
CAV'14 Short Paper Submission

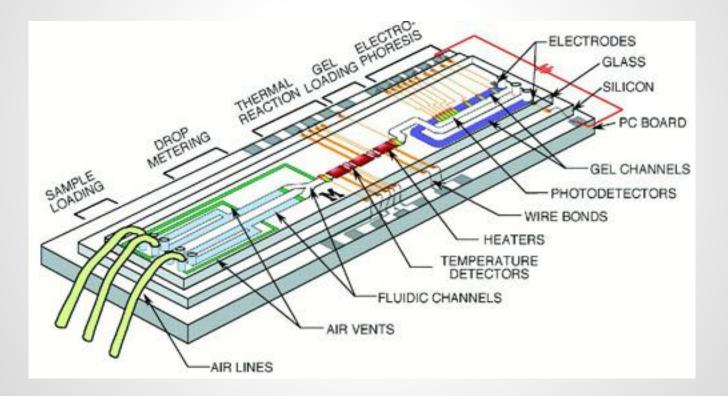
# Synthesis of Microfluidics Chips using SMT Solvers


Asif Khan, Derek Rayside, Vijay Ganesh



### **Example Microfluidic Chip**

Channels with fluids


Instead of wires with electrons.



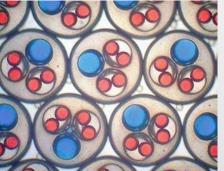
Test fluid or Create emulsion

Instead of computation.

### **Example Microfluidic Chip Schematic**



## **Applications of Microfluidics**


#### Lab-on-a-Chip

- integrates several lab functions
- manipulate minute fluid samples
- performs chemical analysis
- Pathogen and drug testing
- Low cost, scalable, recyclable.

#### • Drops inside drops

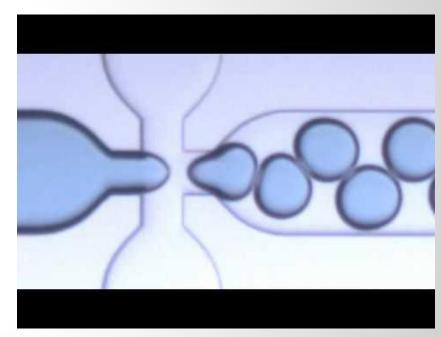
- New emulsions
- Targeted drug delivery





### Fast! Cheap!

Uniform! Unique!


### Larger than a speck of dust

### Nano < Micro < Human

Microfluidics uses the same equations as at human scale. But the impact of the constant factors is different.

### **Constant Factors**

- Higher surface tension
- Fast thermal relaxation
- Diffusion
- Electrowetting
- Initial flow shockwave





Available online at www.sciencedirect.com

### ScienceDirect



### **Recent developments in microfluidic large scale integration** Ismail Emre Araci<sup>1</sup> and Philip Brisk<sup>2</sup>

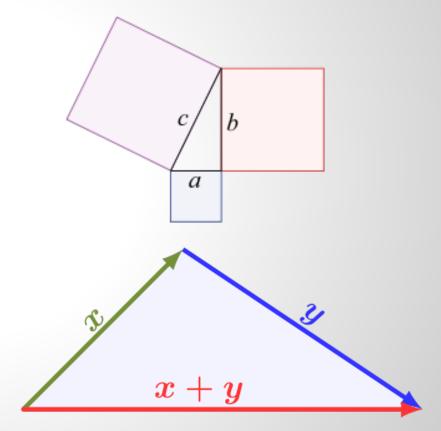
Current Opinion in Biotechnology 2014, 25:60-68

This review comes from a themed issue on Analytical biotechnology

Edited by Frank L Jaksch and Savaş Tay

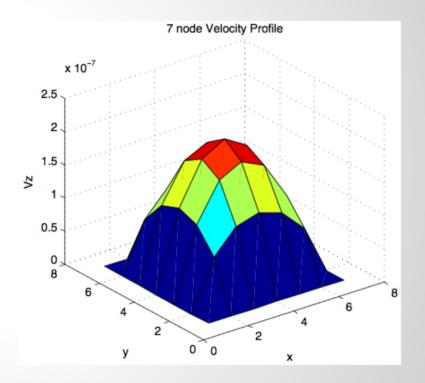
#### Addresses

<sup>1</sup> Department of Bioengineering, Stanford University, Stanford and Howard Hughes Medical Institute, CA 94305, USA <sup>2</sup> Department of Computer Science and Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA

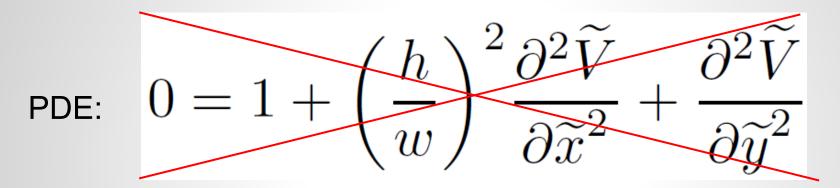

### **Pressure and Flow Constraints**

$$P_i = P_j + (-1)^{\phi} Q_{ij} R_{ij}$$

- Pi: pressure at node i
- Qij: rate of flow from node i to node j
- Rij: hydrodynamic resistance in channel
  - defined in terms of channel shape and size


### **Placement Constraints**

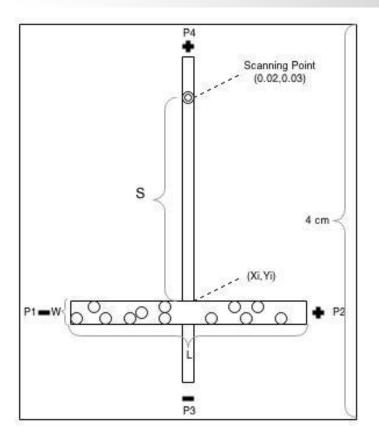
- Desired topology
- External connections
- Manufacturing limits
- Physical limits
- Chip size
- etc.




## **Velocity Profile of Fluid in Channel**

- No-slip boundary (velocity 0 at edge)
- Fastest in centre
- Navier-Stokes eqn




### **Navier-Stokes Eqn for Velocity Profile**



Finite Element Method:  $0 = 1 + \frac{\widetilde{V}_{i+1}^{j} - 2\widetilde{V}_{i}^{j} + \widetilde{V}_{i-1}^{j}}{\Delta \widetilde{x}^{2}} \left(\frac{h}{w}\right)^{2} + \frac{\widetilde{V}_{i}^{j+1} - 2\widetilde{V}_{i}^{j} + \widetilde{V}_{i}^{j-1}}{\Delta \widetilde{y}^{2}}$ 

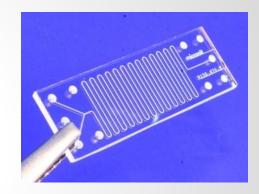
### **Electrophoresis circuit**

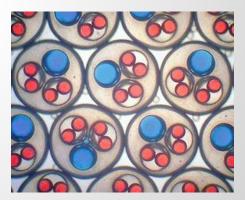
# Detects substance of interest in fluid medium



### dReal scales better than Z3 here

Table 1 Timing results for Z3 and dReal solving the example problem.


| Mesh Size | Z3      | dReal   | $(\delta = 0.002504)$             |
|-----------|---------|---------|-----------------------------------|
| $4^2$     | 4.432   | 0.264   | Times in seconds.                 |
| $5^{2}$   | 4.443   | 0.246   |                                   |
| $6^{2}$   | 27.908  | 0.438   | dReal solutions verified manually |
| $7^{2}$   | 908.278 | 0.737   | and manually compared with Z3 so- |
| $8^{2}$   |         | 1.215   | lutions for validity.             |
| $16^{2}$  |         | 22.610  |                                   |
| $32^{2}$  |         | 596.963 |                                   |


### dReal: SMT with reals, ODEs, trig



### **Microfluidics needs us!**

- Languages!
- Generators!
- Solvers!





## **Microfluidics vs Digital Circuits**

- Channels matter: shape, diameter, surface area, length, intersection angles, intersection cross-sections, etc.
- *Mixed circuits:* e.g., a microfluidic circuit that has an electronic circuit layered on top of it as a controller.
- "*Through*" (e.g., current/flow) and "*across*" (e.g., voltage/pressure) variables.