
Advanced Review

Structural modeling from electron
microscopy data
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Cryo-electron microscopy is a powerful technique for the determination of
three-dimensional (3D) structures of macromolecular machines, as it provides
functional snapshots of biologically relevant complexes under near-physiological
in vitro conditions. In this study, we review the computational algorithms developed
to build macromolecular models from the information encoded in cryo-electron
microscopy (EM) density maps. These modeling tools include fitting strategies to
localize atomic structures into 3D maps, de novo methods to identify structural ele-
ments, and hybrid methods for the combination of multiple structural data from
complementary biophysical techniques and other experimental sources. We also
illustrate the power of EM-derived models in the atomic-level interpretation of the
conformational changes of relevant macromolecular assemblies. © 2014 John Wiley
& Sons, Ltd.
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INTRODUCTION

In recent decades, the explosive growth of structural
biology research has resulted in an exponential

increase of the amount of information available for
important biological systems. Detailed knowledge
of protein structures is essential for our understand-
ing of their functional mechanisms. To date, nearly
100,000 structures have been deposited in the Pro-
tein Data Bank (PDB). The major technique for the
determination of atomic structures of proteins and
other biomolecules is X-ray crystallography, although
nuclear magnetic resonance spectroscopy is a pow-
erful technique for relatively small proteins. The
limiting factors of X-ray crystallography include
protein expression, the amount of sample, crystal-
lization, and the stability and homogeneity of the
structure. These limitations are particularly trou-
blesome for large macromolecular assemblies such
as DNA and RNA polymerases, ribosomes, ATP
synthases, and viral capsids. Moreover, these macro-
molecular machines adopt several conformations
in solution, and their motions are directly coupled
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to numerous essential cellular functions. Electron
microscopy (EM) techniques and, in particular,
cryo-EM, have established themselves as the major
structural biology techniques capable of imaging
macromolecular complexes in their native aque-
ous environment.1–3 Cryo-EM, and single particle
analysis primarily, has demonstrated its capacity to
distinguish coexisting conformational states, provid-
ing unique information on the functional mechanism
and motions of macromolecular machines. Although
the majority of the structures determined by EM
range from medium (5–10 Å) to low (>10 Å) reso-
lutions, recent advances in cryo-EM will lead to an
increasing number of determined structures, partic-
ularly at medium and high (<5 Å) resolutions. In
addition to the progress made in automated EM
data acquisition and image processing software,
the introduction of direct electron detectors (DED)
has increased the quality of recorded EM images.4,5

The substantial increase in the signal-to-noise ratio
offered by DED represents an important contribution
to this technique. For example, Bai et al.6 recently
demonstrated that near-atomic resolution structures
can be obtained from only 20,000–30,000 single
particles with only 2 days of data collection. Thus,
although only 2000 structures determined by EM are
currently available in the EM data bank (EMDB7),
we strongly believe this technique will become a
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FIGURE 1 | Trends of (a) deposited atomic structures in the Protein Data Bank (PDB) and (b) deposited electron microscopy (EM) maps in the EM
data bank (EMDB). Note that more than 80% of the deposited maps correspond to single-particle reconstructions.

major contributor of structural knowledge in the near
future. Figure 1 shows the exponential growth of
atomic structures deposited in the PDB (top panel)
and the substantial growth of deposited EMDB maps,
although at more modest levels (bottom panel). Note-
worthy, the number of deposited structures modeled
from EM data (green bars) follows an increasing
trend, as observed for the experimentally determined

structures (blue bars). This illustrates the relevance of
the modeling in the near-atomic interpretation of EM
three-dimensional (3D) reconstructions.1,8–10 Despite
considerable progress has been achieved in the last
decades, EM is still a field under development. Major
limiting factors include the assessment of the EM
map quality and the lack of standards for validating
model accuracy. Fourier shell correlation (FSC) is
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the standard metric to estimate the map resolution.
However, many of the published works overesti-
mated the resolution with FSC due to overfitting of
the high-frequency noise during the reconstruction
process.11 Moreover, the resolution is heterogeneous
across the EM map and therefore should be locally
estimated. There are promising methods for quan-
tifying the local resolution12,13 that we believe they
will be quickly adopted by the community. Another
resolution-dependent problem is the model validation,
precautions need to be taken to avoid model overfit-
ting by introducing too many refinable parameters
relative to the experimental EM data. Initiatives such
as ‘Microscopy Validation Task Force Meeting’14

where the experts in the field convened to collect rec-
ommendations and develop consensus on validation
task for 3D maps and models will help to raise the
standards to levels of X-ray crystallography.

Comprehensive reviews of structure determi-
nation using EM, including cryo-EM and electron
tomography, can be found elsewhere. Here, we review
the computational methods for modeling 3D-EM data
and for bridging the resolution gap between atomic
and low-medium resolution structural information.
First, we describe the methodologies developed to fit
the atomic structures of proteins and nucleic acids
into an EM density map. These methodologies range
from early rigid-body approximations to recent meth-
ods to characterize conformational changes observed
by EM. In a second modeling scenario, in the absence
of available atomic structures, different computational
methods can be applied for de novo modeling of the
EM density map. Once the resolution is better than
approximately 10 Å, secondary structure elements
(SSEs) such as 𝛼-helices can be computationally identi-
fied. At resolutions below approximately 5 Å, crystal-
lographic refinement techniques can be directly bor-
rowed to produce atomic models.15–17 Finally, hybrid
methods that combine the different available struc-
tural information represent a promising approach for
extracting structural information from 3D EM recon-
structions. These integrative approaches incorporate
modeling constraints from other complementary bio-
physical techniques (e.g., small-angle X-ray scattering,
fluorescence resonance energy transfer, etc.) or any
other source of structural information (e.g., crosslink-
ing, mutagenesis, protein–protein predictions, etc.).
Figure 2 illustrates these different modeling scenarios,
which will be addressed in the following sections.

MACROMOLECULAR FITTING

The first attempts to interpret EM maps beyond their
nominal resolution fitted crystal structures into maps

by visual inspection. However, computational tools
have been developed to perform the fitting in a reli-
able and reproducible manner. The most frequently
used approach utilizes an exhaustive rigid-body search
of the best relative conformation of a given atomic
structure inside the EM density. This relatively sim-
ple problem becomes cumbersome if more than one
atomic structure must be considered. Multi-body fit-
ting includes specific strategies to fit several atomic
components into a density map while avoiding col-
lisions. All of these rigid-body approaches are suffi-
cient if the conformational differences between atomic
structures and the macromolecule visualized by EM
are small. In contrast, to characterize larger confor-
mational changes, conformational flexibility must be
considered. To introduce conformational variability
into the fitting process, several flexible fitting tools
have been developed. In the following subsections, we
will describe the central principles underlying the most
commonly used methods to fit macromolecular struc-
tures into EM maps and we will refer to the original
articles for the details.

RIGID-BODY FITTING

Rigid-body docking is a well-established technique
with several advanced approaches available. Compre-
hensive reviews of rigid-body docking methods have
been previously presented.18,19 In essence, these tools
perform an automated 6D search of all possible rela-
tive rotations and translations to maximize an elec-
tron density-based cross-correlation (CC) function.
This CC function is typically defined as the scalar
product between the EM experimental map, 𝜌EM, and
a low-pass-filtered version of the atomic structure,
𝜌Model, which can be mathematically represented as
follows:

CC =

∑(
𝜌EM

i · 𝜌Model
i

)
𝜎EM.𝜎Model

(1)

where the sigmas correspond to the standard deviation
and i is the volumetric map element (voxel). Several of
the exhaustive 6D fitting methods, such as Colores,20

COAN,21 EMfit,22 BCL:EM-fit,23 and FoldHunter,24

include the CC as quality-of-fit criteria. Other fitting
tools, such as DockEM25 and Mod-EM,24 use CC
variants that emphasize local rather than overall shape
features, which can be particularly useful to avoid false
positives or when a small component is fitted into a
larger map.

The major disadvantage of these exhaustive
search methods is their high computational cost.
Nevertheless, the exhaustive CC-based search can
be dramatically accelerated by taking advantage of
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FIGURE 2 | Scheme of possible modeling scenarios. The different cryo-electron microscopy modeling alternatives are illustrated using a
proteasome map.

the convolution theorem and the fast Fourier trans-
form algorithms. CoLoRes20 and URO26 accelerate
the translational part of the search and reduce the run-
times to hours or minutes. In addition, CoLoRes intro-
duces a Laplacian image-processing filter to enhance
the fitting contrast. Alternatively, ADP_EM27 acceler-
ates the rotational part of the search using spherical

harmonics, which reduces the fitting to a few minutes.
Examples of rigid-body fitting using this approach
are shown in Figure 3. The more recently devel-
oped gEMfitter30 accelerates the fitting even more
using the texture memory of graphics processing units
(GPUs), including a local CC scoring function. Other
exhaustive methods use alternative strategies to reduce
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FIGURE 3 | Rigid-body fitting results with experimental electron
microscopy (EM) data using ADP_EM. (a) Escherichia coli
GroES-ADP7-GroEL-ATP7 at 23.5 Å (EMDB ID: 1046; PDB ID: 1ML5);
ADP and ATP bound GroEL subunits have been independently fitted to
reconstruct the cis and trans heptameric rings of the complex. For
GroES, the entire heptamer was used. (b) Fitting of the 30S and 50S
subunits into the E. coli ribosome map at 14 Å (EMDB ID: 1046; PDB ID:
1GIX/1GIY). Single-molecule docking of prefoldin (c) at 23 Å28 (PDB ID:
1L6H) and of yeast RNA polymerase II (d) at 15 Å29 (PDB ID: 1FXK).
Reproduced with permission from Ref 19.

the computational time; e.g., COAN, EMfit, and
FoldHunter perform an initial coarse exploration to
reduce the search space, and then refine only the best
identified conformations.

Although the majority of these approaches use
CC-based scoring functions, alternatives exist. For
example, the pioneering EM package Situs31,32 uses
a feature-points-based approach. After reducing both
the atomic structure and the EM map into sets of
characteristic points with the aid of neural network
techniques, the fitting is performed by minimizing
the distance between these points. Following also a
reductionist strategy, several scores have been intro-
duced by reducing the electron density into iso-
surface normals33 or Gaussian functions34 (for a
review of fitting functions35). Finally, molecular visu-
alization programs such as Chimera36 or Sculptor37

also include interactive fitting modules, together with
segmentation and other useful modeling tools.

MULTI-BODY FITTING

A special case of rigid-body fitting occurs in cases
when multiple assembly components must be localized

into single cryo-EM maps. Particularly at low resolu-
tions or with a high number of components, the search
space becomes too large to be exhaustively explored.
The common starting point for nearly all multi-body
methods is the generation of a high number of can-
didate configurations that are subsequently refined,
typically by using a CC variant. The collage tool37

of Situs simultaneously maximizes the global CC of
all of the components from an initial configuration
using a conjugate gradient optimization method. The
MultiFit program38 exploits a combinatorial search to
optimize both the local CC and the shape complemen-
tarity between interacting subunits (see Figure 4 for
details). In MOSAEC,39 approximately 1000 random
configurations evolve via a genetic algorithm to opti-
mize efficiently a fitness function based on neuronal
network feature-point representations. Zhang et al.40

also simplified input structures as sets of feature points
but used an efficient mathematical programming pro-
cedure to generate an ensemble of candidate models
that locally considered the geometry and the neighbor-
ing density. In the gmfit34 program, input structures
of the components are simplified as summations of
a few 3D Gaussian functions. The Gaussian approxi-
mation allows the rapid steepest-descent minimization
of initial configurations under a force field in which
every component is attracted by the target density
map and repelled by the other components. Symme-
try can also be included as an additional restraining
force. Finally, the EMLZerD41 and ATTRACT-EM42

methods rely on an initial protein–protein dock-
ing step to generate the initial candidate configu-
rations. The docking step of EMLZerD generates
pairs of components with high-surface complemen-
tarity that are subsequently fitted into the EM map
using 3D Zernike descriptors, i.e., a compact rota-
tionally invariant representation of 3D surfaces. In
contrast, in ATTRACT-EM, all components are simul-
taneously docked, maximizing a smooth Gaussian
overlap function between the subunits and the electron
density map.

FLEXIBLE FITTING

When significant conformational differences are
present between the atomic structures and the target
map, the classical rigid-body approach is no longer
valid. In this case, the number of fitting variables
greatly exceeds the number of experimental observ-
ables encoded in the EM map; therefore, special
attention must be given to overfitting. All flexible
fitting algorithms require a method to explore new
conformations. The sampling engines are typically
based on either Molecular Dynamics43 (MD) or
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FIGURE 4 | Overview of the multi-fitting protocol used in MultiFit.
The input is a simulated density map of the Methane monooxygenase
(MMO) hydroxylase complex at 20 Å resolution (gray) and the atomic
models of the subunits (colors). First, the map is segmented into six
regions (gray transparency) and the corresponding anchor graph (black)
is calculated. Subsequently, the subunits are assembled into segmented
regions by rigid-body fitting (colors). The conformations are then refined
using a docking strategy. Finally, the model is fitted into the map (gray
transparency). The resulting model is superposed onto the native
complex (gray) at the bottom. Reproduced with permission from Ref 44.

Normal Mode Analysis45 (NMA) methodologies.
In MD-based approaches, the new conformations
are generated by numerically integrating the New-
tonian equations of motion under different flavors
of physics-based force fields. Following this strategy,
the earliest tool for flexible fitting, Situs,46 used a
classical simulation software (XPLOR) to minimize
the differences between the reduced feature-point
representations of both the atomic structure and the
EM map. The conformational flexibility of RNAP
has been successfully modeled using this approach
to reveal functional implications in the initiation of
transcription.47 Based on standard MD packages, the
MDFF48 and MDFIT49 tools perform flexible fitting
by including an additional potential energy term in the
force field to morph the atomic model into the target
EM map. In MDFF, the gradient of the density map
drives the fitting with additional harmonic constrain-
ing terms to preserve the stereochemical quality and
prevent overfitting. In contrast, MDFIT retains the ter-
tiary contacts present in the initial structure without
special constraints using a simpler structure-derived
force field. Impressive results have been obtained for
the ribosome, revealing several functional conforma-
tional states of translational events49–53 (see Figures 5
and 6). MDFF is the most popular approach and it has
been used for flexible fitting with other key systems
including, among others, the proteasome,55,56 the
HIV-capsid,57 adenovirus,58 and even DNA-origami
nanotechnologic objects.59 The major disadvantage
of MD-based methods is their high computational
cost. In this context, several approaches have been
developed to reduce the computational burden. For
example, YUP.SCX60 uses an efficient MD-based sim-
ulated annealing protocol that minimizes a simplified
potential energy with restraints, ICFF61 is formulated
in internal coordinates, and TAMDFF62 enhances the
conformational sampling of MDFF. Moreover, more
efficient alternatives have been developed using NMA
as sampling engine. In this case, the macromolecular
system is considered an elastic network of harmonic
springs that holds the atoms together and vibrates
around a given equilibrium conformation. According
to this simple mechanical model, the exact solutions
for Newton’s equations can be analytically obtained as
a set of atomic displacement vectors. Such vectors, or
normal modes, are naturally sorted according to their
vibration frequency. High-frequency (high-energy)
modes represent localized displacements, whereas
low-frequency (low-energy) modes correspond to
collective conformational changes. All NMA-based
approaches are focused on these collective modes
to reduce the number of search variables. NMFF,63

which was the first NMA-based flexible fitting tool,
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FIGURE 5 | Fitting into the topology constraint (TC)-bound ribosome cryo-EM map at 6.7 Å resolution by means of MDFF. Conformational
dynamics of the GTPase-associated center. Shown are differences in the conformation of the GTPase-associated center between the TC-bound
ribosome [electron microscopy (EM) map at 6.7-Å resolution, top], and the accommodated ribosome (EM map at 9 Å resolution, bottom). Rigid-body
docked structures into the corresponding maps, used as initial coordinates for flexible fitting, are shown on the left; flexibly fitted structures are
shown on the right. Reproduced with permission from Ref 37.

employed a linear combination of the first 20 or 30
lowest frequency modes to conform the target map
iteratively. This approach has been applied to sev-
eral large and functionally relevant conformational
changes of the elongation factor G bound to the
ribosome, the Escherichia coli RNA polymerase, and
the cowpea chlorotic mottle virus.64 Hinsen et al.65

used a map-derived force to select the best modes that
transform the atomic structures of the calcium ATPase
into the target conformation. Although these Carte-
sian coordinates-based approaches yield satisfactory
results, their straight-line molecular motions lead
to unfeasible distortions in bond lengths and angles
that eventually can produce overfitting problems.54

In the recently released iMODFIT tool54, the normal
modes are defined in internal coordinates (dihe-
dral angles), providing a more natural and effective
approach for modeling the conformational changes.
Consideration of internal coordinates minimizes the

potential distortions by implicitly preserving the
model geometry while substantially reducing the
number of variables.66 In iMODFIT, the lowest-
frequency modes are randomly selected to gener-
ate trial conformations. Only those conformations
that increase the CC are accepted. Different groups
have utilized this tool to obtain accurate flexible
fittings for ATP synthase,67 yeast vacuolar ATPase,68

and coxsackievirus.69 We also illustrate iMODFIT
performance with additional experimental maps in
Figure 7.

Other alternative methods provide the necessary
conformational variability and retain the correct
stereochemistry using different approaches. Jol-
ley et al.70 initially produced these conformations
using constrained geometric simulations, which are
subsequently accepted or rejected according to a
Monte Carlo algorithm with a pseudo-energy derived
from the CC coefficient. In addition to a Monte

68 © 2014 John Wiley & Sons, Ltd. Volume 5, January/February 2015
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FIGURE 6 | Ribosome flexible fitting. On the left, the initial rigid-body fitting of the TIpre atomic structure is shown inside an electron microscopy
map of the TIpost conformation (EMDB ID: 1799) with a resolution of 7.6 Å. On the right, the final fitted results using MDfit are shown.49 An
essentially identical fitted structure was obtained using iMODFIT.54 The images represent the regions of the 30S head and L1 of the ribosome, where
major differences were observed. The color codes are orange for protein, blue for rRNA, green for tRNA, and red for EFG. Reproduced with permission
from Ref 53.

Carlo search, Flex-EM71 applies conjugate-gradient
minimization and simulated annealing stages to a
series of rigid-body subdivisions of the structure.
In DireX,72 the conformations generated using a
geometric-based sampling73 are biased toward the
target map with a random force. This method utilizes
a deformable elastic network to prevent overfitting.
EMFF74 is also based on a modified elastic network
model to maintain pseudo-bonds and secondary
structures while permitting large-scale conforma-
tional changes. The target conformation is iteratively
attained by Newton-Raphson minimization of the
elastic network energy, which includes an extra term
to penalize the squared differences between the target
map and the atomic structure. S-flexfit75 uses the
structural variability within a protein superfamily
to build models that are then selected by CC with

the target map. The MOSAICS-EM76 approach rep-
resents the macromolecule as a small number of
rigid segments connected with flexible loops to fit
atomic structures directly into 2D class averages, i.e.,
disregarding the 3D reconstruction stage. Finally,
other authors propose a consensus fit among different
fitting approaches.77

HOMOLOGY MODELING

Comparative modeling platforms can generate reliable
models from homologous structures with a sequence
identity greater than approximately 50%.78,79 Homol-
ogy models can be fitted into the density map using
the approaches detailed in the sections above when
the corresponding atomic structure is not available.
For example, the Moulder-EM80 protocol of Topf
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FIGURE 7 | Flexible fitting of representative experimental maps using iMODFIT. The initial conformation was obtained by rigid-body fitting
between the initial atomic structures (cyan) and their corresponding experimental electron microscopy (EM) maps (transparent) using ADP_EM.27 The
final fitted models are represented as yellow ribbons. The examples shown include the following: (a) elongation factor G (PDB ID: 1FNM; EMDB ID:
1364); (b) the GroEL monomer (PDB ID: 1SX4; EMDB ID: 1181); (c) prefoldin (PDB ID: 1FXK); (d) calcium ATPase (PDB ID: 1SU4); (e) the thermosome
(PDB ID: 1A6D; EMDB ID: 1396); and (f) RNA polymerase II (PDB ID: 1YLV; EMDB ID: 1283). Reproduced with permission from Ref 53.

et al. has been used for the refinement of a homol-
ogy model built for the upper domain of the P8 capsid
protein of rice dwarf virus within a 6.8-Å resolution
cryo-EM map. These authors also demonstrated that
the fitting can be helpful in improving the accuracy
of comparative models.24 Other approaches combine
both supervised and automated structure refinement
protocols to improve locally the homology models
of large macromolecular assemblies. Rosetta81 soft-
ware includes protocols to refine comparative mod-
els and low-resolution C𝛼 traces using density maps
as a guide. In the multi-scale method EM-IMO,82

the problematic regions are first identified by visual
inspection and then iteratively refined using the den-
sity map information, e.g., by searching low-energy

conformations of rigid SSEs connected by flexible
loops. As a final step, MDFF is applied to refine the
structural details. Although homology modeling is a
widely used alternative, important errors can also be
produced in regions of the protein that share little
identity; such errors can jeopardize the EM modeling
procedure.

When suitable templates cannot be detected by
sequence-based or threading techniques, it is still pos-
sible to identify representative structural scaffolds
suitable for fitting. Using the EM map as a tem-
plate, SPI-EM83 and FOLD-EM84 screen the CATH
or SCOP protein domain databases, respectively, to
identify structural homologs. In contrast, EMatch85

uses a previously detected SSEs (see De novo modeling
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section) to obtain the greatest common alignment
with the SCOP database. This method explicitly con-
siders errors in the 𝛼-helix extraction stage and has
been validated with experimental cryo-EM maps of
GroEL.86,87

DE NOVO MODELING

When atomic models are not available and the map
resolution is sufficiently high, computational algo-
rithms can identify the SSEs in EM maps. Once
the resolution is greater than approximately 10 Å,
the cylindrical densities of 𝛼-helices become readily
recognizable; for 𝛽-sheets, this occurs at approx-
imately 6 Å. Alternatively, such high-resolution
density maps can contain sufficient information
to trace the backbone. If the resolution is high
enough (<4 Å), it is possible to construct reliable
atomic models directly from the cryo-EM density
map with the help of X-ray crystallographic tools
such as COOT,88 REFMAC,89 or Phenix90 (see
Table 1). For example, high-resolution structures of
the Mm-cpn chaperonin,108 the TRPV1 channel,15

the F420-reducing [NiFe] dehydrogenase,16 and the
yeast mitochondrial large ribosomal subunit17 have
been recently solved from EM data using COOT.

SECONDARY STRUCTURE DETECTION

HelixHunter96 was the first automated tool for 𝛼-helix
detection. This method is based on the correlation of
a prototypical straight helix with the map to enhance
the identification of helical densities. Alternatively, in
HelixTracer,109 the 𝛼-helices are detected by gradient
analysis and modeled as quadratic splines to consider
their curvature explicitly. Using a genetic algorithm,
the VolTrac107 tool optimally characterizes the cur-
vature and length of the helical regions by placing
into the map short cylindrical templates that are then
enlarged in an adaptive bidirectional expansion stage.
The practical applicability of VolTrac has been demon-
strated in the modeling of the N-terminal domain of
the ryanodine receptor110 and in the helical bundle of
the proteasome.111 Once the map resolution reaches
approximately 6 Å, the 𝛽-sheets become distinguish-
able as thin planar surfaces. The Sheetminer method
recognizes disk-shaped regions to identify 𝛽-sheets.104

At resolutions below 5 Å, the constituent individual
strands are discernible and can be resolved by the
Sheettracer tool.105

Additional approaches enable the simultane-
ous identification of SSEs; e.g., SSELearner100 uses
a machine-learning approach to identify automati-
cally 𝛼-helices and 𝛽-sheets using information from

existing EM maps in the EMDB. Other approaches
include the skeletonization of the EM map, i.e., the
simplified geometric representation of the overall den-
sity shape, as a key step in the SSE identification
process. The method described by Yu and Bajaj112

rapidly generates skeletons of helices and sheets by
considering the overall distribution of the gradient
vectors within a local spherical window. SSEhunter97

integrates several scores, skeletonization, local geom-
etry, and CC with a prototypical helix to obtain
𝛼-helix or 𝛽-sheet propensity measures. Figure 8 shows
representative examples of SSE identification using
the SSEhunter approach with several experimental
EM maps. Based on the local shape characteristics of
𝛼-helices and 𝛽-sheets, SSEtracer101 performs a series
of local feature analyses together with the sparseness
and local thickness of externally generated skeleton
points to detect the SSEs. Finally, backbone traces
can be obtained with SSEhunter98 once the reso-
lution is greater than 5 Å using a combination of
sequence-based secondary structure predictions with
an improved skeletonization algorithm. This approach
facilitated the direct de novo backbone tracing from 4
to 5 Å cryo-EM maps of the GroEL chaperonin113 and
the capsid of the infectious 𝜖15 particle.114 An alter-
native algorithm, Pathwalking,99 can trace C𝛼 back-
bones by solving the ‘Traveling Salesman Problem’
from a set of pseudo-atoms clustered inside the EM
densities.

Once the SSEs are extracted from the map, their
directionality and connectivity, i.e., their topology,
can be determined. However, the number of potential
topologies satisfying a given set of SSEs can be enor-
mous. Despite several efforts to register the SSEs into
EM maps (e.g., Wu et al.,115 Al Nasr et al.,116 and
Biswas et al.117) the solutions only appear reliable for
protein transmembrane regions (TM). These proteins
constitute a highly populated group that accounts
for approximately 50% of the contemporary drug
targets. The 𝛼-helical nature of their transmembrane
domains facilitates the automated registration of
the sequence segments and map-detected helices.
The method described by Enosh et al.118 produces a
small number of feasible configurations upon rank-
ing all possible assignments with a score function
derived from the loop structures found in soluble
𝛼-helix bundles. This method accurately predicted the
structures of TM proteins within 1.5–3.5 Å from the
native state in all evaluated cases.119 An alternative
method120 also successfully recognizes TM helices
with an RMSD of 3–5 Å by first identifying the TM
regions from the sequence, then assigning buried
and lipid-exposed faces of these regions, and finally
assembling a helical bundle based on the geometric
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TABLE 1 Available Tools for Structural Modeling Based on EM Data.

Method Features Availability

Rigid-body fitting 3SOM33 Surface-based www.russelllab.org/3SOM

ADP_EM27 Fast exhaustive spherical-harmonics
accelerated

chaconlab.org/methods/fitting/adpem

BCL:EM-fit23 CC-based (web server) www.meilerlab.org/bclcommons

Chimera36 CC-based (GUI) www.cgl.ucsf.edu/chimera

COAN21 CC-based with confidence intervals coan.burnham.org

DOCKEM25 Local CC-based www.msg.ucsf.edu/local/programs/
DockEM/DockEM_Instructions.htm

EMAN CC-based (foldhunter24) includes a
parallel version

www.msg.ucsf.edu/local/programs/eman

EMfit22 Multiple fitting criteria bilbo.bio.purdue.edu/viruswww/
Rossmann_home/softwares/emfit.php

gEMfitter30 Ultra-fast exhaustive
multi-processor/GPU accelerated

gem.loria.fr/gEMfitter

MODELLER91 Local CC-based (Mod-EM)24 topf-group.ismb.lon.ac.uk/Software.html

Sculptor37 CC-based (GUI) sculptor.biomachina.org

SITUS92 Feature-points (matchpt, qvol, qpdb)31

CC based (colores)20
situs.biomachina.org

UROX/VEDA93 CC and reciprocal space based (GUI) sites.google.com/site/xsiebert/urox

Multi-body fitting ATTRACT-EM42 Gaussian-CC-based Available upon request

EMLZerD41 Surface complementarity based Available upon request

Gmfit34 Gaussian-CC-based strcomp.protein.osaka-u.ac.jp/gmfit

MOSAEC39 Genetic algorithm optimization (GUI) sculptor.biomachina.org

MultiFit38 CC-based with docking refinement
(web server)

modbase.compbio.ucsf.edu/multifit

SITUS92 Off-lattice multi-body Powell
optimization (collage)37

situs.biomachina.org

Zhang’s40 Mathematical programming based Available upon request

Flexible fitting DireX72 Geometric based sampling with an
elastic network

www.schroderlab.org/software/direx

EMFF74 Elastic network and Newton-Raphson
based (web server)

enm.lobos.nih.gov/emff/start_emff.html

MODELLER CC-based MC/Conjugate gradients/SA
(Flex-EM)71

http://salilab.org/Flex-EM

ICFF/MMB61 Internal coordinates with fully atomic
forces (fast)

simtk.org/home/rnatoolbox

iMODFIT54 Internal coordinates NMA and
CC-based (fast)

chaconlab.org/imodfit

Jolley’s70 Constrained geometric simulations
and MC-based

http://flexweb.asu.edu

MDFF48 MD-based with constraints www.ks.uiuc.edu/Research/mdff

MDFIT49 MD-based under simplified
structure-based force field

mdfit.lanl.gov

MOSAICS-EM76 Direct flexible fitting into 2D
class-averages

www.cs.ox.ac.uk/mosaics

NMFF63 Cartesian NMA and CC gradient based mmtsb.org/software/nmff.html

NORMA94 Cartesian NMA and CC based www.igs.cnrs-mrs.fr/elnemo/NORMA
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TABLE 1 Continued

Method Features Availability

S-flexfit75 Based on Structural variability and principal
component analysis

biocomp.cnb.csic.es/Sflexfit

SITUS92 Feature-points (qplasty)46 situs.biomachina.org

YUP.SCX60 MD-SA-based with a simplified potential
energy and restraints (fast)

www.harvey.gatech.edu/YammpWeb/
userman/yupscx/yupscx.shtml

Homology modeling EM-IMO82 Supervised and automated structure refinement wiki.c2b2.columbia.edu/honiglab_public/
index.php/Software:cryoEM

EMatch85 Fold recognition based on secondary structure
elements

Available upon request

Fold-EM84 Find structural homologs from SCOP domain
database

robotics.stanford.edu/mitul/foldEM

MODELLER91 Genetic algorithm optimizes sequence
alignment and CC (Moulder-EM)80

salilab.org/modeller

ROSETTA81 Comparative modeling assisted by electron
density maps

www.rosettacommons.org

SPI-EM83 Find structural homologs from CATH domain
database

Available upon request

De novo modeling EM-Fold95 MC-based topology determination from
externally identified SSEs (web server)

www.meilerlab.org/bclcommons

EMAN Helixhunter96: 𝛼-helix detection (EMAN1)
SSEhunter97: 𝛼-helix, 𝛽-sheet, and trace98

detection (EMAN1 & Gorgon)
SSEBuilder: builds 𝛼-helices and 𝛽-sheets

(EMAN1 & Chimera)
Pathwalking99: Trace detection (EMAN2)

blake.bcm.edu/emanwiki

Gorgon99 Interactive modeling which includes SSEHunter
(GUI)

gorgon.wustl.edu

He’s SSELearner100 (𝛼-helix and 𝛽-sheet)
SSEtracer101 (𝛼-helix, 𝛽-sheet, and backbone)
StrandTwister (𝛽-sheet)

www.cs.odu.edu/dsi/software.html

IMP102,103 Multi-scale integrative modeling platform salilab.org/imp

Ma’s Sheetminer104 (𝛽-sheet)Sheettracer105

(𝛽-strand)

PyRy3D106 MC-based integrative modeling platform genesilico.pl/pyry3d

SITUS Genetic algorithm based 𝛼-helix detection
(voltrac)107

situs.biomachina.org

High resolution COOT88 Macromolecular model building, completion,
and validation, including rigid-body fitting
(GUI)

www2.mrc-lmb.cam.ac.uk/personal/
pemsley/coot

Phenix90 Macromolecular model building, completion,
and validation, including ligand fitting (GUI)

www.phenix-online.org

REFMAC89 Refinement of macromolecular structures using
maximum likelihood and Bayesian statistics

www2.mrc-lmb.cam.ac.uk/groups/
murshudov

CC, cross-correlation; GUI, graphical user interface; MD, molecular dynamics; MC, Monte Carlo; SA, simulated annealing.

restraints provided by the EM data. Kovacs et al.121

generated an ensemble of 𝛼-helices with alternative
orientations that are compatible with density rods of
the EM map. In an alternative method, EM-Fold95

directly assembles predicted SSEs into the target
electron densities using a Metropolis Monte Carlo
algorithm with a knowledge-based energy function.
By bending, translating, and resizing the predicted
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FIGURE 8 | Identification of secondary structure elements in experimental cryo-electron microscopy (EM) density maps. The experimental maps of
several viral proteins are shown in the first row: the 6.8 Å resolution capsid proteins P8 and P3 from rice dwarf virus (EMDB ID: 1060) in columns (a)
and (b), respectively; the upper domain of a hexon subunit from the 8 Å resolution Herpes simplex virus 1 (HSV-1) cryo-EM density map in column (c);
and a gp5 monomer from the 9.5 Å resolution structure of the P22 phage (EMDB ID: 1101) in column (d). The 𝛼-helices (green cylinders) and 𝛽-sheets
(cyan polygons) extracted using SSEhunter are illustrated in the middle row. In the last row, the corresponding X-ray structures (PDB IDs: 1UF2, 1NO7,
and 1OHG) are superposed on the SSEhunter results with the discrepancies in identification highlighted in red. Reproduced with permission from
Ref 85.

SSEs, the program builds physically realistic models
that are compatible with the densities of the map.

INTEGRATIVE APPROACHES

In particular cases, the unambiguous elucidation
of the fitting conformation, the identification of
SSEs, or the characterization of the topology is not
possible unless additional information from comple-
mentary sources provides the necessary constraints.
These structural constraints can be extracted from

biophysical techniques complementary to EM such
as small-angle X-ray scattering (SAXS), fluorescence
resonance energy transfer (FRET), NMR spec-
troscopy, and double electron-electron resonance
(DEER), among others, but any structural experimen-
tal (e.g., mutagenesis, proteomics data) or theoretical
(e.g., structure prediction) data can be used as
well.9,122 To facilitate the integration of these data
from disparate sources, an integrative modeling plat-
form (IMP) has been developed by Russel et al.102,103

In this approach, the models can be encoded at

74 © 2014 John Wiley & Sons, Ltd. Volume 5, January/February 2015
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FIGURE 9 | Modeling workflow for the integrative combinatorial approach to elucidate the topology of the proteasome helical bundle. The helical
bundle region (in gold) was segmented from a 7-Å resolution proteasome map (gray transparency; EMDB ID: 2165131), with surrounding subunits
individually colored. Helix limits (cyan sticks) were automatically traced using the VolTrac tool107 from the segmented map (gold transparency). The
anchor points for the C-terminal helix linkers were extracted from the available fitted models of the neighboring subunits (PDB ID: 4B4T131) and are
represented by colored spheres. The secondary structure prediction of the relevant subunits was obtained from their sequences using the PSIPRED
server.132 Colored arrows represent one example of the helical bundle configurations evaluated during the combinatorial search. Note that the anchor
points are now shown as cones pointing toward the connected helix. Resultant models for the helical bundle with individual helices colored according
to the respective lid subunits. These models were further validated with existing crosslinking data and finally refined by flexible fitting. Reproduced
with permission from Ref 80.

different coarse-graining levels in consonance with
the available data. Modeling is considered an assem-
bly process in which the known restraints must be
fulfilled. Several conformational sampling strategies

are considered to build different candidate models.
Once models are generated, they are evaluated by a
potential energy that integrates the restraints derived
from the EM density maps and any other experimental
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source. Finally, IMP provides a variety of tools for the
comparison, clustering, and analysis of such models.
IMP has been applied to the nuclear pore complex,123

ribosomes,124 the 26S proteasome,55 the Hsp90 and
TRiC/CCT chaperonins,125,126 the actin complex,127

and chromatin.128

The 26S proteasome constitutes an excellent
example to illustrate the benefits of integrative
approaches. This extremely large macromolecu-
lar complex of approximately 2.5 MDa is the last
effector of the ubiquitin–proteasome protein degra-
dation pathway and is composed of the 20S core
particle (CP) and the 19S regulatory particle (RP).
The RP consists of 6 AAA-ATPases and at least
13 non-ATPase subunits. An atomic model of the
AAA-ATPase–CP subcomplex was derived from a
20-Å resolution cryo-EM map by integrating experi-
mental information from protein–protein interactions
and homologous structures.129 This model was
improved using IMP to obtain the complete molec-
ular architecture of the 26S holocomplex merging
7 Å resolution data from cryo-EM, X-ray crystallo-
graphic structures, chemical crosslinking, and other
proteomic data.55 The results obtained in these
studies fully agreed with the most recent atomic
models.130,131

We obtained an ab initio model of the key
helical bundle of the RP that governs the ordered
self-assembly process of the entire proteasome using
the novel hybrid approach illustrated in Figure 9.111

The helical bundle is composed of 12 helical densities
that belong to the C-terminal tails (whose atomic
structures have not been determined) of the eight
proteins that form the so-called proteasome lid.
To model the helices and establish the relationship
between the helices and lid proteins, we developed a
hybrid strategy to match recursively a set of geometric
constraints (GCs) with a set of topology constraints
(TCs). The GCs are provided by the locations of the
helices detected in the map and the position of the
C-terminal anchors of the surrounding lid proteins
that served as starting points for modeling. The TCs
include the lengths of individual helices and linkers
estimated from the secondary structure predictions.

The extremely large number of possible configura-
tions of the 12 helices inside of the bundle densities
(∼2× 1012) was dramatically reduced to a handful
of configurations by these constraints. Moreover, a
single configuration accounted for all obtained
crosslinking data and biochemical results. The final
model of the helical bundle allowed us to demon-
strate how this structural framework serves as a hub
for lid assembly prior to its incorporation into the
proteasome.

CONCLUSION

Modeling 3D-EM reconstructions with compu-
tational tools currently enables the interpretation at
near-atomic resolution of different functional states of
macromolecules, thereby deciphering the functional
mechanism of biologically relevant complexes. In
summary, in Table 1, we provide links to the reviewed
available modeling tools with a short description.
Although considerable progress has been achieved
in using these modeling tools, there is still room for
improvement. Major limiting factors include the lack
of standards for assessing the quality of the EM maps
and the lack of criteria for validating model accu-
racy. Given the current improvements in the 3D EM
field, such as detectors, specimen preparation, data
automation, and new software, we are confident that
the number of 3D EM maps available in the EMDB,
as well as the corresponding model structures, will
considerably increase in the near future. This progress
will help the cryo-EM community to develop tools
for the critical assessment of maps and models at
all resolution ranges.14 While the community raises
the quality standards to rival X-ray crystallography,
carefully validated models extracted from EM maps
will positively contribute to current structural biology
research. In a few years’ time, thanks for the joint
effort of microscopists and modeling experts we will
witness the explosive growth in the size and com-
plexity of cryo-microscopy-based imaging data that
will reveal the inner mechanisms of many key cellular
macromolecular machines.
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