
206� IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, August 2012

 EM Programmer’s Notebook Founded by John Volakis

David B. Davidson
Dept. E&E Engineering 
University of Stellenbosch 
Stellenbosch 7600, South Africa 
Tel: +27 21 808 4458;
Fax: +27 21 808 4981 
E-mail: davidson@sun.ac.za

Foreword by the Editor

 In the December 2000 and August 2003 columns, the development of FEM codes for electromagnetics was dis cussed. Around 
a decade on, some new tools have been devel oped in computational science and engineering for the appli cation of the FEM. This 
month’s paper addresses the use of one of these, namely the FEniCS package, for the FEM solu tion of electromagnetic problems. 

 As the editor is one of the authors, this submission was handled editorially by Leo Kempel, a former Associate Editor of the 
Magazine. This contribution is gratefully acknowledged by the editor. Furthermore, the authors would like to thank him for his 
insightful review.

Using the FEniCS Package for FEM Solutions 
in Electromagnetics

A. J. Otto1, N. Marais2, E. Lezar3, and D. B. Davidson4

Computational ElectroMAGnetics Group – CEMAGG
Department of Electrical and Electronic Engineering

University of Stellenbosch
Western Cape, South Africa 7600

E-mail: 1mail@braamotto.com; 2nmarais@gmail.com; 3mail@evanlezar.com; 4davidson@sun.ac.za

Abstract

FEniCS is a set of software tools that allows for rapid implementation of expressions associated with fi nite-element 
analysis. The main interface for FEniCS is DOLFIN, which provides both C++ and Python front ends to the software 
tools. The use of the Python front end, PyDOLFIN, to model various electromagnetic (EM) problems is investigated. 
Some elementary problems implemented in FEniCS include the scalar potential solution to closed- and open-boundary 
electrostatic problems, as well as the cutoff and dispersion analysis of a hollow rectangular waveguide. More advanced 
topics considered include the implementation of radiation from an infi nitesimal dipole, and near-fi eld-to-far-fi eld 
transformations.

Keywords: Computational electromagnetics; DOLFIN; Finite Element Method; FEniCS; Python

1. Introduction

The FEniCS Project [1] is a collection of free software with 
an extensive list of features for automated, effi cient solu-

tion of differential equations. In this paper, the use of FEniCS 
in the implementation of the Finite-Element Method (FEM) in 
electromagnetic (EM) applications is investigated. First, sev-
eral elementary problems are addressed. These include the 
scalar potential solution to closed- and open-boundary electro-
static problems, as well as the cutoff and dispersion analysis of 
a hollow rectangular waveguide. Second, a selection of some 
more advanced topics is considered, including the implemen-
tation of an infi nitesimal-dipole radiation problem, and near-
fi eld-to-far-fi eld transformations. Previous papers in this col-
umn have addressed FEM code development using the devel-
opment tools then available. In [2], many practical aspects 
of FEM programming for vector elements, using primarily 
FORTRAN, were addressed. In [3], a comprehensive overview 
of meshing and linear-algebra packages then available, and 
especially sparse-matrix routines, was presented.

2. The FEniCS Project

 FEniCS is a set of software tools that allows for the rapid 
implementation of the expressions associated with the fi nite-
element analysis of problems from a wide array of disciplines. 
The main interface of the software system is DOLFIN, which 
provides both a C++ and a Python front end. The use of the 
Python front end (PyDOLFIN) in modeling electromagnetic 
problems is considered here. One of the strengths of DOLFIN 
is that it provides built-in support for a number of fi nite-ele ment 
families, including the curl-conforming Nédélec (of the fi rst and 
second kind [4, 5]) and Lagrange fi nite-element spaces, used 
in vector and scalar formulations, respectively [6, 7]. FEniCS 
has some built-in support for generating FEM meshes, but also 
supports importing meshes from other pack ages, such as Gmsh 
[8].

3. Solving Electrostatic Problems

 To introduce the use of FEniCS in the implementation of 
the FEM in EM applications, the solution of the two-dimen-
sional (2D) electrostatic scalar potential function is discussed. 
In particular, we consider the Poisson equation, given in [9] as

 ( )ε ϕ ρ−∇ ∇ =  ,    (1)

where ε , ϕ , and ρ  are the electric permittivity, electric sca lar 
potential, and electric charge density, respectively. It is well 
known that the principle of solving boundary-value problems 
(BVP) using the FEM is to subdivide a continuous domain into 
a number of subdomains. In these subdomains, an unknown 
scalar potential function, ϕ , is represented by inter polation 
functions with unknown coeffi cients. In addition to the 

differential equation in Equation (1), the unknown poten tial, ϕ
, is required to satisfy a number of boundary conditions [9]:

 D  on  Dϕ ϕ= Γ ,    (2)

   on  Ng
n
ϕ∂

− = Γ
∂

,    (3)

   on  Rp pq
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+ = Γ

∂
.   (4)

Here, D N RΓ = Γ + Γ + Γ  is the boundary enclosing the domain 

area, Ω , and 
n
∂
∂

 represents the partial derivative with respect 

to the boundary normal. The constants Dϕ , g , p , and q  are 
known parameters or functions describing the physi cal 
properties of the boundary, and are problem depend ent. The 
boundary condition on DΓ  as in Equation (2) is referred to as a 
Dirichlet or essential boundary condition. For such a boundary 
condition, the value for the scalar potential is given a prescribed 
value (in this case, Dϕ ), whereas for Neumann boundary 
conditions as in Equation (3), the deriva tive of the scalar 
potential is prescribed. Neumann boundary conditions with 

0g =  are referred to as natural boundary con ditions, and are 
enforced as part of the variational process. The boundary 
condition on RΓ  in Equation (4) is a Robin bound ary condition 
or boundary condition of the third type, and represents a 
generalization of the Neumann condition.

 The Poisson equation in Equation (1), along with the 
boundary conditions discussed, make up the boundary-value 
problem (BVP) that is to be solved. It can be shown that the 
solution of this boundary-value problem using the Finite-Ele-
ment Method and a Galerkin procedure results in the follow ing 
form, which was also used in [10]:

 1
2

N

i j jL L d gL dε ε
Ω Γ

∇ ∇ Ω+ Γ∫ ∫

  1
2

R R

i j j jpL L d pqL d L dε ε ρ
Γ Γ Ω

+ Γ − Γ = Ω∫ ∫ ∫ .   (5)

The functions iL  and jL  are scalar Lagrange basis functions 
that are used as the trial and testing functions in the Galerkin 
procedure, with the unknown scalar potential, ϕ , being writ ten 
as a weighted sum of these basis functions. Note that to arrive 
at Equation (5), the assumption has been made that the electric 
permittivity, ε , is isotropic and constant in an ele ment. The 
application of Equation (5) to all combinations of testing and 
trial functions yields the following matrix equa tion:

 [ ]{ } { }A c b= ,    (6)

with the elements of the matrix [ ]A  and the column vector { }b  
being given by [10]
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j j jijb L d gL d pqL dρ ε ε
Ω Γ Γ

= Ω− Γ + Ω∫ ∫ ∫ . (8)

The elements of the vector { }c  are the unknown coeffi cients of 
the basis functions used in the discretization of the scalar 
potential, ϕ  [6]. Note that the Robin boundary condition of 
Equation (4) contributes to both [ ]A  and { }b . 

 The discussion presented here serves only to summarize 
the key points related to the formulation of scalar electrostatic 
problems using the FEM. For more information and an in-depth 
treatment of the subject, the reader is referred to texts such as 
[6, 7, 9, 11].

3.1 Example Problems

 The electrostatic boundary-value problems considered in 
this discussion are shown in Figure 1. 
 
 The fi rst problem is the uniform potential distribution of 
two parallel plates spaced a distance D  apart, as shown in 
Figure 1a. The top plate was at a known fi xed potential, V , and 
as such, a Dirichlet boundary condition of Vϕ =  was applied. 
On the bottom (grounded) plate, the boundary condi tion was 

0ϕ = . It is important to note that this two-dimen sional (2D) 
representation assumed infi nitely large plates, and, due to the 
symmetry in the parallel-plate confi guration, the open 
boundaries on the sides could be considered as homoge neous 
Neumann boundary conditions ( 0g =  in Equation (3)).

 The second confi guration considered, shown in Fig ure 1b, 
was that of a coaxial cylinder with the center conduc tor at a 
potential V , and the outer conductor at ground poten tial. This 
confi guration only had Dirichlet boundary condi tions, as in 
Equation (2). Both the coaxial cylinder and paral lel-plate 
confi gurations are both considered bounded-domain (or closed-
boundary) problems. The solution of these types of problems 
using FEniCS is discussed in Section 3.2.

 The third confi guration was a conductor at a height, H , 
above a ground plane, as shown in Figure 1c. In this example, 
the conductor was at a known fi xed potential ( Vϕ = ), while 
the ground plane was at zero potential ( 0ϕ = ). This is consid-
ered to be an unbounded-domain (or open-boundary) problem, 
as the physical solution exists in an infi nite space around the 
wire conductor. As such, the solution method has to take this 
radiating property into consideration. There are two ways to 
approach this. The fi rst is to simply make the solution domain 
very large, and apply zero-valued Dirichlet boundary condi-
tions on all the outer boundaries [11]. If the boundaries are 
chosen far enough away from the region of interest – around the 
wire at height H  – this method can yield reasonable results, Figure 1c. The wire­plane electrostatic confi guration.

Figure 1a. The parallel plate electrostatic confi guration.

Figure 1b. The coaxial cylinder electrostatic confi guration.

but can quickly become computationally expensive. The second 
approach is to defi ne a Robin boundary condition as in 
Equation (4), with p  and q  containing information about the 
physical properties of the boundary, and allowing for the 
description of the radiation through this boundary. The defi nition 
of a mixed-boundary-condition problem in FEniCS is discussed 
in Section 3.3.

3.2 Defi ning the Closed Boundary 
Electrostatic Problem in FEniCS

 The description of the electrostatic problem in FEniCS 
started with the domain discretization. Although FEniCS has a 
built-in mesh generator as discussed in Section 4, an open-

source fi nite-element grid generator, called Gmsh [8], was used 
for the electrostatic examples. Furthermore, in Gmsh, markers 
can be assigned to nodes and edges, and allowance is made for 
the easy description of boundary contours such as DΓ , NΓ , 
and RΓ . The function dolphin-convert con verts the 
Gmsh fi le format to an Extensible Markup Language (XML) 
that DOLFIN can interpret. This mesh and corre sponding 
markers can be converted for use in DOLFIN as shown in 
Figure 2. In this example, the mesh for the parallel-plate 
problem has been shown, but the extension to the other problems 
is straightforward. 

 The next step in the FEniCS computational process is to 
initialize the function space used in the fi nite-element discreti-
zation. As discussed, the Lagrange basis functions are included 
as part of FEniCS to an arbitrary order. The function space, 
as well as test and trial functions, were defi ned as shown in 
Figure 3. 

 The Dirichlet boundary conditions now have to be enforced 
on the nodal function space. The boundary condi tions on the 
sources and ground were set to 1 V and 0 V, respectively, in the 
code shown in Figure 4. Here, the DOLFIN DirichletBC 
class, in conjunction with the Constant class, valued 0 and 1, 
were used. The boundary-condition classes were also initialized 
with the markers defi ned in Gmsh, with the ground boundary 
condition applied to nodes marked with value 2, and the source 
boundary condi tion to nodes marked with value 1.

 For the parallel-plate and coaxial-cylinder problems, 
0g = , 0p = , and 0q =  for the Neumann and Robin bound ary 

conditions of Equations (3) and (4). Furthermore, if the charge 
density in Equation (1) is also zero – yielding the Laplace 
equation – then 0ρ =  in Equation (5), and the inte grals over 

NΓ  and RΓ  in Equation (5) also evaluate to zero. The matrix 
and vector elements of Equations (7) and (8), respectively, can 
then be computed in FEniCS as shown in Figure 5. Here, dx 
represents integration over the domain Ω , and the relationships 
between A_ij and Equation (7) and b_ij and Equation (8) 
should be immediately evident. 

 With the boundary conditions and the matrix elements 
defi ned, it was possible to assemble the matrices using the 
DOLFIN assemble function, apply the boundary conditions, 
and obtain the solution for the problem as shown in Figure 6.

 It is interesting to compare the above code to the MATLAB 
script in [11, Figure 10.2], which solved a similar electrostatic 
problem. The much higher level of coding afforded by FEniCS is 
apparent. Note that the apply method of a boundary condition 
ensures that the relevant degrees of freedom in the matrix or 
vector of the associated linear system are assigned the correct 
values. In this example, the solve function solved the linear 
system of Equation (6), with the result stored in the coeffi cients 
of the DOLFIN Function phi. Although this solution could 
be plotted using the built-in FEniCS plot function by calling 

plot(phi), for these electrostatic examples, the solution was 
written to a disk to allow for visualization using an open-source 
package called Paraview [12], as shown in Figure 7. Figure 8 
shows the results obtained in this way for the closed boundary 
problems of the coaxial cylinder and infi nitely large parallel 
plate.

3.3 Defi ning the Mixed Dirichlet and Robin 
Open-Boundary Problem in FEniCS

 The mixed Dirichlet and Robin open-boundary electro-
static problem again starts with the domain discretization. The 
importing of the converted mesh fi le, the identifi cation of the 
markers, and the defi nition of the function space are all similar 
to those actions described in Section 3.2. First-order Lagrange 
basis functions were again used to defi ne the trial and test 
functions. The Dirichlet boundary conditions were enforced 
on the nodal function space by setting the source conductor 
to a constant potential of 1 V, while the boundary conditions 
on the ground plane were set to a constant potential of 0 V. 
The source markers in Gmsh were defi ned as “1,” the ground 
plane (boundary) markers were defi ned as “2,” while the open-
boundary markers were defi ned as “3.”

 As seen in Section 3.2, the electrostatic Laplace form of 
the Poisson equation has 0ρ =  as a constant. The open-bound-
ary condition electrostatic problem now had a mixed Dirichlet 
and Robin boundary condition. The weak form of this problem 
in standard notation ( ) ( ),i j ia L L L L=  therefore yields

 ( ),
R

i j i j i ja L L L L d pL L dε ε
Ω Γ

= ∇ ∇ Ω+ Γ∫ ∫ ,  (9)

 ( )
R

i j jL L L d pqL dρ ε
Ω Γ

= Ω+ Ω∫ ∫ .   (10)

It was discussed in [9] that if the problem has an open or 
unbounded domain, the domain can be truncated by defi ning a 
fi ctitious surface that encloses the primary domain of interest. 
If the fi ctitious surface is far enough away from the excitation, 
an approximate homogeneous boundary condition of the third 
type can be defi ned as given in Equation (11):

 1
lnr r r

ϕ ϕ∂
≈

∂
,     (11)

where 2 2r x y= + . The Robin boundary conditions were 
only on the open boundaries that were defi ned by markers “3” 
in Gmsh.
 
 The essential boundary conditions were enforced and the 
system could be solved in the usual way, as shown in Fig ure 10. 
Figure 11 shows the results obtained for the mixed open-
boundary problems of the wire above a ground plane.
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apparent. Note that the apply method of a boundary condition 
ensures that the relevant degrees of freedom in the matrix or 
vector of the associated linear system are assigned the correct 
values. In this example, the solve function solved the linear 
system of Equation (6), with the result stored in the coeffi cients 
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shows the results obtained in this way for the closed boundary 
problems of the coaxial cylinder and infi nitely large parallel 
plate.
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 The mixed Dirichlet and Robin open-boundary electro-
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 As seen in Section 3.2, the electrostatic Laplace form of 
the Poisson equation has 0ρ =  as a constant. The open-bound-
ary condition electrostatic problem now had a mixed Dirichlet 
and Robin boundary condition. The weak form of this problem 
in standard notation ( ) ( ),i j ia L L L L=  therefore yields

 ( ),
R

i j i j i ja L L L L d pL L dε ε
Ω Γ

= ∇ ∇ Ω+ Γ∫ ∫ ,  (9)

 ( )
R

i j jL L L d pqL dρ ε
Ω Γ

= Ω+ Ω∫ ∫ .   (10)

It was discussed in [9] that if the problem has an open or 
unbounded domain, the domain can be truncated by defi ning a 
fi ctitious surface that encloses the primary domain of interest. 
If the fi ctitious surface is far enough away from the excitation, 
an approximate homogeneous boundary condition of the third 
type can be defi ned as given in Equation (11):

 1
lnr r r

ϕ ϕ∂
≈

∂
,     (11)

where 2 2r x y= + . The Robin boundary conditions were 
only on the open boundaries that were defi ned by markers “3” 
in Gmsh.
 
 The essential boundary conditions were enforced and the 
system could be solved in the usual way, as shown in Fig ure 10. 
Figure 11 shows the results obtained for the mixed open-
boundary problems of the wire above a ground plane.
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Figure 2. The mesh and marker defi nitions after convert ing Gmsh to 
XML format for use in DOLFIN.

Figure 3. The defi nition of the function space, and the test and trial functions.

Figure 4. The defi nition of the source and ground refer ence 
Dirichlet boundary conditions.

Figure 5. The defi nition of the matrix and vector elements given by 
Equations (7) and (8).

Figure 6. The matrices are assembled, boundary condi tions 
are applied, and a solution to the linear system is obtained.

Figure 7. The solution is written to a fi le to open and plot 
in Paraview.

Figure 8a. The electrostatic potential distribution for the 
infi nitely large parallel­plate confi guration.

Figure 8b. The electrostatic potential distribution for the 
coaxial­cylinder confi guration.

3.4 Analytical Compared to 
Numerical Results

 The analytical expression for the potential distribution 
between parallel plates is given in Equation (12):

 Parallel Plates
0

QDV
Aε

= ,    (12)

where Q  is the total charge on the top source plate in cou-
lombs, D  is the distance between the plates in meters, 

12
0 8.854 10ε −= × F/m is the permittivity of free space, and A  

is the area of the plates in 2m . The analytical potential distribu-
tion for the parallel plates, compared to the FEniCS computed 
distribution for a constant x̂  position and varying height ( ŷ  
position), is shown in Figure 12a.

 The analytical expression for the potential distribution 
between coaxial conductors is given as 
 

 Coaxial Cylinder
0

ln
2

Q RV
rπε

 =  
 

,   (13)

where R  is the radius of the outer conductor in meters, and r  
is the radius of the inner conductor in meters. The analytical 
potential distribution for the coaxial conductors, compared to 
the FEniCS computed distribution for a varying radial ( x̂ ) 
position away from the center conductor’s surface, is shown in 
Figure 12b. 

 The analytical expression for the potential distribution in 
the area surrounding a wire above an infi nitely large ground 
plane is given by 

 Wire-Plane
2HV
r

= ,    (14)

where H  is the height of the conductor above the ground plane 
in meters, and r  is the radius of the conductor in meters. The 
result of the analytical potential distribution for the wire-plane 

Figure 9. Defi ning the left­ and right­hand sides of the weak­form equation, and assembling the matrices.
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Figure 10. Enforcing the boundary conditions and solving the 
system of matrices.

Figure 11. The electrostatic potential distribution for the 
wire­plane confi guration.

confi guration compared to the FEniCS computed distri bution 
for a constant height ( ŷ  position), H, and varying x̂  position 
away from the conductor’s surface is shown in Fig ure 12c. In 
all three examples, good agreement was found between the 
computed and analytical results. In Figure 12c, the analytical 
solution assumed an infi nitely large ground plane of infi nite 
extension in the transverse direction, whereas the FEM solution 
used a large, but fi nite, ground plane.

4. Waveguides

 As an introduction to the use of FEniCS in the cutoff 
and dispersion analysis of waveguides, consider the canonical 
problem of a hollow rectangular waveguide, as shown in Fig-
ure 13. In the full-wave analysis of such guides, it is required to 
solve the vector Helmholtz equation [9], along with the relevant 
boundary conditions. The time-independent versions of these 
are given by

 2
0

1 0  in  r
r

E k Eε
µ

∇× ∇× − = Ω
 

,  (15)

 ˆ 0  on  en E× = Γ


,    (16)

 ˆ 0  on  mn E×∇× = Γ


,   (17)

where Ω  is the domain represented by the interior of the 
waveguide, and eΓ  and mΓ  are electric and magnetic walls, 
respectively. The parameters rµ  and rε  are the relative perme-
ability and permittivity, respectively, of the medium inside the 
guide, and may be position dependent. The free-space 
wavenumber, 0k , is related to the operating frequency, 0f , by 
[13]

 0
0

0

2 f
k

c
π

= ,     (18)

with 0c  being the speed of light in free space.
 It can be shown that in the case of cutoff analysis, the 
fi nite-element solution results in the following matrix equation 
[9, 11]:

 20 0
0 0
tt t tt t

c
zz z zz z

S e T e
k

S e T e
       

=      
       

,   (19)

or simply

 [ ]{ } [ ]{ }2
cS e k T e= .    (20)

The matrices [ ]S  and [ ]T  are described by their submatrices, 
the elements of which are given as follows:

 ( ) ( ) ( )1
tt t i t jij

r
S N N d

µ
Ω

= ∇ × ∇ × Ω∫
 

 ,  (21)

 ( )tt r i jijT N N dε
Ω

= Ω∫
 

 ,   (22)

 ( ) ( ) ( )1
zz t i t jij

r
S L L d

µ
Ω

= ∇ ∇ Ω∫  ,  (23)

 ( )zz r i jijT L L dε
Ω

= Ω∫ .   (24)

Matrix equations such as these are in the form of a generalized 
eigenvalue problem [11]. The eigenvalues and eigenvectors 
of the system are related to the cutoff modes – the cutoff 
wavenumber and basis-function coeffi cients, respectively – and 

Figure 12a. The analytically computed compared to the 
FEniCS computed electrostatic potential distributions for 
the parallel­plate confi guration.

Figure 12b. The analytically computed compared to the 
FEniCS computed electrostatic potential distributions for 
the coaxial­cylinder confi guration.

Figure 12c. The analytically computed compared to the 
FEniCS computed electrostatic potential distributions for 
the wire­plane confi guration.

Figure 13. The cross section of a hollow rectangular 
waveguide, with width, a , and height, b . Also shown is the 
computational domain, Ω , as well as the perfectly elec-
trically conducting boundary, eΓ . The relative permit tivity 
and permeability ( rε  and rµ , respectively) inside the guide 
were both unity.
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are the quantities of interest in this case. Since the purpose of 
this paper is not to revisit the fi nite-element formulations of 
any of the problems presented, Equations (21)-(24) were given 
without derivation (the reader is directed to texts including [9, 
11, 14] for in-depth discussions on the subject).

 Readers familiar with electromagnetic fi nite-element 
formulations should recognize Equations (21) to (24) as vari ous 
forms of the elemental representations of the fi nite-ele ment 
mass and stiffness matrices. It should be further noted that both 
the vector and scalar formulations are present, with iN



 and jN


 
representing Nédélec curl-conforming basis func tions [4, 5], 
and iL  and jL  representing scalar Lagrange basis functions 
used in [6], for example. 

 In Equations (19) to (22), d
Ω

Ω∫   represents integration 

over the cross section of the waveguide, and rε  and rµ  are the 
relative permittivity and permeability in the domain, 
respectively.

4.1 Cutoff Analysis

 With a recap of the relevant equations completed, it is 
possible to start with the description of the problem in FEniCS, 
and to work our way through to the solution of Equation (20). 
The fi rst step was to defi ne the discretization, as shown in 
Figure 14. Here, both the mesh and function spaces were 
defi ned. For the former, the DOLFIN class Rectangle was 
used, while the FunctionSpace class was instantiated with 
the relevant parameters for the Nédélec (of the fi rst kind) and 
Lagrange function spaces, respectively. Second-order vector 

basis functions and third-order nodal basis functions were 
chosen in this example, but FEniCS can handle higher orders. 
Note that each FunctionSpace also receives the mesh as a 
parameter. Since the mixed formulation discussed at the start 
of this section was employed, a com bined function space was 
set up, and the basis functions (the TestFunctions and 
TrialFuctions classes) were taken from this space.

 With the discretization defi ned, it was possible to go ahead 
and defi ne the forms (loosely interpreted as the expres sions for 
the matrix elements) associated with Equations (21) to (24), 
and to assemble the relevant matrices. As already mentioned, 
one of the most attractive aspects of FEniCS is the ease with 
which these expressions can be implemented. In the cutoff-
analysis case, the matrices of Equations (23) and (24) could be 
constructed for an unloaded guide ( 1R rε µ= = ) as shown in 
Figure 15. In this listing, there should be a clear relationship 
between the defi nitions of the forms for the matrix elements – 
such as s_tt_ij – in the code and the expres sions for the 
matrix elements already discussed. It should be noted that in 
DOLFIN, multiplication by dx in a form results in integration 
over the cells of the spatial domain when the assemble function 
is called. The resultant matrices S and T were DOLFIN Matrix 
objects. In the case of the hollow rec tangular waveguide, the 
variables – e_r and u_r – representing the material parameters 
were simply constants equal to unity. 

 Before the matrices S and T could be used as part of the 
solution process, the boundary conditions of Equation (16) still 
had to be applied. For this, the DirichletBC class was used, 
with the mechanism used to specify the boundary edges shown 
in Figure 16. Here, MeshFunction was a list of unsigned 
integers (uint) associated with each of the edges in mesh. 
After initializing boundary_markers to zero for each edge, 

Figure 14. The defi nitions of mesh dimensions, orders for vector and nodal basis functions, function spaces, and test 
and trial functions from the combined space.

Figure 15. The defi nition of the forms, or matrix elements, for the cutoff analysis of the unloaded 
waveguide.

Figure 16. Creating a mesh function to mark the edges and specify 
the boundary edges.

Figure 17. The Dirichlet boundary conditions applied to the S and T matrices.

Figure 18. Pre-processing to remove rows and columns associated with the boundary degrees of freedom.
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Figure 19. The SciPy eigensolver was used to obtain the desired 
cutoff wavenumbers.

Figure 20. The visualization of the 10TE  mode.

Figure 21. The visualization of the 11TM  mode.

the edges that fell on the mesh boundary – indi cated by the 
DomainBoundary class – were marked with the value “1.”
 
 The Dirichlet boundary condition associated with the 
PEC surrounding the computational domain could now be 
created and applied to the matrices S and T as shown in Fig-
ure 17. Since the boundary was intended to represent a PEC, 
all the basis functions that fell on the boundary – whether they 
were Nédélec functions associated with an edge, or Lagrange 
functions that corresponded to a node – had to be set to zero, 
and a DOLFIN Expression with zero value was used to 
do this. The fi nal two parameters in the initialization of the 
electric_wall boundary condition were the mesh func-
tions marking the edges of the mesh and the marked value for 
which the boundary condition had to be applied. 

 Note that the apply method of the DirichletBC 
class in DOLFIN does not remove the corresponding row and 
column of the matrix for zero-valued boundary conditions, but 
instead zeros the rows of the matrix and inserts a one on the 
matrix diagonal. When these matrices describe a generalized 
eigenproblem as was the case here, the effect is that an eigen-
value with value 1.0 is added to the system for each of the zeroed 
rows. In order to simplify further discussions, the matrices 
were preprocessed to remove the rows and columns associated 
with the boundary degrees of freedom, as shown in Figure 18. 
Although DOLFIN does supply an eigensolver, the discussion 
of its use is outside the scope of this paper. Instead, the original 
DOLFIN matrices S and T were converted to NumPy arrays 
– S_np and T_np, respectively – for further processing using 
the array method as shown.

 The eigenproblem described by the new matrices – with 
only the rows and columns associated with the free degrees of 
freedom selected – could now be solved, and the desired cut off 
wavenumbers obtained. In this case, the eigensolver included 
as part of SciPy was used to solve the problem as shown in 
Figure 19. Here, the fi nite-element problem has been solved, 
and the variables k_c_squared and ev fully described the 
quantities of interest in Equation (24). The for mer contained 
a list of the square of the cutoff wavenumber for all the modes 
computed, whereas the corresponding col umns in ev were the 
coeffi cients for the free degrees of free dom that allowed for the 
modal-fi eld distribution to be calcu lated.

 Although the cutoff wavenumbers could simply be printed 
out, the visualization of the modal distributions needed some 
additional processing. Take, as examples, the 10TE  and 11TM  
modes – modes 0 and 3, respectively – which corre sponded to 
the fi rst purely transverse and transverse-axial modes for the 
waveguide dimensions considered. The fi rst step in the post-
processing was mapping the entries of ev (associated with the 
free degrees of freedom) back to the global degrees of freedom, 
including those associated with the Dirichlet boundary condition 
(see Figure 20). After the global coeffi cients coeffi cients_
global were obtained, these coeffi cients were used to defi ne 
a discrete DOLFIN Function in the combined function 
space. Since this func tion could have components in both the 
transverse and longi tudinal spaces, these had to be split, and the 
desired part plot ted using the DOLFIN plot function.

 The process for the 11TM  mode was similar, with the only 
differences being that in that case, the index of the mode was 3, 
and the part of the combined function space in which the mode 
resided was different (see Figure 21).

 With the computation of both the cutoff wavenumbers and 
mode distributions completed, it was possible to compare these 
to analytical results. Firstly, consider Table 1, where the 
computed values of the square of the cutoff wavenumbers for 
the fi rst four modes are compared to the analytical values [15]. 
It was clear that these matched well for all four modes, with the 
relative error on the order of 610−  for the dominant mode.

 The modal distributions for the 10TE  and 11TM  modes 
are plotted in the guide cross section in Figures 22 and 23, 
respectively. These had the expected form, and could be com-
pared visually to any number of texts, including [11].

5. Advanced Topics

 By solving the near and far fi elds of an infi nitesimal elec-
trical dipole, this example demonstrates how to implement a 
custom source; implement a fi rst-order Mur absorbing bound-
ary condition (ABC); implement the near-to-far-fi eld trans form 
using FEniCS forms notation; reconstruct near-fi eld results; and 
use matplotlib through the PyLab module to plot results. 
Since the complete code listing was fairly long, we provided 
the full source in the new software package SUCEM:FEM [16, 
17], which was built on FEniCS and is available under an open-
source license. We only highlight important parts of the code 
in the text. These facilities are used to solve the near- and far-
fi elds of an infi nitesimal electro magnetic dipole.

5.1 Formulation

 The standard high-frequency electromagnetic FEM for-
mulation, based on the vector Helmholtz (i.e., curl-curl) equa-
tion, and solving for the electric fi eld was used. The reader is 
directed to [9, 11, 14] for detailed discussions of the subject. 
Since we were solving an open problem, a mesh-termination 
scheme was needed.

 The fi rst-order ABC [9, 11] can be seen as an impedance 
condition relating the tangential E



 and H


 fi elds on the prob-
lem boundary. By using Faraday’s law ( ( )1 1 1

0 0rH jk Z Eµ− − −= ∇×
 

), this can be expressed completely in terms of the E fi eld:

 ( ) ( )0ˆ ˆ ˆ 0n E jk n n E× ∇× + × × =
 

.  (25)

This relation can be substituted into the standard FEM formu-
lation, yielding (after also neglecting magnetic-current sources)
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Figure 19. The SciPy eigensolver was used to obtain the desired 
cutoff wavenumbers.

Figure 20. The visualization of the 10TE  mode.

Figure 21. The visualization of the 11TM  mode.

the edges that fell on the mesh boundary – indi cated by the 
DomainBoundary class – were marked with the value “1.”
 
 The Dirichlet boundary condition associated with the 
PEC surrounding the computational domain could now be 
created and applied to the matrices S and T as shown in Fig-
ure 17. Since the boundary was intended to represent a PEC, 
all the basis functions that fell on the boundary – whether they 
were Nédélec functions associated with an edge, or Lagrange 
functions that corresponded to a node – had to be set to zero, 
and a DOLFIN Expression with zero value was used to 
do this. The fi nal two parameters in the initialization of the 
electric_wall boundary condition were the mesh func-
tions marking the edges of the mesh and the marked value for 
which the boundary condition had to be applied. 

 Note that the apply method of the DirichletBC 
class in DOLFIN does not remove the corresponding row and 
column of the matrix for zero-valued boundary conditions, but 
instead zeros the rows of the matrix and inserts a one on the 
matrix diagonal. When these matrices describe a generalized 
eigenproblem as was the case here, the effect is that an eigen-
value with value 1.0 is added to the system for each of the zeroed 
rows. In order to simplify further discussions, the matrices 
were preprocessed to remove the rows and columns associated 
with the boundary degrees of freedom, as shown in Figure 18. 
Although DOLFIN does supply an eigensolver, the discussion 
of its use is outside the scope of this paper. Instead, the original 
DOLFIN matrices S and T were converted to NumPy arrays 
– S_np and T_np, respectively – for further processing using 
the array method as shown.

 The eigenproblem described by the new matrices – with 
only the rows and columns associated with the free degrees of 
freedom selected – could now be solved, and the desired cut off 
wavenumbers obtained. In this case, the eigensolver included 
as part of SciPy was used to solve the problem as shown in 
Figure 19. Here, the fi nite-element problem has been solved, 
and the variables k_c_squared and ev fully described the 
quantities of interest in Equation (24). The for mer contained 
a list of the square of the cutoff wavenumber for all the modes 
computed, whereas the corresponding col umns in ev were the 
coeffi cients for the free degrees of free dom that allowed for the 
modal-fi eld distribution to be calcu lated.

 Although the cutoff wavenumbers could simply be printed 
out, the visualization of the modal distributions needed some 
additional processing. Take, as examples, the 10TE  and 11TM  
modes – modes 0 and 3, respectively – which corre sponded to 
the fi rst purely transverse and transverse-axial modes for the 
waveguide dimensions considered. The fi rst step in the post-
processing was mapping the entries of ev (associated with the 
free degrees of freedom) back to the global degrees of freedom, 
including those associated with the Dirichlet boundary condition 
(see Figure 20). After the global coeffi cients coeffi cients_
global were obtained, these coeffi cients were used to defi ne 
a discrete DOLFIN Function in the combined function 
space. Since this func tion could have components in both the 
transverse and longi tudinal spaces, these had to be split, and the 
desired part plot ted using the DOLFIN plot function.

 The process for the 11TM  mode was similar, with the only 
differences being that in that case, the index of the mode was 3, 
and the part of the combined function space in which the mode 
resided was different (see Figure 21).

 With the computation of both the cutoff wavenumbers and 
mode distributions completed, it was possible to compare these 
to analytical results. Firstly, consider Table 1, where the 
computed values of the square of the cutoff wavenumbers for 
the fi rst four modes are compared to the analytical values [15]. 
It was clear that these matched well for all four modes, with the 
relative error on the order of 610−  for the dominant mode.

 The modal distributions for the 10TE  and 11TM  modes 
are plotted in the guide cross section in Figures 22 and 23, 
respectively. These had the expected form, and could be com-
pared visually to any number of texts, including [11].

5. Advanced Topics

 By solving the near and far fi elds of an infi nitesimal elec-
trical dipole, this example demonstrates how to implement a 
custom source; implement a fi rst-order Mur absorbing bound-
ary condition (ABC); implement the near-to-far-fi eld trans form 
using FEniCS forms notation; reconstruct near-fi eld results; and 
use matplotlib through the PyLab module to plot results. 
Since the complete code listing was fairly long, we provided 
the full source in the new software package SUCEM:FEM [16, 
17], which was built on FEniCS and is available under an open-
source license. We only highlight important parts of the code 
in the text. These facilities are used to solve the near- and far-
fi elds of an infi nitesimal electro magnetic dipole.

5.1 Formulation

 The standard high-frequency electromagnetic FEM for-
mulation, based on the vector Helmholtz (i.e., curl-curl) equa-
tion, and solving for the electric fi eld was used. The reader is 
directed to [9, 11, 14] for detailed discussions of the subject. 
Since we were solving an open problem, a mesh-termination 
scheme was needed.

 The fi rst-order ABC [9, 11] can be seen as an impedance 
condition relating the tangential E



 and H


 fi elds on the prob-
lem boundary. By using Faraday’s law ( ( )1 1 1

0 0rH jk Z Eµ− − −= ∇×
 

), this can be expressed completely in terms of the E fi eld:

 ( ) ( )0ˆ ˆ ˆ 0n E jk n n E× ∇× + × × =
 

.  (25)

This relation can be substituted into the standard FEM formu-
lation, yielding (after also neglecting magnetic-current sources)
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Table 1. A comparison of the computed and analytical cutoff wavenumbers 

squared from the 10TE  and 11TM  modes of a hollow rectangular guide 
with dimensions 1.0 m × 0.5 m.

Mode
10TE 01TE 20TE 11TM

Analytical [m-2]
21.0π 24.0π 24.0π 25.0π

9.8696 39.4784 39.4784 49.3480

Calculated [m-2] 9.8696 39.4793 39.4793 49.3484

Relative error 61.45 10−× 52.19 10−× 52.19 10−× 67.14 10−×

Figure 22. The 10TE  mode for a hollow rectangular 
waveguide with dimensions 1.0 m × 0.5 m, computed and 
plotted using DOLFIN.

Figure 23. The axial component of the 11TM  mode for a 
hollow rectangular waveguide with dimensions 
1.0 m × 0.5 m, computed and plotted using DOLFIN.

 ( ) ( )1 2
0r r

V
T E k T E dVµ ε− ∇× ∇× − = ∫
   

     

  ( ) ( )
0

0 ˆ ˆ
S

jk n T n E dS− × ×∫
 

 0 0 imp
V

T jk Z J dV −  ∫
 

 ,

        (26)

where E


 is the electric fi eld, T


 is a testing function, 0Z  is the 
intrinsic impedance of free space, and impJ



 is the impressed 
electric current. The fi rst term on the right-hand side is a surface 
integral; this integral represents the action of the ABC.

5.2 Discrete Formulation

 The correct fi nite-element space to use is that of the 
curl-conforming (H(curl)) elements, also known as Nédélec 
ele ments. Typical “mass” and “stiffness” forms can be recog-
nized in Equation (26). The ABC enters the FEM functional 
as a surface bilinear form involving the tangential components 
of the test and trial functions on the outside boundary of the 
problem. Since it is a bilinear form, it needs to be moved to 
the left-hand side of the discrete FEM equation. For use with 
DOLFIN, we needed to separate out the real and imaginary 
parts of the form. Assuming lossless materials, we noted that 
the mass and stiffness forms were purely real, while the ABC 
form was purely imaginary. The approach we followed was to 
calculate the forms as real matrices, and then combine them 
in SciPy to use complex solvers. FEniCS naturally deals with 
a surface integral differential element via dolfi n.ds. A sym-
bolic element-normal is also available (n=V.cell().n, 
where V is the DOLFIN FunctionSpace object), which 
can be combined with the FEniCS cross operator to express 
the bilinear form. The code representing the bilinear forms was 
given as shown in Figure 24.

using this size information, and were respectively used to store 
the global degree-of-freedom numbers, and the corresponding 
basis-function values at the source point. 

 The degree-of-freedom mapping object available as a 
member of the function-space object (dm = V.dofmap()) 
maps between the local elemental basis functions and the 
global degree-of-freedom numbers. The global numbers of the 
elemental basis functions were output to dofnos by passing 
the DOLFIN Cell object (c) that we created earlier to the 
dofmap tabluate_dofs() method (dm.tabulate_
dofs(dofnos,c)). Each basis function was evaluated at the 
source point using fi nite_element.evaluate_basis_
all(el_basis_vals,source_coords, c). The array 
el_basis_vals then contained the vector-valued numeri-
cal basis-function evaluations. All that was left to do was to 
take the dot product with the source current using the NumPy 
sum() function (see Figure 25).

5.4 Implementing the NTFF Transformation

 The far-fi eld characteristics of an object are often required, 
e.g., for antenna and radar applications. Since the FEM can 
only calculate fi elds in fi nite regions of space, far-fi eld behavior 
cannot be directly determined. One approach might be to 
model a large enough region of free space around the object to 
approximate far-fi eld behavior. Apart from accu racy concerns, 
such an approach would have impractical memory and CPU 
requirements. Using a near-to-far-fi eld (NTFF) transform, far-
fi eld behavior can be determined from near-fi eld calculations 
[18].

 By the surface equivalence theorem [19], knowledge of 
the tangential E and H fi elds on a closed surface containing all 
the inhomogeneities (i.e., the object) and all sources is suffi  cient 
to calculate the radiated fi eld for the whole exterior region. The 
tangential E and H fi elds can respectively be seen as fi ctitious 
equivalent magnetic- and electric-current sources on the closed 
surface. The magnetic-current source on the sur face is given 
by Equation (28), while the electric-current source is given by 
Equation (29):

 ˆs sM n E= − ×
 

,    (28)

 ˆs sJ n H= ×
 

.    (29)

The E or H fi eld at an arbitrary point can be related to the 
equivalent sources by the auxiliary surface magnetic and 
elec tric potential integrals, given by Equations (30) and (31), 
respectively:

  
4 4

jkR jkR

s
V

e eA J dv N
R R

µ µ
π π

− −
= ≈∫∫∫
  

,  (30)

  
4 4

jkR jkR

s
V

e eF M dv L
R R

ε ε
π π

− −
= ≈∫∫∫
  

.  (31)

5.3 Implementing the Source

 The source implementation required us to access the 
inter nals of DOLFIN, since the high-level point-source class 
currently does not support Nédélec elements. Since an infi ni-
tesimal electrical dipole can be represented as an electrical-
current point source, it entered the right-hand side (RHS) of 
Equation (26) as a Dirac-delta current function. Implementing 
the right-hand side was thus as simple as fi nding the element 
containing the source, evaluating each basis function sup ported 
in that element at the source location, and taking the dot product 
with the source current direction and magnitude. The function

calc_pointsource_contrib(V, source_coords, 
source_value) 

calculated the source contribution. This was equivalent to cal-
culating

 ( )source imp
V

T r r J dVδ −∫
 

 

 ,   (27)

where ( )sourcer rδ −
   is the spatial Dirac-delta function, and 

impJ


 is a constant vector. 

 The index of the element (FEniCS cell) that physically 
contained the source was located using the mesh method 
intersected_cell. The mesh object was also attached to 
the function-space object, obviating the need to pass it in to 
our calc_pointsource_contrib() function (cell_
index = V.mesh().intersected_cell()). Note 
that our numerically specifi ed source coordinate had to be 
converted to a dolfi n.Point object before it could be passed 
to intersected_cell(). 

 Using the element index thus obtained, a DOLFIN mesh 
Cell (i.e., element) object was instantiated as c = dolfi n.
Cell(V.mesh(), cell_index). The Cell object 
represented the geometrical parameters of the mesh cell (e.g., its 
node coordinates). This object was later passed to the dofmap 
object, and was also used to evaluate the basis func tions on the 
correct mesh cell.

 Since the lower level FEniCS routines require pre-allo-
cated memory space of the right type and size, we fi rst needed to 
obtain the number of basis functions. This, along with methods 
to evaluate the basis functions, was provided by the dolfi n_
element object attached to the function space (fi nite_
element = V.dolfi n_element()). Since FEniCS 
supports general tensor element types, it specifi es both a rank, 
and value dimension for each rank. Since we (should) have 
been dealing with standard vector elements, we fi rst ascertained 
that the rank (fi nit_element.value_rank()) was 1. 
The value dimension of the fi rst rank (fi nite_element.
value_dimension(0)) was the dimension of the vector 
basis functions: it is 3 for three-dimensional Nédélec elements. 
The dofnos and el_basis_vals arrays were allocated 
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Table 1. A comparison of the computed and analytical cutoff wavenumbers 

squared from the 10TE  and 11TM  modes of a hollow rectangular guide 
with dimensions 1.0 m × 0.5 m.

Mode
10TE 01TE 20TE 11TM

Analytical [m-2]
21.0π 24.0π 24.0π 25.0π

9.8696 39.4784 39.4784 49.3480

Calculated [m-2] 9.8696 39.4793 39.4793 49.3484

Relative error 61.45 10−× 52.19 10−× 52.19 10−× 67.14 10−×

Figure 22. The 10TE  mode for a hollow rectangular 
waveguide with dimensions 1.0 m × 0.5 m, computed and 
plotted using DOLFIN.

Figure 23. The axial component of the 11TM  mode for a 
hollow rectangular waveguide with dimensions 
1.0 m × 0.5 m, computed and plotted using DOLFIN.
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  ( ) ( )
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jk n T n E dS− × ×∫
 

 0 0 imp
V

T jk Z J dV −  ∫
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        (26)

where E


 is the electric fi eld, T


 is a testing function, 0Z  is the 
intrinsic impedance of free space, and impJ



 is the impressed 
electric current. The fi rst term on the right-hand side is a surface 
integral; this integral represents the action of the ABC.

5.2 Discrete Formulation

 The correct fi nite-element space to use is that of the 
curl-conforming (H(curl)) elements, also known as Nédélec 
ele ments. Typical “mass” and “stiffness” forms can be recog-
nized in Equation (26). The ABC enters the FEM functional 
as a surface bilinear form involving the tangential components 
of the test and trial functions on the outside boundary of the 
problem. Since it is a bilinear form, it needs to be moved to 
the left-hand side of the discrete FEM equation. For use with 
DOLFIN, we needed to separate out the real and imaginary 
parts of the form. Assuming lossless materials, we noted that 
the mass and stiffness forms were purely real, while the ABC 
form was purely imaginary. The approach we followed was to 
calculate the forms as real matrices, and then combine them 
in SciPy to use complex solvers. FEniCS naturally deals with 
a surface integral differential element via dolfi n.ds. A sym-
bolic element-normal is also available (n=V.cell().n, 
where V is the DOLFIN FunctionSpace object), which 
can be combined with the FEniCS cross operator to express 
the bilinear form. The code representing the bilinear forms was 
given as shown in Figure 24.

using this size information, and were respectively used to store 
the global degree-of-freedom numbers, and the corresponding 
basis-function values at the source point. 

 The degree-of-freedom mapping object available as a 
member of the function-space object (dm = V.dofmap()) 
maps between the local elemental basis functions and the 
global degree-of-freedom numbers. The global numbers of the 
elemental basis functions were output to dofnos by passing 
the DOLFIN Cell object (c) that we created earlier to the 
dofmap tabluate_dofs() method (dm.tabulate_
dofs(dofnos,c)). Each basis function was evaluated at the 
source point using fi nite_element.evaluate_basis_
all(el_basis_vals,source_coords, c). The array 
el_basis_vals then contained the vector-valued numeri-
cal basis-function evaluations. All that was left to do was to 
take the dot product with the source current using the NumPy 
sum() function (see Figure 25).

5.4 Implementing the NTFF Transformation

 The far-fi eld characteristics of an object are often required, 
e.g., for antenna and radar applications. Since the FEM can 
only calculate fi elds in fi nite regions of space, far-fi eld behavior 
cannot be directly determined. One approach might be to 
model a large enough region of free space around the object to 
approximate far-fi eld behavior. Apart from accu racy concerns, 
such an approach would have impractical memory and CPU 
requirements. Using a near-to-far-fi eld (NTFF) transform, far-
fi eld behavior can be determined from near-fi eld calculations 
[18].

 By the surface equivalence theorem [19], knowledge of 
the tangential E and H fi elds on a closed surface containing all 
the inhomogeneities (i.e., the object) and all sources is suffi  cient 
to calculate the radiated fi eld for the whole exterior region. The 
tangential E and H fi elds can respectively be seen as fi ctitious 
equivalent magnetic- and electric-current sources on the closed 
surface. The magnetic-current source on the sur face is given 
by Equation (28), while the electric-current source is given by 
Equation (29):

 ˆs sM n E= − ×
 

,    (28)

 ˆs sJ n H= ×
 

.    (29)

The E or H fi eld at an arbitrary point can be related to the 
equivalent sources by the auxiliary surface magnetic and 
elec tric potential integrals, given by Equations (30) and (31), 
respectively:
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5.3 Implementing the Source

 The source implementation required us to access the 
inter nals of DOLFIN, since the high-level point-source class 
currently does not support Nédélec elements. Since an infi ni-
tesimal electrical dipole can be represented as an electrical-
current point source, it entered the right-hand side (RHS) of 
Equation (26) as a Dirac-delta current function. Implementing 
the right-hand side was thus as simple as fi nding the element 
containing the source, evaluating each basis function sup ported 
in that element at the source location, and taking the dot product 
with the source current direction and magnitude. The function

calc_pointsource_contrib(V, source_coords, 
source_value) 

calculated the source contribution. This was equivalent to cal-
culating

 ( )source imp
V

T r r J dVδ −∫
 

 

 ,   (27)

where ( )sourcer rδ −
   is the spatial Dirac-delta function, and 

impJ


 is a constant vector. 

 The index of the element (FEniCS cell) that physically 
contained the source was located using the mesh method 
intersected_cell. The mesh object was also attached to 
the function-space object, obviating the need to pass it in to 
our calc_pointsource_contrib() function (cell_
index = V.mesh().intersected_cell()). Note 
that our numerically specifi ed source coordinate had to be 
converted to a dolfi n.Point object before it could be passed 
to intersected_cell(). 

 Using the element index thus obtained, a DOLFIN mesh 
Cell (i.e., element) object was instantiated as c = dolfi n.
Cell(V.mesh(), cell_index). The Cell object 
represented the geometrical parameters of the mesh cell (e.g., its 
node coordinates). This object was later passed to the dofmap 
object, and was also used to evaluate the basis func tions on the 
correct mesh cell.

 Since the lower level FEniCS routines require pre-allo-
cated memory space of the right type and size, we fi rst needed to 
obtain the number of basis functions. This, along with methods 
to evaluate the basis functions, was provided by the dolfi n_
element object attached to the function space (fi nite_
element = V.dolfi n_element()). Since FEniCS 
supports general tensor element types, it specifi es both a rank, 
and value dimension for each rank. Since we (should) have 
been dealing with standard vector elements, we fi rst ascertained 
that the rank (fi nit_element.value_rank()) was 1. 
The value dimension of the fi rst rank (fi nite_element.
value_dimension(0)) was the dimension of the vector 
basis functions: it is 3 for three-dimensional Nédélec elements. 
The dofnos and el_basis_vals arrays were allocated 
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In Equations (30) and (31), R  is the distance between any point 
in the source and an observation point. Furthermore, ε  and µ  

are the permittivity and permeability, such that 2 2k ω εµ= . In 
turn, the corresponding electric and magnetic fi elds are 
determined: AE



, AH


 due to A


; and FE


, FH


 due to F


. The 
total fi elds are then obtained by the superposition of the 
individual fi elds due to A



 and F


 ( SJ


 and SM


).

 The far-fi eld behavior can be obtained by making the 
standard far-fi eld approximations, resulting in the far-fi eld 
potentials N



 and L


, given in Equations (32) and (33), respec-
tively [19]:

 0 ˆjk r r
s

S
N J e dS′= ∫





 

,    (32)

 0 ˆjk r r
s

S
L M e dS′= ∫





 

.    (33)

The far-fi eld observation direction is given by the observation 
point unit vector, ˆ ˆ ˆ ˆsin cos  sin sin  cos  r x y zθ ϕ θ ϕ θ= + + , 
while r′  is the integration coordinate. The 1 R  term, as in 
Equations (30) and (31), has been factored out of the inte grand. 
After substituting the relationship for r̂ , an expression that 
varies purely in terms of the observation angles, θ ,ϕ , and the 
integration variable, r′ , is obtained. To extract the θ  and ϕ  
components of N



 and L


, we fi rst need to defi ne the unit 
vectors, as follows:

 ˆ ˆ ˆ ˆcos cos  cos sin  sin  x y zθ θ ϕ θ ϕ θ= + − , (34)

 ˆ ˆ ˆsin  cos  x yϕ ϕ ϕ= − + .   (35)

The θ  and ϕ  components of N


 and L


 are given by Equa-
tions (36) to (39):

Figure 24. The defi nitions of the function space, test and trial 
functions, as well as the bilinear forms.

 ˆN Nθ θ=


 ,     (36)

 ˆN Nϕ ϕ=


 ,     (37)

 ˆL Lθ θ=


 ,     (38)

 ˆL Lϕ ϕ=


 .     (39)

The E and H far-fi elds can be obtained from the potentials as 
[19, 20]

 ( )04

jkrjkeE L Z N
rθ ϕ θπ

−
∞ = − + ,   (40a)

 ( )04

jkrjkeE L Z N
rϕ θ ϕπ

−
∞ = − ,   (40b)

and

 ( )1
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jkrjkeH N Z L
rθ θ θπ

−
∞ −= − ,   (41a)

 ( )1
04

jkrjkeH N Z L
rϕ θ ϕπ

−
∞ −= − + .  (41b)

Note from Equations (32) and (33) that the integrand changes 
for every observation angle. The full surface integration has 
to be reevaluated at every observation point. While far-fi eld 
information is typically only needed at a limited number of 
points, the computational effort involved in a near-to-far-fi eld 
transform can be considerable. Hence, effi cient numerical 
implementation is desired. The FEniCS forms language is 
complete enough to express the near-to-far-fi eld transform in 
terms of compilable forms expressions. The form expressions 
are compiled and optimized only once, but can but reused to 
evaluate the far fi eld at several observation points. 

 Complications are introduced by the fact that forms in 
FEniCS can at present only express real values. This refl ects 
the fi elds for which FEniCS was originally primarily devel oped 
for, and is at present an issue to consider before adopting it in 
an EM environment. To work around this, the expressions are 
split into real and imaginary expressions in terms of the real and 
imaginary E- and H-fi eld components. This includes the real 
and imaginary components of the magnetic and elec tric current 
sources, such that:

 ˆr rM n E= − ×
 

,    (42a) 

and 

 ˆi iM n E= − ×
 

,    (42b)

with 

 ˆr rJ n H= ×
 

,    (43a) 

and 

 ˆi iJ n H= ×
 

.     (43b)

The real and imaginary components of the magnetic fi eld are 
then given by Equations (44a) and (44b):
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Figure 25. The global numbers of the elemental basis func tions were output 
to dofnos. Each basis function was evaluated at the source point, and 
the array el_basis_vals (then containing the vector-valued numerical 
basis-function evaluations) was taken as the dot product with the source 
current.
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
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
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
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
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
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

 ( SJ


 and SM


).
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
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
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
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Figure 24. The defi nitions of the function space, test and trial 
functions, as well as the bilinear forms.
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The exponential representation was converted to rectangular 
coordinates using cos sinje jω ω ω= + . The real and imagi-
nary components of the far-fi eld potentials are given by

 ( ) ( ) ( )0 0ˆ ˆcos sinr r iN J k r r J k r r dS r′ ′ ′= −∫


  

  ,  (45a)

 ( ) ( ) ( )0 0ˆ ˆsin cosi r iN J k r r J k r r dS r′ ′ ′= +∫


  

  , (45b)

and

 ( ) ( ) ( )0 0ˆ ˆcos sinr r iL M k r r M k r r dS r′ ′ ′= −∫


  

  , (46a)

 ( ) ( ) ( )0 0ˆ ˆsin cosi r iL M k r r M k r r dS r′ ′ ′= +∫


  

  . (46b)

A further complication is that the potentials directly integrate 
vector quantities. Vector forms expressions are allowed, but the 
end result must be a scalar. This can be solved by dotting the 
vector quantity by the theta ( θ̂ ) and phi ( ϕ̂ ) unit vectors, as 
given in Equations (36) to (39). 

 The resulting expressions are somewhat lengthy, but rea-
sonably straightforward. The reader is invited to peruse the 
defi nition of the ntff() function in the source code. The 
code is well commented, and its meaning should be clear, 
given the above description. The surface integral near-to-far-
fi eld (NTFF) transformation was implemented in FEniCS using 
SUCEM:FEM, and the results (Figure 26) were com pared to 
the analytical far-fi eld expression for an infi nitesimal dipole 
given in Equation (47):

 
0

0 0 sin
4

jk reE jZ k
rθ λ θ

π

−
=



.   (47)

6. Conclusion

 The use of the Python front end of DOLFIN, PyDOLFIN, 
to model various EM problems has been investigated. Some 
elementary problems were implemented in FEniCS, including 
the scalar potential solution to closed- and open-boundary 
electrostatic problems, as well as the cutoff and dispersion 
analysis of a hollow rectangular waveguide. More advanced 
topics considered were the implementation of an infi nitesimal 
dipole and the near-fi eld-to-far-fi eld transformations for the 
FEM fi nite regions in space.

 As with many packages developed in other fi elds of com-
putational science and engineering, complex arithmetic is 
unfortunately not currently supported in FEniCS. (Of course, 
for time-domain FEM this is not an issue, as such codes use 
only real-valued operations). Vector elements are supported, 
which is often not the case with FEM packages originating 
outside electromagnetics. Notwithstanding the lack of support 
for complex arithmetic, the relative ease with which basic 
FEM operations can be performed, and the support for vector 
elements, make FEniCS an attractive environment for proto-
typing fi nite-element codes in electromagnetics. 

7. References

1. “The FEniCS Project,” available at  http://www.
fenicsproject.org/.

2. D. B. Davidson, “Implementation Issues for Three-Dimen-
sional Vector FEM Programs,” IEEE Antennas and Propaga-
tion Magazine, 42, 6, December, 2000, pp. 100-107.

3. A. Awadhiya, P. Barba, and L. Kempel, “Finite Element 
Method Programming Made Easy,” IEEE Antennas and 
Propagation Magazine, 45, 4, August 2000, pp. 73-79.
4. J. C. Nédélec, “Mixed Finite Elements in 3ℜ ,” Numerische 
Mathematik, 35, 1980, pp. 315-341.

5. J. C. Nédélec, “A New Family of Mixed Finite Elements in 
3ℜ ,” Numerische Mathematik, 35, 1980, pp. 315-341.

6. P. P. Silvester and R. L. Ferrari, Finite Elements for Electri-
cal Engineers, Third Edition, Cambridge, UK, Cambridge 
University Press, 1996.

7. J. L. Volakis, A. Chatterjee and L. C. Kempel, Finite Ele ment 
Method for Electromagnetics: Antennas, Microwave Circuits 
and Scattering Applications, Oxford, UK, Oxford University 
Press and IEEE Press, 1998.

8. “Gmsh: A Three-Dimensional Finite Element Mesh Gen-
erator with Built-In Pre- and Post-Processing Facilities,” 
available at http://www.geuz.org/gmsh/.

9. J. Jin, The Finite Element Method in Electromagnetics, Sec-
ond Edition, New York, Wiley, 2002.

Figure 26. The results of the surface integral NTFF trans-
formation compared to the analytical expression imple-
mented in SUCEM:FEM.

10. A. Logg, K.-A. Mardal, and G. Wells (eds.), Automated 
Solution of Differential Equations by the Finite Element 
Method: The FEniCS Book, Berlin, Springer, 2012.

11. D. B. Davidson, Computational Electromagnetics for RF 
and Microwave Engineers, Second Edition, Cambridge, UK, 
Cambridge University Press, 2011.

12. ParaView, available at http://www.paraview.org/.

13. G. S. Smith, An Introduction to Classical Electromagnetic 
Radiation, Cambridge, Cambridge University Press, 1997.

14. G. Pelosi, R. Coccioli, and S. Selleri, Quick Finite Ele ments 
for Electromagnetic Waves, Norwood, MA, Artech House, 
1998.

15. D. M. Pozar, Microwave Engineering, Third Edition, New 
York, Wiley, 2005.

16. SUCEM:FEM, Stellenbosch University Computational 
Electromagnetics: Finite Element Method, available at https://
github.com/cemagg/sucem-fem.

17. A. J. Otto, E. Lezar, N. Marais, R. G. Marchand and D. B. 
Davidson, “Rapid, High-Order Finite Element Modelling with 
FEniCS and SUCEM:FEM,” 11th International Workshop on 
Finite Elements for Microwave Engineering (FEM2012), Estes 
Park, Colorado, USA, June 4-6, 2012.

18. P. Monk, “The Near Field to Far Field Transformation,” 
The International Journal for Computation and Mathematics in 
Electrical and Electronic Engineering, 14, 1, 1995, pp. 41-56.

19. C. A. Balanis, Antenna Theory: Analysis and Design, Third 
Edition, New York, Wiley, 2005.

20. C. A. Balanis, Advanced Engineering Electromagnetics, 
Second Edition, New York, Wiley, 2012.

AP_Mag_Aug_2012_Final.indd   222 9/3/2012   4:38:47 AM



IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, August 2012 223

The exponential representation was converted to rectangular 
coordinates using cos sinje jω ω ω= + . The real and imagi-
nary components of the far-fi eld potentials are given by
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