if(node.length) {
		return ZU.trimInternal(node[0].textContent);
	}
	return '';
}

function getCreatorNodes(dcMeta, name, newItem, creatorType) {
	var nodes = ZU.xpath(dcMeta, './'+name, ns);
	for(var i=0; i<nodes.length; i++) {
		newItem.creators.push(
			ZU.cleanAuthor(nodes[i].textContent, creatorType, true)
		);
	}
}/** BEGIN TEST CASES **/
var testCases = [
	{
		"type": "web",
		"url": "http://arxiv.org/list/astro-ph/new",
		"items": "multiple"
	},
	{
		"type": "web",
		"url": "http://arxiv.org/abs/1107.4612",
		"items": [
			{
				"itemType": "journalArticle",
				"creators": [
					{
						"firstName": "D. T.",
						"lastName": "O'Dea",
						"creatorType": "author"
					},
					{
						"firstName": "C. N.",
						"lastName": "Clark",
						"creatorType": "author"
					},
					{
						"firstName": "C. R.",
						"lastName": "Contaldi",
						"creatorType": "author"
					},
					{
						"firstName": "C. J.",
						"lastName": "MacTavish",
						"creatorType": "author"
					}
				],
				"notes": [
					{
						"note": "Comment: 7 pages, 4 figures"
					}
				],
				"tags": [
					"Astrophysics - Astrophysics of Galaxies",
					"Astrophysics - Cosmology and Nongalactic Astrophysics"
				],
				"seeAlso": [],
				"attachments": [
					{
						"title": "arXiv:1107.4612 PDF",
						"mimeType": "application/pdf"
					},
					{
						"title": "arXiv.org Snapshot",
						"mimeType": "text/html"
					}
				],
				"abstractNote": "The upcoming generation of cosmic microwave background (CMB) experiments face a major challenge in detecting the weak cosmic B-mode signature predicted as a product of primordial gravitational waves. To achieve the required sensitivity these experiments must have impressive control of systematic effects and detailed understanding of the foreground emission that will influence the signal. In this paper, we present templates of the intensity and polarisation of emission from one of the main Galactic foregrounds, interstellar dust. These are produced using a model which includes a 3D description of the Galactic magnetic field, examining both large and small scales. We also include in the model the details of the dust density, grain alignment and the intrinsic polarisation of the emission from an individual grain. We present here Stokes parameter template maps at 150GHz and provide an on-line repository (http://www.imperial.ac.uk/people/c.contaldi/fgpol) for these and additional maps at frequencies that will be targeted by upcoming experiments such as EBEX, Spider and SPTpol.",
				"url": "http://arxiv.org/abs/1107.4612",
				"DOI": "10.1111/j.1365-2966.2011.19851.x",
				"extra": "arXiv: 1107.4612",
				"issue": "2",
				"ISSN": "00358711",
				"libraryCatalog": "arXiv.org",
				"title": "A Model For Polarised Microwave Foreground Emission From Interstellar Dust",
				"date": "2012-01-11",
				"publicationTitle": "Monthly Notices of the Royal Astronomical Society",
				"volume": "419",
				"pages": "1795-1803"
			}
		]
	},
	{
		"type": "web",
		"url": "http://arxiv.org/abs/astro-ph/0603274",
		"items": [
			{
				"itemType": "journalArticle",
				"creators": [
					{
						"firstName": "A. C.",
						"lastName": "Carciofi",
						"creatorType": "author"
					},
					{
						"firstName": "A. S.",
						"lastName": "Miroshnichenko",
						"creatorType": "author"
					},
					{
						"firstName": "A. V.",
						"lastName": "Kusakin",
						"creatorType": "author"
					},
					{
						"firstName": "J. E.",
						"lastName": "Bjorkman",
						"creatorType": "author"
					},
					{
						"firstName": "K. S.",
						"lastName": "Bjorkman",
						"creatorType": "author"
					},
					{
						"firstName": "F.",
						"lastName": "Marang",
						"creatorType": "author"
					},
					{
						"firstName": "K. S.",
						"lastName": "Kuratov",
						"creatorType": "author"
					},
					{
						"firstName": "P. Garcí",
						"lastName": "a-Lario",
						"creatorType": "author"
					},
					{
						"firstName": "J. V. Perea",
						"lastName": "Calderón",
						"creatorType": "author"
					},
					{
						"firstName": "J.",
						"lastName": "Fabregat",
						"creatorType": "author"
					},
					{
						"firstName": "A. M.",
						"lastName": "Magalhães",
						"creatorType": "author"
					}
				],
				"notes": [
					{
						"note": "Comment: 27 pages, 9 figures, submitted to ApJ"
					}
				],
				"tags": [
					"Astrophysics"
				],
				"seeAlso": [],
				"attachments": [
					{
						"title": "arXiv:astro-ph/0603274 PDF",
						"mimeType": "application/pdf"
					},
					{
						"title": "arXiv.org Snapshot",
						"mimeType": "text/html"
					}
				],
				"abstractNote": "We present optical $WBVR$ and infrared $JHKL$ photometric observations of the Be binary system $\\delta$ Sco, obtained in 2000--2005, mid-infrared (10 and $18 \\mu$m) photometry and optical ($\\lambda\\lambda$ 3200--10500 \\AA) spectropolarimetry obtained in 2001. Our optical photometry confirms the results of much more frequent visual monitoring of $\\delta$ Sco. In 2005, we detected a significant decrease in the object's brightness, both in optical and near-infrared brightness, which is associated with a continuous rise in the hydrogen line strenghts. We discuss possible causes for this phenomenon, which is difficult to explain in view of current models of Be star disks. The 2001 spectral energy distribution and polarization are succesfully modeled with a three-dimensional non-LTE Monte Carlo code which produces a self-consistent determination of the hydrogen level populations, electron temperature, and gas density for hot star disks. Our disk model is hydrostatically supported in the vertical direction and radially controlled by viscosity. Such a disk model has, essentially, only two free parameters, viz., the equatorial mass loss rate and the disk outer radius. We find that the primary companion is surrounded by a small (7 $R_\\star$), geometrically-thin disk, which is highly non-isothermal and fully ionized. Our model requires an average equatorial mass loss rate of $1.5\\times 10^{-9} M_{\\sun}$ yr$^{-1}$.",
				"url": "http://arxiv.org/abs/astro-ph/0603274",
				"DOI": "10.1086/507935",
				"extra": "arXiv: astro-ph/0603274",
				"issue": "2",
				"ISSN": "0004-637X, 1538-4357",
				"libraryCatalog": "arXiv.org",
				"title": "Properties of the $\\delta$ Scorpii Circumstellar Disk from Continuum Modeling",
				"date": "12/2006",
				"publicationTitle": "The Astrophysical Journal",
				"volume": "652",
				"pages": "1617-1625"
			}
		]
	},
	{
		"type": "web",
		"url": "http://arxiv.org/abs/1307.1469",
		"items": [
			{
				"itemType": "journalArticle",
				"creators": [
					{
						"firstName": "Peter W.",
						"lastName": "Sullivan",
						"creatorType": "author"
					},
					{
						"firstName": "Bryce",
						"lastName": "Croll",
						"creatorType": "author"
					},
					{
						"firstName": "Robert A.",
						"lastName": "Simcoe",
						"creatorType": "author"
					}
				],
				"notes": [
					{
						"note": "Comment: Accepted to PASP"
					}
				],
				"tags": [
					"Astrophysics - Earth and Planetary Astrophysics",
					"Astrophysics - Instrumentation and Methods for Astrophysics"
				],
				"seeAlso": [],
				"attachments": [
					{
						"title": "arXiv:1307.1469 PDF",
						"mimeType": "application/pdf"
					},
					{
						"title": "arXiv.org Snapshot",
						"mimeType": "text/html"
					}
				],
				"abstractNote": "We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<1 m) telescopes capable of precise (<1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640x512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that 2-star differential photometry is possible to a precision of 631 +/-205 ppm (0.68 mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and de-correlating reference signals further improves the precision to 483 +/-161 ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.",
				"url": "http://arxiv.org/abs/1307.1469",
				"extra": "arXiv: 1307.1469",
				"libraryCatalog": "arXiv.org",
				"title": "Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry",
				"date": "2013-07-04",
				"publicationTitle": "arXiv:1307.1469 [astro-ph]"
			}
		]
	},
	{
		"type": "web",
		"url": "http://xxx.lanl.gov/abs/1307.1469",
		"items": [
			{
				"itemType": "journalArticle",
				"creators": [
					{
						"firstName": "Peter W.",
						"lastName": "Sullivan",
						"creatorType": "author"
					},
					{
						"firstName": "Bryce",
						"lastName": "Croll",
						"creatorType": "author"
					},
					{
						"firstName": "Robert A.",
						"lastName": "Simcoe",
						"creatorType": "author"
					}
				],
				"notes": [
					{
						"note": "Comment: Accepted to PASP"
					}
				],
				"tags": [
					"Astrophysics - Earth and Planetary Astrophysics",
					"Astrophysics - Instrumentation and Methods for Astrophysics"
				],
				"seeAlso": [],
				"attachments": [
					{
						"title": "arXiv:1307.1469 PDF",
						"mimeType": "application/pdf"
					},
					{
						"title": "arXiv.org Snapshot",
						"mimeType": "text/html"
					}
				],
				"abstractNote": "We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<1 m) telescopes capable of precise (<1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640x512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that 2-star differential photometry is possible to a precision of 631 +/-205 ppm (0.68 mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and de-correlating reference signals further improves the precision to 483 +/-161 ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.",
				"url": "http://arxiv.org/abs/1307.1469",
				"extra": "arXiv: 1307.1469",
				"libraryCatalog": "arXiv.org",
				"title": "Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry",
				"date": "2013-07-04",
				"publicationTitle": "arXiv:1307.1469 [astro-ph]"
			}
		]
	},
	{
		"type": "web",
		"url": "http://eprintweb.org/s/article/arxiv/1307.1469",
		"items": [
			{
				"itemType": "journalArticle",
				"creators": [
					{
						"firstName": "Peter W.",
						"lastName": "Sullivan",
						"creatorType": "author"
					},
					{
						"firstName": "Bryce",
						"lastName": "Croll",
						"creatorType": "author"
					},
					{
						"firstName": "Robert A.",
						"lastName": "Simcoe",
						"creatorType": "author"
					}
				],
				"notes": [
					{
						"note": "Comment: Accepted to PASP"
					}
				],
				"tags": [
					"Astrophysics - Earth and Planetary Astrophysics",
					"Astrophysics - Instrumentation and Methods for Astrophysics"
				],
				"seeAlso": [],
				"attachments": [
					{
						"title": "arXiv:1307.1469 PDF",
						"mimeType": "application/pdf"
					},
					{
						"title": "arXiv.org Snapshot",
						"mimeType": "text/html"
					}
				],
				"abstractNote": "We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<1 m) telescopes capable of precise (<1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640x512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that 2-star differential photometry is possible to a precision of 631 +/-205 ppm (0.68 mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and de-correlating reference signals further improves the precision to 483 +/-161 ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.",
				"url": "http://arxiv.org/abs/1307.1469",
				"extra": "arXiv: 1307.1469",
				"libraryCatalog": "arXiv.org",
				"title": "Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry",
				"date": "2013-07-04",
				"publicationTitle": "arXiv:1307.1469 [astro-ph]"
			}
		]
	},
	{
		"type": "web",
		"url": "http://eprintweb.org/S/archive/astro-ph/recent",
		"items": "multiple"
	}
]
/** END TEST CASES **/