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Evolving spike-timing-dependent plasticity
for single-trial learning in robots

By Ezequiel A. D i Paolo

School of Cognitive and Computing Sciences, University of Sussex,
Brighton BN1 9QH, UK (ezequiel@cogs.susx.ac.uk)

Published online 18 August 2003

Single-trial learning is studied in an evolved robot model of synaptic spike-timing-
dependent plasticity (STDP). Robots must perform positive phototaxis but must
learn to perform negative phototaxis in the presence of a short-lived aversive sound
stimulus. STDP acts at the millisecond range and depends asymmetrically on the
relative timing of pre- and post-synaptic spikes. Although it has been involved in
learning models of input prediction, these models require the iterated presentation of
the input pattern, and it is hard to see how this mechanism could sustain single-trial
learning over a time-scale of tens of seconds. An incremental evolutionary approach is
used to answer this question. The evolved robots succeed in learning the appropriate
behaviour, but learning does not depend on achieving the right synaptic con¯guration
but rather the right pattern of neural activity. Robot performance during positive
phototaxis is quite robust to loss of spike-timing information, but in contrast, this loss
is catastrophic for learning negative phototaxis where entrained ¯ring is common.
Tests show that the ¯nal weight con¯guration carries no information about whether
a robot is performing one behaviour or the other. Fixing weights, however, has the
e®ect of degrading performance, thus demonstrating that plasticity is used to sustain
the neural activity corresponding both to the normal phototaxis condition and to
the learned behaviour. The implications and limitations of this result are discussed.

Keywords: spiking neural networks; spike-timing-dependent plasticity;
activity-dependent synaptic scaling; single-trial learning; evolutionary robotics

1. Introduction

The aims of autonomous robotics, as conceived by W. Grey Walter (1953) and oth-
ers, are scienti¯c as well as practical. The design of autonomous robots has a lot
to gain from drawing inspiration from the biological sciences, and, by constructing
integrated adaptive agents in constant sensorimotor coupling with their environment,
autonomous robotics o®ers a powerful modelling tool capable of informing biology.
Grey Walter saw the potential signi¯cance of whole-agent modelling, even when
using extremely simpli¯ed analogies to animal nervous systems, as a complement to
detailed subsystem modelling, where typically abstractions occur at di®erent levels.
Computational neuroscience is a good example of this latter mode of research, where
sensorimotor loops are opened by assuming known and independent input patterns
to a system, but where the modelling granularity is richer.

One contribution of 16 to a Theme `Biologically inspired robotics’.
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Figure 1. Time window for STDP. The percentage and direction of synaptic change are given
by the time di® erence between pre-synaptic (ti) and post-synaptic (to) spikes.

There is potentially much to be gained by using autonomous, and in particu-
lar evolutionary, robotics in an exploratory mode by looking for the consequences
of including di®erent mechanisms, analogous to neural counterparts, into a robot’s
controller and studying their e®ects on behaviour (Ruppin 2002). Examples of work
of this kind include Webb’s robotic model of cricket phonotaxis (Webb 1995, 2000),
the study of e®ects of gaseous neuromodulators in arti¯cially evolved neural con-
trollers by Husbands et al. (1998), and the study of self-organizing neural network
con¯guration by evolving synaptic plasticity by Floreano & Urzelai (2000). The cur-
rent work seeks to similarly explore the e®ects of synaptic spike-timing-dependent
plasticity (STDP) in a single-trial learning scenario using the evolutionary robotics
methodology (Nol¯ & Floreano 2000).

Grey Walter himself explored learning behaviour as a natural extension to the
behavioural repertoire of his robotic tortoises. He reported a further development
on Machina speculatrix which involved, besides phototaxis and obstacle avoidance,
the capability of associating two classes of stimuli and so led to a form of condi-
tional learning. He called this new robot Machina docilis. `Memory’ was stored in
an oscillating circuit (Walter 1951, 1953). Oscillations would serve as a trace of the
conjoint appearance of conditioned and unconditioned stimuli, so that after learning,
the conditioned stimulus alone, together with the trace, would elicit the appropriate
response. The majority of current models of learning tend to think of such memory
traces in a di®erent way. In°uenced by connectionist models, learning is thought to be
achievable thanks to synaptic plasticity and what is learned is re°ected in long-term
changes in the weight con¯guration of the whole network. The `trace’ was inherently
dynamic for Walter, whereas connectionists more often think of a punctuated change
followed by a static situation.

Work on evolutionary robotics has begun to challenge this stationary perspective
on learning by providing examples of evolved learning behaviour in robots using neu-
ral networks that lack synaptic plasticity, and yet retain enough dynamic plasticity
to respond with di®erent patterns of activity in a history-dependent manner (Tuci et
al. 2003; Yamauchi & Beer 1994). Other work has demonstrated that synaptic plas-
ticity may form part of the complex dynamics of the network, never actually resting
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on a stationary con¯guration, but remaining engaged in constant changes brought
about by the closed sensorimotor loop (Di Paolo 2000, 2003; Floreano & Urzelai
2000). Synaptic plasticity plays a traditional role in none of these models; moreover,
the models demonstrate that synaptic plasticity is, in the most general case, not nec-
essary for learning to occur and that its presence can subserve functional purposes
other than learning.

This paper is motivated by an exploration of this issue in the case of STDP in
networks of spiking neurons. Recent work in evolutionary robotics has begun to
explore the use of spike-based neural controllers (Floreano & Mattiussi 2001; French
& Damper 2002). Spiking neural networks possess a number of attractive features.
They have greater computational power than similar networks of threshold sigmoidal
gates (Maass 1997). They can support a variety of functional speci¯city from rate-
based codes to structured codes based on the timing of action potentials (Gerstner
et al. 1997). They can perform novel kinds of computation, such as the recognition of
temporal patterns using transient synchrony (Hop¯eld & Brody 2001) and real-time
computation without stable states in high-dimensional `liquids’ of transient activity
(Maass et al. 2002). Their complexity makes evolutionary robotics an appropriate
tool of design and exploration.

STDP is a fast-acting mechanism which potentiates or depresses a synapse,
depending on the relative timing between single pre- and post-synaptic spikes. The
case most described in the literature is temporally asymmetric: potentiation occurs
if the pre-synaptic spike arrives before the post-synaptic spike and depression occurs
otherwise. The e®ective time-scale of STDP is of tens of milliseconds|no synaptic
e®ect occurs between spikes separated by longer periods. Although its cumulative
e®ect could lead to predictive learning in the presence of an iterated sequence of
inputs (see below) it is not clear how other forms of learning, such as single-trial
learning, could be achieved by STDP given the vast di®erences in time-scale between
the mechanism and the task requirement (typically seconds at least). See also Mehta
et al. (2002) on this issue. Grey Walter’s oscillator circuit was, at least in principle,
capable of such learning. Whether single-trial learning is possible at all using only
STDP is the question we ask in this investigation. For this, we extend our recent
results in evolving STDP controllers for simple phototaxis in order to evolve robots
capable of reverting from positive to negative phototaxis in the presence of a sound
stimulus.

Section 2 provides some background on recent work on STDP, x 3 describes the
methods, x 4 describes the results, and the last section draws some conclusions.

2. STDP

Experimental neuroscienti¯c evidence suggests that the degree and direction of
change in the strength of a synapse subject to repeated pairings of pre- and post-
synaptic action potentials depend on their relative timing (Bi & Poo 1998; Markram
et al. 1997). (See Bi & Poo (2001) for a review.) Synaptic modi¯cation depends on
whether the pre- and post-synaptic spikes are separated in time by less than a critical
window of the order of a few tens of milliseconds. In most cases studied, if a pre-
synaptic spike precedes the post-synaptic spike, the synapse is potentiated, whereas
the opposite relation leads to depression of the synapse. This results in a temporally
asymmetric plasticity rule (¯gure 1), which deserves the name `Hebbian’ because
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of its tendency to strengthen causal correlations between spikes. There is empirical
evidence, however, for non-Hebbian plasticity of this kind (Abbott & Nelson 2000;
Bi & Poo 2001). Many theoretical studies have concerned themselves with this rule
of plasticity and its desirable properties, such as a trend towards inherent stability
in weight distribution and neural activity, unlike purely rate-based Hebbian rules
which often require additional constraints (Kempter et al. 1999; Rubin et al. 2001;
Song et al. 2000). One possible expression for this rule is

¢w =

(
wm axA + exp( ¡ s=½ + ) if s > 0;

¡ wm axA¡ exp(s=½ ¡) if s < 0;

where s = to ¡ ti is the time di®erence between a post-synaptic and pre-synaptic
spike, A + and A¡ are positive constants, and ½ + and ½ ¡ correspond to an exponential
decay of the order of a few tens of milliseconds. Other ¯lters may be used instead
of the exponential decay, but this form is particularly suitable for implementation in
an evolutionary robotics context, as will be shown in the next section.

One of the key concerns when studying rules for synaptic plasticity is their regu-
latory properties. Hebbian learning on its own leads to runaway processes of poten-
tiation and cannot account for the stability of neural function. Additional elements,
such as the directional damping of synaptic change (Rubin et al. 2001) or longer-term
stabilizing regulation based on post-synaptic activity (Horn et al. 1998; Turrigiano
1999), may come to the rescue. These can lead to unsaturated distributions of synap-
tic strengths in the ¯rst case and to regulated neuronal ¯ring in the second, and will
also be investigated in this work.

Although STDP is a topic that has drawn much attention recently, most theoretical
studies have concerned themselves with the properties of the temporally asymmetric
plastic rule. There are, however, a few hypotheses about its functional role. For
instance, Abbott & Blum (1996) show in a general model how ¯ring patterns in a
neural array (such as a receptive ¯eld), where neurons ¯re preferably at certain input
values in a sequence of inputs, can, by means of temporal asymmetry in plasticity,
lead to prediction of the inputs in a sequence through repeated presentation. This is
because the synapses of neurons that ¯re in succession are strengthened from those
that ¯re ¯rst to those that ¯re later (and are depressed in the opposite direction).
Empirical evidence in the experience-dependent change in skewness in place ¯elds in
the rat hippocampus supports the ¯ndings of this model (Mehta et al. 1997, 2000).
Related to this, Yao & Dan (2001) have found that repetitive pairing of visual stimuli
at two di®erent orientations induced a shift in orientation tuning in cat cortical
neurons depending on the relative timing of presentation and is compatible with
STDP.

Other related functional implications have also been suggested. Rao & Sejnowski
(2001) suggest that STDP could be involved in implementing some form of temporal-
di®erence learning (Sutton 1988) and show this in a model of input spike prediction;
and Chechik (2003) has recently compared theoretical rules of plasticity derived from
the principle of information maximization of relevant input with empirical rules to
conclude that temporal asymmetry can increase input information to near optimal
levels.

This kind of functionality is hard to compare with the results obtainable from
the present work on a simple robotic task, as it is more likely to play a signi¯cant
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role when sensory surfaces or arrays are included in the robot model as well as
something equivalent to receptive ¯elds. Because of the constraints put by the number
of evolutionary evaluations, such elements are not included in this initial study but
will be of central importance in the future.

3. Methods

(a) Robots and tasks

Since we are interested in exploring a novel mechanism for robot control, the chosen
task is at this stage deliberately simple so as to facilitate comparisons with alternative
approaches. Simulated robots are evolved to perform phototaxis on a series of light
sources. The robots have circular bodies of radius R0 = 4, with two motors and two
light sensors. The angle between sensors is 120¯, but a small random displacement
of between ¡ 5 and 5¯ is added at the start of each evaluation. Motors can drive the
robot backwards and forwards in a two-dimensional unlimited arena.

The neural network consists of six nodes and is fully connected except for self-
connections. Neurons can be either excitatory or inhibitory and this is set genetically.
Trials with larger numbers of neurons have been carried out successfully, but have
not been systematically studied.

The whole system is simulated using an Euler integration method with a time-
step of 1 ms (25% of the minimum time-scale). Robots are run for two independent
evaluations, each consisting of the sequential presentation of two distant light sources.
Only one source is presented at a time for a relatively long period T S chosen randomly
for each source from the interval [7:5 s; 12:5 s] (each evaluation consists therefore of an
average of 2 £ 104 update cycles). The initial distance between robot and new source
is randomly chosen from [60; 80], the angle from [0; 2 º ) and the source intensity from
[3000; 5000]. The intensity decays in inverse proportion to the square of the distance
to the source.

The simulated robots use photoreceptors that are activated by the light intensity
corresponding to their current position if the light source is directly visible (i.e. an
angle of acceptance of 180¯). This intensity is multiplied by the sensor gain equal for
both sensors (genetically set from range [0:1; 20]) and clipped for values beyond a
maximum of 20. A spike train is generated using a Poisson process with variable rate
(maximum 100 Hz) by linearly transforming the sensor value into the instantaneous
¯ring frequency. The Poisson spike trains coming from the left and right sensors are
fed into neurons N2 and N3, respectively. Additionally, uniform noise is present in the
sensors (and motors) with range 0.2 (before scaling by gains): this results in spikes
that ¯re randomly with very low probability when the sensor is not stimulated. A
`sound’ sensor is used for the aversive stimulus and is activated in half of the trials,
when the robot must learn to perform negative phototaxis. In such trials, the sound
sensor is activated when the robot has approached a source of light more than half
the initial distance.

Two motors control the robot wheels. Each motor is controlled by two neurons,
one that drives it forwards and the other one backwards, using a spike-based leaky
integrator. The left motor is controlled by neurons N0 (forward) and N4 (backward)
and the right motor by neurons N1 (forward) and N5 (backward).

A population of 30 robots was evolved using a generational GA with truncation
selection. In the plastic scenarios described below initial weights are randomly chosen
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at the start of each evaluation from the interval [0; wm ax], while the parameters for
the plasticity windows and scaling constants are evolved. In the non-plastic scenario,
synaptic strengths are encoded genetically. Other genetically set parameters include
sensor and motor gains, motor decay constant and whether neurons are inhibitory or
excitatory. All parameters are encoded in a real-valued genotype, each gene assum-
ing a value within [0; 1], threshold of 0.5 to encode whether a neuron is excitatory
or inhibitory; each parameter is linearly scaled to the corresponding range of val-
ues, except for sensor and motor gains which are scaled exponentially. Only vector
mutation (Beer 1996) is used with a standard deviation of vector displacement of
0.5 (maximum genotype length is 220), genetic boundaries are re°ective. Fitness for
normal phototaxis is calculated according to

F p =
(1 ¡ M 2)

T S

Z
f dt; f = 1 ¡ d

Di

if the current distance to the source d is less than the initial distance Di, otherwise
f = 0. M measures the average di®erence in activity between the motors divided by
the motor gain,

M =
0:125

T S

Z
(M L ¡ MR)

MG
dt:

Near-optimal ¯tness will be obtained by robots approaching a source of light rapidly
and with minimal integrated angular movement. This measure is applied to half the
number of trials per individual evaluation. In the other half the robot must learn,
on sensing the aversive stimulus, to avoid the light. This may be achieved in two
di®erent ways, either by making F n p = 1 ¡ F p during the whole trial, or by making
F n p = 1 ¡ F p only if the aversive stimulus has been sensed at least once, otherwise
F n p = F p . The di®erence between the two is that in the ¯rst case, positive phototaxis
must be pre-evolved on its own for a small number of generations, otherwise the initial
random population already performs to 50% of the maximum ¯tness and will not
evolve to regulate behaviour according to the presence of light. In the second case,
this pre-evolution stage is not necessary, as the ¯tness rewards positive phototaxis
as long as the sound is not heard. Only robots that perform a certain degree of
phototaxis will ¯nd themselves in a condition where the ¯tness measure changes so
they must additionally evolve light avoidance from that point onwards.

(b) Neural controller

An integrate-and-¯re model with reversal is used for the neural controller. The
time evolution of the membrane potential V of a neuron is given by

½ m
dV

dt
= Vres t ¡ V + gex(t)(Eex ¡ V ) + gin (t)(Ein ¡ V );

where ½ m is the membrane time constant (range [10 ms; 40 ms]), vres t = ¡ 70 mV is
the rest potential, the excitatory and inhibitory reversal potentials are, respectively,
Eex = 0 mV and Ein = ¡ 80 mV.

A noisy threshold value, Vth res , is given by a normal distribution with a geneti-
cally set mean value (range [ ¡ 60 mV; ¡ 50 mV]) and a deviation of 1 mV. When the
membrane potential reaches this threshold, an action potential is ¯red and V is reset
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to Vres t. A random refractory time distributed uniformly in the interval [2 ms; 4 ms]
prevents the neuron from ¯ring another spike within this period.

Every time a spike arrives to neuron j from an excitatory pre-synaptic neuron i
the (non-dimensional) excitatory conductance of j is increased by the current value
of the synaptic strength (wij(t)):

gex(t) ! gex(t) + wij(t):

The inhibitory conductance gin is similarly a®ected by spikes coming from inhibitory
neurons. The conductances otherwise decay exponentially,

½ ex
dgex

dt
= ¡ gex; ½ in

dgin

dt
= ¡ gin ;

with ½ ex and ½ in genetically set for each neuron from the range [4 ms; 8 ms].
The current motor value is stored in variables ML ,R, which are directly translated

into the left and right velocities, respectively,

½ m ot
dML ,R

dt
= ¡ ML ,R + MG

³ X
¯ (t ¡ t

(f)
forw) ¡ ¯ (t ¡ t

(f)
b ack)

´
;

with ½ m ot genetically set from the range [40 ms; 100 ms] and MG from [0:1; 50]. Both
motors have a same value for their gains and decay constants. For this low inertia
model the output of the motor provide the instantaneous velocities on the right-
and left-hand sides. This approach marks a di®erence with previous work on the
evolution of spiking controllers which have used a neural rate estimation method for
driving the motor (Floreano & Mattiussi 2001).

(i) STDP

The properties of plastic windows (¯gure 1) are evolved for each synapse in the
neural network controller. Following Song et al. (2000), synaptic change is imple-
mented using two recording functions per synapse P ¡(t) and P + (t). Every time a
spike arrives at the synapse, the corresponding P + (t) is incremented by A + and,
every time the post-synaptic neuron ¯res, the corresponding P ¡(t) is decremented
by A¡. Otherwise, these functions decay exponentially with time constants ½ ¡ and
½ + , respectively. P ¡(t) is used to decrease the synaptic strength every time the
pre-synaptic neuron ¯res:

wij(t) ! wij(t) + wm axP ¡(t):

Analogously, P + (t) is used to increase the synaptic strength every time the post-
synaptic neuron ¯res:

wij(t) ! wij(t) + wm axP + (t):

Accordingly, coincidental spikes produce both depression and potentiation in the
synapse. The maximum synaptic strength is wm ax = 1. This method facilitates the
computational implementation of STDP by eliminating the need for keeping track
of spike trains or calculating other response functions which could be more costly.

The values for A+ and A¡ and ½ + and ½ ¡ are genetically set per synapse from the
ranges [0:0001; 0:05] and [10 ms; 40 ms], respectively. In all the experiments reported
here the plastic windows are Hebbian, that is, spikes arriving before a post-synaptic
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action potential always potentiate a synapse and those arriving after always depress
it. Experiments relaxing this constraint, i.e. allowing anti-Hebbian or purely poten-
tiating or depressing windows, have also been carried out successfully, but are not
reported here.

(ii) Activity-dependent scaling (ADS) of synapses

Some of the mechanisms used by neurons to regulate their ¯ring rate homeostati-
cally are thought to a®ect all incoming synapses scaling them up or down indepen-
dently of the pre-synaptic activity (Turrigiano 1999). If the post-synaptic activity
is above a certain target, excitatory synapses are scaled down; otherwise, they are
scaled up, thus preventing sustained levels of activity that are too high or too low.
Following van Rossum et al. (2000), excitatory synapses are modi¯ed according to

½ AD S
dwij

dt
= wij(zgoal ¡ zj);

where zgoal = 40 Hz and ½ AD S is genetically set from the range [1 s; 10 s]. The ¯ring
rate zj of a neuron is estimated by a leaky integration of the spike train,

½ z
dzj

dt
= ¡ zj +

X
¯ (t ¡ t(f));

where t(f) are the times when the neuron emits a spike (the sum runs over all previous
spikes) and ½ z = 100 ms.

In real neurons, this is a mechanism that acts over long time-scales (over hundreds
to thousands of seconds) (Turrigiano et al. 1998), but due to computational limita-
tions (the very long evaluation runs that would be required) the chosen time-scale
( ¹ ½ AD S ) is faster than this but still signi¯cantly slower than the rest of the time-
scales in the system. Even though the above mechanism acts on excitatory synapses,
in the current context it has also been applied when the pre-synaptic neuron is
inhibitory by multiplying the right-hand side above by ¡ 1. A similar homeostatic
mechanism has been successfully implemented in robots capable of adapting to sen-
sorimotor disruptions not previously experienced (Di Paolo 2000).

(iii) Directional damping

Synaptic weights are constrained within the range [0; 1]. This can be achieved
simply by a stop condition at the boundaries or by means of damping factors that
vanish as the weight value approaches a boundary. The choice can have important
consequences. No damping leads to a bimodal distribution of weights under random
stimulation (Song et al. 2000), where most weights adopt the minimum or maxi-
mum values in the range, but few values in between. The same happens with purely
positional damping, i.e. factors that slow down weight change near the boundaries,
but depend only on the current weight value. A biologically plausible alternative is
directional damping, whereby if a weight value is near a boundary, changes that push
this value towards the boundary are slowed down, but changes that push it away
from the boundary are not. The equilibrium weight distribution in this case tends
to be unimodal and centred around the point where potentiation and depression
equilibrate (Rubin et al. 2001). Directional damping is supported empirically by the
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observation that spike-driven potentiation is more pronounced than the expected
linear variation at synapses of relatively low initial strength in cultured hippocampal
cells (Bi & Poo 1998). It was also observed that the mean fractional negative change
was constant over a wide range of initial weights, corresponding to a damping linear
factor for absolute depression equal to the current weight value.

Linear directional, or multiplicative, damping is simply implemented by transform-
ing a weight change (as resulting from STDP or ADS or both):

¢wij ! (1 ¡ wij)¢wij if ¢wij > 0;

¢wij ! wij¢wij if ¢wij < 0;

)
for wij 2 [0; 1]:

(iv) Neural noise

Di®erent sources of neural noise have been modelled. At any given time, Gaus-
sian noise with zero mean and 1 mV deviation is applied to the value of the ¯ring
threshold. This is the only source of neural noise in the ¯rst set of experiments.
Additionally, for the second set, the refractory period is randomly set every time-
step using a uniform distribution ([2 ms; 4 ms] for cases of short refractory period,
[4 ms; 8 ms] for long refractory periods). Background noise is modelled as an incom-
ing Poisson train to every neuron with a frequency of 10 Hz, and spontaneous ¯ring
has also been modelled using a baseline 10 Hz Poisson process for each neuron, but
subject to refraction.

(v) Synaptic decay

In order to test the robustness of the evolved controllers to perturbations in their
internal con¯guration, synaptic weights are allowed to decay exponentially to zero
with a time constant that can be as fast as 100 ms. Synaptic decay is not a®ected by
directional damping and is not applied during evolution but only during behavioural
tests.

(vi) Poisson ¯lters and randomized delays

In order to test the reliability of the evolved controllers on the precise timing of
spikes, the simple expedient of ¯ltering the output of a neuron with a Poisson process
emitting random spikes at the same instantaneous rate has been used. Information
about ¯ring rate is conserved, but precise spike-timing is disrupted. Because the
rate, z, is estimated using only previous spikes, it is only possible to approximate the
instantaneous ¯ring rate of the neuron in this manner. It is expected, however, that
if controllers rely heavily on ¯ring rates, the disruption in performance should not
be too strong. A more sophisticated method consists of introducing arti¯cial random
delays in the ¯ring time of single or multiple neurons. This is done by keeping a
short subtrain corresponding to the last T ms of activity and swapping the current
¯re state of a neuron with a randomly selected state in the subtrain, thus conserving
the number of spikes. This is similar in objective to tests in vivo on honeybee odour
discrimination demonstrating the role of synchronized neural assemblies (Stopfer et
al. 1997). These tests are applied only after evolution.
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Figure 2. Fitness and robustness. (a) Average ¯tness of the best individual in the last generation
(¯ve independent runs for each condition, no plasticity, STDP with no directional damping,
STDP with damping, STDP + ADS and CTRNN controllers for comparison). (b) Robustness
against synaptic decay; t d ecay indicates the speed with which weights decay exponentially to
zero (10 evaluations per point, error bars indicate standard deviation).

(vii) Continuous-time, recurrent neural networks (CTRNNs)

Control runs using rate-based CTRNNs (Beer 1990) have been performed. These
are de¯ned by

½ i
dVi

dt
= ¡ Vi +

X

j

wjizj + Ii; zj =
1

1 + exp[ ¡ (Vj + bj)]
;

where Vi represents the membrane potential of neuron i, ½ i the decay constant (range
[0:4 s; 4 s]), bi the bias (range [ ¡ 3; 3]), zi the ¯ring rate, wij the strength of synaptic
connection from node i to node j (range [ ¡ 8; 8]), and Ii the degree of sensory per-
turbation for sensory nodes. A plastic version of these controllers has also been used,
and is described in more detail later.

4. Results

(a) Normal phototaxis

For completeness, results for normal phototaxis are summarized in this section. A
more detailed study can be found in Di Paolo (2003). Robots are able to evolve
normal phototaxis using STDP and STDP + ADS controllers, as well as non-plastic
ones (¯gure 2a). It is found that selecting for plastic properties operational at the
millisecond range, successfully produces controllers capable of adaptive behaviour
at a time-scale of many seconds. The e®ect of synaptic decay has been studied and
STDP + ADS controllers have been found to perform more robustly under such
perturbations (¯gure 2b). This is not surprising given the compensatory nature of
the ADS mechanism. Interestingly, it was often found that ADS plays a balancing
role for neural input which often leads to synaptic oscillations and a bursting ¯ring
pattern and `rhythmic’ patterns of movement as shown in ¯gure 3.
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Figure 3. Example of evolved STDP + ADS controller. (a) Trajectory; the small circle indicates
the position of the light source and the robot’ s distance from it is plotted in the inset. (b) Oscil-
latory weight dynamics for three synapses a® ecting node N0, together with its ¯ring pattern.
Other nodes and synapses show similar behaviour.
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Figure 4. Noise and disruption of spike timing: (a) e® ect of increased and decreased spontaneous
random neural ¯ring on network performance on three independently evolved individuals for
STDP + ADS controllers (similar dependence for the other cases). All networks were evolved
with a background random ¯ring of 10 Hz (vertical lines) and performance in normalized at this
point. Each point is the average of 20 runs; (b) e® ect of spike-train randomization for all neurons,
averaged over ¯ve independent runs, for the case of noisy neural controllers and STDP + ADS
low neural noise controllers (squares).

Controllers including neural noise do not greatly change these results, with two
important exceptions. Firstly, it is found that noise has functional value for the
neural controllers as shown by the e®ects on performance of modifying the level of
noise. Larger levels of neural noise lead to poorer performance, as expected, but so do
smaller levels, thus indicating that the controllers have evolved to rely on an optimal
presence of neural noise (¯gure 4a). Secondly, the response to spike randomization
is also di®erent for noisy and non-noisy controllers. The latter tend to ¯re regular
and often synchronized spike trains, which, on disruption or application of Poisson
¯lters, produce catastrophic reductions in performance (¯gure 4b). In contrast, noisy
controllers are much more robust, even though spike trains also show some evidence
of temporal coordination (not shown). The unintuitive conclusion is that, despite its
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reliance on precise spike-timing, STDP can manage to con¯gure a successful neural
controller even when spike-timing information is lost.

The asymmetric STDP rule retains certain interesting properties in this case when
compared with a rate-based synaptic controller. It is found that STDP controllers
are able to reach a stable state more rapidly and more reliably than the rate-based
counterparts under the same conditions, thus achieving higher ¯tness by being able
to perform the task earlier in their lifetimes. This is shown by comparing the time
variance across many runs for STDP and rate-based controllers. Unlike the latter,
the former decreases to very low values, thus indicating that the ¯nal distribution of
weight values does not depend strongly on spike-timing information (Di Paolo 2003).

(b) Single-trial learning

A simple learning task is implemented using the above scenario. The robot must
approach sources of light as usual, but if an aversive stimulus (`sound’) is presented
once during the approach, then it must avoid them from then on. Robots are then
evaluated on two di®erent conditions: (i) normal phototaxis in the absence of aver-
sive stimulus, and (ii) negative phototaxis in the presence of aversive stimulus. For
balance, each evaluation consists of an equal number of trials under each condition.
Because the two conditions are described by opposite ¯tness criteria (see x 3), it is
actually extremely improbable that an initially random population will be able to
evolve the desired behaviour, as from the start it will achieve an average ¯tness of 50%
by not doing anything (implicitly, not approaching the light under condition (i)). Of
the two solutions to this problem proposed above, here the ¯rst one is used: the popu-
lation is pre-evolved to perform normal phototaxis for a few generations. Preliminary
tests with the other option showed it was harder to evolve.

Additionally, an incremental method is used for the robots to evolve appropriate
responses to the aversive stimulus. Each evaluation consists of the presentation of ¯ve
sources of light in sequence. If the stimulus is presented only once, on approaching the
¯rst source, the opportunity presented during evolution for the controller to explore
reasonable responses is available only during a short time window and absent during
the rest of the trial. A solution to this problem is to present the aversive stimulus on
approaching each of the ¯ve sources of light and evolve a reactive withdrawal during
a ¯xed number of generations. After that, the stimulus is presented on approaching
the ¯rst four sources of light, but not the last one, again for a ¯xed number of
generations, and so on, until, ¯nally, the stimulus is presented on approaching only
the ¯rst source of light. In this way, what is initially a withdrawal response requiring
the constant presence of the stimulus evolves into single trial learning requiring its
presence only in one instance. Other variants of this process are possible, including
making the aversive stimulus less and less reliable over generations for all except the
¯rst source of light (e.g. by introducing noise, or reducing its intensity).

(i) Evolution and behaviour

Figure 5 shows one run at the end of which single-trial learning evolved using
only STDP with eight fully connected noisy neurons (5 Hz background ¯ring). Each
evaluation consisted of one trial under each condition. Normal phototaxis is pre-
evolved during the ¯rst 10 generations (zone I in the ¯gure). It is not necessary (and
perhaps inconvenient) to achieve a high level of ¯tness during this stage. In zone II
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Figure 5. Average and maximum ¯tness using an incremental approach to single-trial learning.
Stage I corresponds to normal phototaxis in all trials and stage II to withdrawal reaction in half
of the trials with constant presentation of aversive stimulus; in stage III the aversive stimulus is
presented in the ¯rst four of ¯ve light sources, and in stage IV the stimulus is presented in the
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Figure 6. Distance between robot and light source during the sequential presentation of
30 sources: (a) normal phototaxis; (b) negative phototaxis after presentation of aversive stimulus
on ¯rst light source. The inset shows the time when stimulus is presented.

the aversive stimulus is presented on approaching each of the ¯ve light sources, in
zone III on approaching four of the ¯ve, and in zone IV the number of light sources is
extended to six and the stimulus is presented on approaching the ¯rst two. A further
stage was found to be unnecessary; by this point the robots were able to perform
single-trial learning. In this case, the controller is made of ¯ve excitatory and three
inhibitory neurons (both backward motors and the interneuron). In other runs a
similar balance has been obtained with either three excitatory and ¯ve inhibitory
neurons or equal numbers of inhibitory and excitatory neurons. Sensor neurons have
always tended to be excitatory.

The behaviour of the best robot of the last generation can be seen in ¯gure 6,
where the distance to the light source is plotted over time. If the sound stimulus is not
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Figure 7. Mean squared di® erence between weight values over time for the positive and negative
phototaxis conditions for a same controller averaged for 10 comparisons and for all the weights.

presented during the trial the robot performs normal phototaxis in a stable manner
(¯gure 6a shows the presentation of 30 light sources, whereas the robot has been
evolved for at most six light sources). However, on presentation of the sound stimulus
after approaching the ¯rst source of light, the robot learns to avoid other sources
from that point onwards (¯gure 6b, note the vertical scale). It is interesting that there
is no extinction of the learned behaviour. Under the conditions of evaluation, there
is no adaptive gain to forgetting what has been learned, even though it is possible
to conceive similar scenarios where this would be advantageous.

(ii) Synaptic and ¯ring patterns

On analysing the di®erences in weight distributions for the robot in the presence
and absence of aversive stimulus, it was found that although some weights show some
degree of di®erence between the two situations, the majority tend to be distributed in
the same regions of the range. Figure 7 shows the squared di®erence of corresponding
weight values over time between runs for normal and negative phototaxis (averaged
for all weights and for 10 pairs of runs). Although the di®erence does not vanish, a
good part of the remaining variance can be attributed to the ¯ring pattern when the
robot performs negative phototaxis, as detailed below. Some weights show a more
pronounced di®erence in their distribution over time; for instance, ¯gure 8 compares
two synapses from the neuron receiving the sound stimulus to the backward left and
right motor neurons. These two cases were found to show qualitatively the most
signi¯cant di®erences in distribution.

A more pronounced di®erence is found in the ¯ring pattern of the neural controller.
Figure 9 shows the activity of the neural network for a robot at the moment of
switching between positive and negative phototaxis on sensing the stimulus (top of
the ¯gure). The ¯ring pattern previous to the stimulus being sensed is characteristic
of positive phototaxis; it shows a response to light sensors (not shown) typical of
robots performing only phototaxis (Di Paolo 2003). On sensing the stimulus the
receptor neuron (N6) as well as others increase their ¯ring frequency for a period of
rapid ¯ring during as long as the duration of the stimulus. This rapid ¯ring activates
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Figure 9. Firing pattern for a network at the point of switching between positive and
negative phototaxis. Sound stimulus is shown at the top.

the two backward motors (N4 and N5) provoking a strong withdrawal reaction.
When the stimulus is sensed for the third time, however, a stable rapid ¯ring pattern
emerges throughout the network. It would seem that this pattern e®ectively produces
a sensor shutdown as sensor information apparently can do little to in°uence the
¯ring of the neurons. The robot simply ignores the presence of light and because of
its fast speed it never stays near it for long enough. However, a comparative test
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Figure 10. Behaviour with perturbed timing information (distance to source in sequential pre-
sentation of six light sources). (a) The negative phototaxis condition with a small randomization
of spike train (subtrain of 5 ms); the time of sound activation is also shown at the top together
with the sound-receptor spike train. Fast ¯ring becomes active after sound is sensed and remains
active during fast withdrawal from the source. However, the pattern is unstable and the robot
reverts to normal phototaxis. (b) The same controller under a positive phototaxis condition with
a signi¯cant degree of spike-train randomization (subtrain of 50 ms); the sound-receptor ¯ring
pattern is included for comparison.

between a normal robot and a robot with arti¯cially removed sensors shows that the
behaviour is di®erent. The normal robot seems to be using light sensor activation
to sustain the rapid ¯ring dynamics, whereas the blind robot completely ignores the
light even when the rapid ¯ring is lost, and so moves more slowly.

If the di®erence between the two modes is to be found mainly in the ¯ring pattern,
then it may be possible to induce the behavioural change at di®erent points in the
robots lifetime. In e®ect, trials in which sound stimulus is presented arbitrarily result
in a switch from positive to negative phototaxis. Thus, the stimulus is acting not
so much as a conditioned stimulus, i.e. as associated with an unconditioned light
stimulus, but rather as a release mechanism capable of inducing a change in behaviour
at any point in the robot’s lifetime. With hindsight, this is not so surprising, as the
¯tness function only asks for a change in behaviour to occur, not for an association
between two classes of stimuli.

(iii) Spike timing and noise

An interesting asymmetry is found when the controller is subject to spike-train
randomization. Whereas the controller doing normal phototaxis is quite robust to
loss of timing information due to the endogenous level of neural noise (Di Paolo
2003), the learning of light avoidance is, on the contrary, quite brittle. The robot may
withdraw from the light in the presence of sound, and rapid ¯ring may be established,
but very soon, if sound is no longer present, the network reverts to normal activity,
and the robot performs positive phototaxis. This is shown in ¯gure 10a, where a
small spike-train randomization has been applied (5 ms subtrain). In contrast, in the
normal phototaxis condition the robot performs well even with signi¯cant loss of
timing information (¯gure 10b shows the distance to the light for 50 ms randomized
subtrain). This indicates that, in the negative phototaxis condition, the maintenance
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Figure 11. Covariograms between left and right forward motor neurons: (a) positive
phototaxis, (b) negative phototaxis. Bands show the estimated interval of signi¯cance.
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The vertical line indicates the level of noise used during evolution; ¯tness has been normalized
at this level.

of rapid ¯ring can only be a stable solution by heavy reliance on entrained spikes,
as is clear in ¯gure 11, which compares the covariograms between the left and right
forward motor neurons for both positive and negative phototaxis (horizontal lines
show interval of expectation for random ¯ring corrected by frequency (Di Paolo
2003)).

Responses to variations in background noise are also di®erent between the two con-
ditions. Figure 12 shows the average performance over 10 trials for di®erent levels of
spontaneous random ¯ring. Fitness is normalized to the evolved noise level (5 Hz).
While performing positive phototaxis, the robot’s response to noise is similar to that
described in the previous section, i.e. a decay in performance for both increased and
reduced levels of noise. Some degree of decay can also be observed for the negative
phototaxis condition, but the e®ect is much less pronounced. This result shows that
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Figure 13. Performance for ¯xed weight networks: (a) proportion of ¯tness for each condition
using ¯xed weights taken from a long run of the same and opposite conditions; (b) negative
phototaxis with ¯xed weights (W ¡ ) together with sound stimulus and spike train corresponding
to sound sensor neuron.

the addition of background noise is a very di®erent perturbation from the random-
ization of spike trains, and with di®erent e®ects. Background Poisson noise does little
to degrade the timing information of spike trains in the negative phototaxis regime
because of its characteristic high-frequency activity.

(iv) Removal of plasticity

Finally, test runs were performed by ¯xing the weights of the network under each
condition to the value acquired at the end of long run (30 light sources) with plas-
ticity. Figure 13a shows the reduction in ¯tness for positive and negative phototaxis
(`phot.+’ and `phot. ¡ ’, respectively) when the ¯xed weights are taken from a long
run of the same and opposite conditions (W + and W ¡ in the ¯gure). It is clear that,
for each condition, using ¯xed weights produces a reduction in ¯tness which does not
depend strongly on which weight values are used, and whether those correspond to
negative or positive phototaxis. It is possible to conclude that the ¯nal weight con-
¯guration carries little information about whether the robot should be approaching
or avoiding lights (performance for negative phototaxis is even better when using the
¯xed set of weights W + ).

Even though the reduction in ¯tness for negative phototaxis does not seem too
drastic, in fact, on observing the performance (using W ¡ weights), it is clear that the
robot is not avoiding light sources, it is just taking longer to reach them (¯gure 13b).
This means that although weight distribution seems less important a factor than the
¯ring pattern in explaining the change of behaviour, synaptic plasticity does play
a role in achieving and sustaining the necessary ¯ring pattern. This is true also for
the non-learning condition, where the reduction in ¯tness is even more signi¯cant.
Synaptic plasticity is used less to `store’ a con¯guration of synaptic values than to
generate the right neural dynamics.
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5. Conclusions

The behaviour of plastic networks of spiking neurons as robot controllers is su±-
ciently rich to justify further exploration using synthetic design techniques such as
evolutionary robotics. The search algorithm is able to ¯nd successful controllers by
evolving only the rules of plastic change and the time properties of each neuron, all
of which are active at the tens-of-milliseconds range. However, robots are able to
behave appropriately over larger time-scales and to learn in a single trial over time-
scales of tens of seconds. The traditionally connectionist answer to this dilemma is
that relevant information about the robot’s history is somehow retained in the net-
work con¯guration in the form of appropriate weight distributions. If not, then some
other mechanism is necessary to serve as a memory trace, such as sustained oscilla-
tions in Walter’s learning robot. The result of this investigation shows that learning
may not rely on either, but that di®erent neural ¯ring patterns may in themselves
provide the substrate for learning to occur. This is di®erent from other results in evo-
lutionary robotics showing learning in CTRNNs in the absence of synaptic plasticity
(Tuci et al. 2003; Yamauchi & Beer 1994). In such cases, neuron decay constants are
allowed to be long enough to play a role similar to Walter’s oscillating circuit. It is
unclear how the present result would extend to more complex scenarios or what the
implications to natural agents are. It is provided here as a working proof-of-concept,
interesting enough to deserve further exploration regarding its generality.

Although robots achieve single-trial learning, the current result needs to be
improved upon. It is clear that ¯tness function design is one of the central issues
to be investigated further as, in the current set-up, the aversive stimulus cannot be
rightly called a conditioned stimulus even if it is presented during evolution only
very near the light source. The reason for this is that the ¯tness function rewards
not approaching light sources on hearing the sound, and so a valid solution is to
ignore the light sources once the stimulus is sensed. In that sense, sound acts as
a release mechanism that switches between di®erent stable behavioural modes. A
more detailed ¯tness evaluation would di®erentiate between reaction to the aversive
stimulus depending on the presence or absence of the unconditioned stimulus. The
incremental method for ¯tness evaluations would also need to be improved to obtain
more °exible controllers capable of `forgetting’ the conditioned behaviour, possibly
by changing the class of unconditioned stimuli over evolutionary time. Further classes
of stimuli would also be needed to make sure that learning occurs in association with
the appropriate class and not just any class. This cannot be investigated in the cur-
rent scenario, but it may easily be done with a more complex visual system, for
instance in tasks of navigation or orientation towards an object.

Even though the bi-stable ¯ring properties of the evolved controllers would seem
to explain the origins of the bi-stable behaviour of the robot, STDP nevertheless
plays a role besides the overall con¯guration of the neural network from a random
initial state. No non-plastic controller has successfully evolved the learning task (the
attempt is not a priori futile, since ¯xed synaptic weights do not impede the existence
of multiple stable ¯ring patterns that could supplement the lack of synaptic plas-
ticity and subserve learning) and ¯xed-weight networks show decay in performance.
Comparing performance with crossed sets of weight values shows that plasticity does
not work by storing information in synapses. In contrast, the role played by STDP
seems to be that of sustaining and possibly initiating the switch in ¯ring patterns.
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However, this is still far from clear. A possible clue is provided by the di®erent
e®ects of increasing neural noise and randomizing spike trains on learning. This is
an issue that deserves further investigation and experiments are currently under way
to determine how synaptic plasticity is involved.

As described in x 2, STDP seems to explain more naturally other forms of learning
such as prediction of input in a repeated sequence, for instance, in visually guided
navigation. Such forms of learning, requiring robots with a visual system and possibly
an architecture including receptive ¯elds of neurons with similar or equal properties,
are currently being investigated using similar techniques to those described in this
paper.

The author acknowledges the support of the Nu± eld Foundation (grant no. NAL/00274/G).
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