

Lecture Notes in Computer Science 2950
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Natas̆a Jonoska Gheorghe Păun
Grzegorz Rozenberg (Eds.)

Aspects of
Molecular Computing

Essays Dedicated to Tom Head
on the Occasion of His 70th Birthday

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Natas̆a Jonoska
University of South Florida, Department of Mathematics
4202 e. Fowler Av. PHY114, Tampa, FL 33620-5700, USA
E-mail: jonoska@math.usf.edu

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, 70700 Bucharest, Romania
and
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: gp@astor.urv.es

Grzegorz Rozenberg
Leiden University, Leiden Institute for Advanced Computer Science
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
and
University of Colorado, Department of Computer Science
Boulder, CO 80309-0347, USA
E-mail: rozenber@liacs.nl

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.1, J.3, G.2, F.4.3

ISSN 0302-9743
ISBN 3-540-20781-3 Springer-Verlag Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10976616 06/3142 5 4 3 2 1 0

Thomas J. Head

Preface

Molecular Computing is a fast-emerging area of Natural Computing. On the one
hand, it is concerned with the use of (bio)molecules for the purpose of computing
while on the other hand it tries to understand the computational nature of the
molecular processes going on in living cells.

The paper “Molecular computation of solutions to combinatorial problems”
by L. Adleman, which describes a laboratory experiment and was published in
Science in November 1994, was an important milestone for the area of molec-
ular computing, as it provided a “proof-of-principle” that one can indeed per-
form computations in a biolab using biomolecules and their processing using
biomolecular operations. However, research concerning the computational na-
ture of biomolecular operations dates back to before 1994. In particular, a pio-
neering work concerning the mathematical theory of biooperations is the paper
“Formal language theory and DNA: an analysis of the generative capacity of spe-
cific recombinant behaviors,” authored by Tom Head in 1987, which appeared
in the Bulletin of Mathematical Biology. The paper uses the framework of for-
mal language theory to formulate and investigate the computational effects of
biomolecular operations carried out by restriction enzymes. This paper has in-
fluenced research in both molecular computing and formal language theory. In
molecular computing it has led to a clear computational understanding of im-
portant biomolecular operations occurring in nature, and it has also stimulated
the design of a number of laboratory experiments utilizing Tom’s ideas for the
purpose of human-designed DNA computing. In formal language theory it has
led to a novel, interesting and challenging research area, originally called “splic-
ing systems” and then renamed “H systems” in honor of Tom (“H” stands for
“Head”). Many papers stimulated by the pioneering ideas presented by Tom in
his seminal paper were written by researchers from all over the world.

Adleman’s paper was a great event in Tom’s life: it has confirmed his con-
viction that biooperations can be used for the purpose of computing, but more
importantly it has stimulated his interest in experimental research. One can
safely say that since 1994 most of Tom’s research has been focused on the de-
sign of experiments related to DNA computing. Also on this research path he
remained highly innovative and original, combining his great talent for modeling
with a passsion for experimental biology. A good manifestation of this line of
Tom’s research is aqueous computing – a really elegant but also experimentally
feasible model of molecular computing invented by him.

An example of the recognition of Tom’s research within the molecular com-
puting community is the “DNA Scientist of the Year” award that Tom received
in 2003.

Tom’s multidisciplinary talents and interests become even more evident when
one realizes that his original training and passion was mathematics, and in par-
ticular algebra. He moved from there to formal language theory. It is also im-

VIII Preface

portant to keep in mind that his work on formal models for biology started long
before his 1987 paper, as he was a very active and productive researcher in the
area of Lindenmayer systems that model the development of simple multicellular
organisms, not on the molecular but rather on the cellular level.

With this volume, presenting many aspects of research in (or stimulated
by) molecular computing, we celebrate a scientist who has been a source of
inspiration to many researchers, and to us a mentor, a scientific collaborator,
and a warm and caring friend.

HAPPY BIRTHDAY, Tom!

November 2003 Nataša Jonoska
Gheorghe Păun

Grzegorz Rozenberg

Table of Contents

Solving Graph Problems by P Systems with Restricted Elementary
Active Membranes . 1
Artiom Alhazov, Carlos Mart́ın-Vide, Linqiang Pan

Writing Information into DNA . 23
Masanori Arita

Balance Machines: Computing = Balancing . 36
Joshua J. Arulanandham, Cristian S. Calude, Michael J. Dinneen

Eilenberg P Systems with Symbol-Objects . 49
Francesco Bernardini, Marian Gheorghe, Mike Holcombe

Molecular Tiling and DNA Self-assembly . 61
Alessandra Carbone, Nadrian C. Seeman

On Some Classes of Splicing Languages . 84
Rodica Ceterchi, Carlos Mart́ın-Vide, K.G. Subramanian

The Power of Networks of Watson-Crick D0L Systems 106
Erzsébet Csuhaj-Varjú, Arto Salomaa

Fixed Point Approach to Commutation of Languages 119
Karel Culik II, Juhani Karhumäki, Petri Salmela

Remarks on Relativisations and DNA Encodings . 132
Claudio Ferretti, Giancarlo Mauri

Splicing Test Tube Systems and Their Relation to Splicing
Membrane Systems . 139
Franziska Freund, Rudolf Freund, Marion Oswald

Digital Information Encoding on DNA . 152
Max H. Garzon, Kiranchand V. Bobba, Bryan P. Hyde

DNA-based Cryptography . 167
Ashish Gehani, Thomas LaBean, John Reif

Splicing to the Limit . 189
Elizabeth Goode, Dennis Pixton

X Table of Contents

Formal Properties of Gene Assembly: Equivalence Problem for
Overlap Graphs . 202
Tero Harju, Ion Petre, Grzegorz Rozenberg

n-Insertion on Languages . 213
Masami Ito, Ryo Sugiura

Transducers with Programmable Input by DNA Self-assembly 219
Nataša Jonoska, Shiping Liao, Nadrian C. Seeman

Methods for Constructing Coded DNA Languages . 241
Nataša Jonoska, Kalpana Mahalingam

On the Universality of P Systems with Minimal Symport/Antiport
Rules . 254
Lila Kari, Carlos Mart́ın-Vide, Andrei Păun

An Algorithm for Testing Structure Freeness of Biomolecular
Sequences . 266
Satoshi Kobayashi, Takashi Yokomori, Yasubumi Sakakibara

On Languages of Cyclic Words . 278
Manfred Kudlek

A DNA Algorithm for the Hamiltonian Path Problem Using
Microfluidic Systems . 289
Lucas Ledesma, Juan Pazos, Alfonso Rodŕıguez-Patón

Formal Languages Arising from Gene Repeated Duplication 297
Peter Leupold, Victor Mitrana, José M. Sempere

A Proof of Regularity for Finite Splicing . 309
Vincenzo Manca

The Duality of Patterning in Molecular Genetics . 318
Solomon Marcus

Membrane Computing: Some Non-standard Ideas . 322
Gheorghe Păun

The P Versus NP Problem Through Cellular Computing with
Membranes . 338
Mario J. Pérez-Jiménez, Alvaro Romero-Jiménez,
Fernando Sancho-Caparrini

Realizing Switching Functions Using Peptide-Antibody Interactions 353
M. Sakthi Balan, Kamala Krithivasan

Table of Contents XI

Plasmids to Solve #3SAT . 361
Rani Siromoney, Bireswar Das

Communicating Distributed H Systems with Alternating Filters 367
Sergey Verlan

Publications by Thomas J. Head . 385

Author Index . 391

Solving Graph Problems by P Systems with

Restricted Elementary Active Membranes

Artiom Alhazov1,2, Carlos Mart́ın-Vide2, and Linqiang Pan2,3

1 Institute of Mathematics and Computer Science
Academy of Science of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
artiom@math.md

2 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
aa2.doc@estudiants.urv.es,

cmv@astor.urv.es, lp@fll.urv.es
3 Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, People’s Republic of China
lqpan@mail.hust.edu.cn

Abstract. P systems are parallel molecular computing models based on
processing multisets of objects in cell-like membrane structures. In this
paper we give membrane algorithms to solve the vertex cover problem
and the clique problem in linear time with respect to the number of
vertices and edges of the graph by recognizing P systems with active
membranes using 2-division. Also, the linear time solution of the vertex
cover problem is given using P systems with active membranes using
2-division and linear resources.

1 Introduction

The P systems are a class of distributed parallel computing devices of a bio-
chemical type, introduced in [2], which can be seen as a general computing
architecture where various types of objects can be processed by various opera-
tions. It comes from the observation that certain processes which take place in
the complex structure of living organisms can be considered as computations.
For a motivation and detailed description of various P system models we refer
the reader to [2],[4].

In [3] Păun considered P systems where the number of membranes increases
during a computation by using some division rules, which are called P systems
with active membranes. These systems model the natural division of cells.

In [6] Pérez-Jiménez et al. solve the satisfiability problem in linear time with
respect to the number of variables and clauses of propositional formula by recog-
nizing P systems with active membranes using 2-division. Thus the vertex cover
problem and the clique problem belonging to the class of NP problems can also

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 1–22, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

be solved in a polynomial time by recognizing P systems with active membranes
using 2-division. One can get solutions for the vertex cover problem and the
clique problem by reducing these problems to the satisfiability problem in order
to apply those P systems which solve satisfiability problem in linear time. In this
paper, we do not apply the cumbersome and time consuming (polynomial time)
reduction, but we directly give membrane algorithms to solve the vertex cover
problem and the clique problem in linear time with respect to the number of
vertices and edges of graph by recognizing P systems with restricted elementary
active membranes. In this solution, the structure of P systems is uniform, but
we need polynomial resources to describe P systems. Using linear resources to
describe P systems, we also give a membrane algorithm to solve the vertex cover
problem in linear time by semi-uniform P systems.

The paper is organized as follows: in Section 2 we introduce P systems with
active membranes; in Section 3 we define the notion of recognizing P system;
in Section 4 the polynomial complexity class in computing with membranes,
PMCF , is recalled. Section 5 gives a membrane algorithm to solve the vertex
cover problem in linear time with respect to the number of vertices and edges of
graph by recognizing P systems with restricted elementary active membranes,
and give a formal verification. In Section 6, we give a membrane solution of
the vertex cover problem by semi-uniform P systems with restricted elementary
active membranes and linear resources. In Section 7, the clique problem is solved
in linear time with respect to the number of vertices and edges of the graph by
recognizing P systems with restricted elementary active membranes. Finally,
Section 8 contains some discussion.

2 P Systems with Active Membranes

In this section we describe P systems with active membranes due to [3], where
more details can also be found.

A membrane structure is represented by a Venn diagram and is identified
by a string of correctly matching parentheses, with a unique external pair of
parentheses; this external pair of parentheses corresponds to the external mem-
brane, called the skin. A membrane without any other membrane inside is said
to be elementary. For instance, the structure in Figure 1 contains 8 membranes;
membranes 3, 5, 6 and 8 are elementary. The string of parentheses identifying
this structure is

μ = [1[2[5]5[6]6]2[3]3[4[7[8]8]7]4]1.

All membranes are labeled; here we have used the numbers from 1 to 8. We say
that the number of membranes is the degree of the membrane structure, while
the height of the tree associated in the usual way with the structure is its depth.
In the example above we have a membrane structure of degree 8 and of depth 4.

In what follows, the membranes can be marked with + or −, and this is
interpreted as an “electrical charge”, or with 0, and this means “neutral charge”.
We will write [i]+i , [i]−i , [i]0i in the three cases, respectively.

Solving Graph Problems by P Systems 3

The membranes delimit regions, precisely identified by the membranes (the
region of a membrane is delimited by the membrane and all membranes placed
immediately inside it, if any such a membrane exists). In these regions we place
objects, which are represented by symbols of an alphabet. Several copies of the
same object can be present in a region, so we work with multisets of objects. A
multiset over an alphabet V is represented by a string over V : the number of
occurrences of a symbol a ∈ V in a string x ∈ V ∗ (V ∗ is the set of all strings
over V ; the empty string is denoted by λ) is denoted by |x|a and it represents
the multiplicity of the object a in the multiset represented by x.

1

2
3 4

5

6

7
8

1

2
3 4

5 6
7

8

Figure 1. A membrane structure and its associated tree

A P system with active membranes and 2-division is a construct

Π = (O,H, μ,w1, . . . , wm, R),

where:

(i) m ≥ 1 (the initial degree of the system);
(ii) O is the alphabet of objects;
(iii) H is a finite set of labels for membranes;
(iv) μ is a membrane structure, consisting of m membranes, labelled (not nec-

essarily in a one-to-one manner) with elements of H ;
(v) w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ;
(vi) R is a finite set of developmental rules, of the following forms:

(a) [ha→ v]α
h ,

for h ∈ H,α ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);

(b) a[h]α1
h → [hb]α2

h ,
for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is introduced in the membrane, possi-
bly modified during this process; also the polarization of the membrane
can be modified, but not its label);

4 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

(c) [ha]α1
h → [h]α2

h b,
for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(d) [ha]αh → b,
for h ∈ H,α ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [ha]α1
h → [hb]α2

h [hc]α3
h ,

for h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label, pos-
sibly of different polarizations; the object specified in the rule is replaced
in the two new membranes by possibly new objects);

(f) [h0
[h1

]α1
h1

. . . [hk
]α1
hk

[hk+1
]α2
hk+1

. . . [hn
]α2
hn

]α0
h0

→ [h0
[h1

]α3
h1

. . . [hk
]α3
hk

]α5
h0

[h0
[hk+1

]α4
hk+1

. . . [hn
]α4
hn

]α6
h0

,
for k ≥ 1, n > k, hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with
{α1, α2} = {+,−}; if the membrane with the label h0 contains other
membranes than those with the labels h1, . . . , hn specified above, then
they must have neutral charges in order to make this rule applicable;
these membranes are duplicated and then are part of the contents of
both new copies of the membrane h0

(division of non-elementary membranes; this is possible only if a mem-
brane contains two immediately lower membranes of opposite polariza-
tion, + and −; the membranes of opposite polarizations are separated
in the two new membranes, but their polarization can change; always,
all membranes of opposite polarizations are separated by applying this
rule).

For a detailed description of using these rules we refer to [3]. Here we only
mention that all the above rules are applied in parallel, but at one step, a mem-
brane h can be subject of only one rule of types (b)-(f).

A P system with restricted active membranes is a P system with active mem-
branes where the rules are of types (a), (b), (c), (e), and (f) only (i.e., a P system
with active membranes not using membrane dissolving rules of type (d)).

A P system with restricted elementary active membranes is a P system with
active membranes where the rules are of types (a), (b), (c), and (e) only (i.e., a
P system with active membranes not using membrane dissolving rules of type
(d) and the (f) type rules for non-elementary membrane division).

3 Recognizing P Systems

In this section, we introduce the notion of recognizing P systems following [5].
First of all, we consider P systems with input and without external output.

Solving Graph Problems by P Systems 5

Definition 31 A P system with input is a tuple (Π,Σ, iΠ), where:

– Π is a P system, with working alphabet Γ and initial multisets w1, · · · , wp

(associated with membranes labelled by 1, · · · , p, respectively).
– Σ is an (input) alphabet strictly contained in Γ .
– w1, · · · , wp are multisets over Γ −Σ.
– iΠ is the label of a distinguished membrane (of input).

If w ∈ M(Σ) is a multiset over Σ, then the initial configuration of (Π,Σ, iΠ)
with input w is (μ0,M0), where μ0 = μ, M0(j) = wj, for each j �= iΠ, and
M0(iΠ) = wiΠ ∪w.

The computations of a P system with input w ∈ M(Σ) are defined in a
natural way. Note that the initial configuration must be the initial configuration
of the system associated with the input multiset w ∈M(Σ).

In the case of P systems with input and with external output (where we can
imagine that the internal processes are unknown, and we only obtain the informa-
tion that the system sends out to the environment), the concept of computation
is introduced in a similar way but with a slight variant. In the configurations, we
will not work directly with the membrane structure μ but with another structure
associated with it including, in some sense, the environment.

Definition 32 Let μ = (V (μ), E(μ)) be a membrane structure. The membrane
structure with environment associated with μ is the rooted tree Ext(μ) such that:
(a) the root of the tree is a new node that we will denote env; (b) the set of nodes
is V (μ) ∪ {env}; (c) the set of edges is E(μ) ∪ {{env, skin}}. The node env is
called the environment of the structure μ.

Note that we have only included a new node representing the environment
which is only connected with the skin, while the original membrane structure
remains unchanged. In this way, every configuration of the system informs about
the environment and its content.

Now we introduce recognizing P systems as devices able to accept or reject
multisets considered as input.

Definition 33 A recognizing P system is a P system with input, (Π,Σ, iΠ),
and with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All computations of the system halt.
3. If C is a computation of Π, then either the object yes or the object no (but

not both) have to be sent out to the environment, and only in the last step
of the computation.

Definition 34 We say that C is an accepting computation (respectively, reject-
ing computation) if the object yes (respectively, no) appears in the environment
associated with the corresponding halting configuration of C.

6 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

4 The Polynomial Complexity Class PMC

Many practical problems are presumably intractable for conventional (electronic)
computers, because all known algorithms solving these problems spend expo-
nential time. P systems have an inherent parallelism and hence the capability to
solve hard problems in feasible (polynomial or linear) time.

To understand what it means that a problem can be solved in polynomial
time by membrane systems, it is necessary to recall some complexity measure
for P systems as described in [5].

A decision problem will be solved by a family of recognizing P systems in such
a way that given an instance of the problem it is necessary to fix the concrete P
system (with a suitable input multiset) that will process it. The next definition
(polynomial encoding) captures this idea.

Definition 41 Let L be a language, F a class of P systems with input and
Π = (Π(t))t∈N a family of P systems of type F . A polynomial encoding of L in
Π is a pair (g, h) of polynomial time computable functions, g : L → ∪t∈NIΠ(t)

and h : L→ N, such that for every u ∈ L we have g(u) ∈ IΠ(h(u)).

Now we define what it means solving a decision problem by a family of
recognizing P systems in time bounded by a given function.

Definition 42 Let F be a class of recognizing P systems, f : N → N a total
computable function, and X = (IX , θX) a decision problem. We say that X
belongs to MCF(f) if there exists a family, Π = (Π(t))t∈N, of P systems such
that:

– Π is F-consistent: that is, Π(t) ∈ F for all t ∈ N.
– Π is polynomially uniform: that is, there exists a deterministic Turing ma-

chine that constructs Π(t) in polynomial time from t ∈ N.
– There exists a polynomial encoding (g, h) from IX to Π verifying:

• Π is f -bounded, with regard to (g, h); that is, for each u ∈ IX , all com-
putations of Π(h(u)) with input g(u) halt in at most f(|u|) steps.

• Π is X-sound, with regard to (g, h); that is, for each u ∈ IX , if
there exists an accepting computation of Π(h(u)) with input g(u), then
θX(u) = 1.

• Π is X-complete, with regard to (g, h); that is, for each u ∈ IX , if
θX(u) = 1, then every computation of Π(h(u)) with input g(u) is an
accepting computation.

A polynomial encoding (g, h) from IX to Π provides a size function, h, that
gives us the set of instances of X processed through the same P system, and an
input function, g, supplying the input multiset to be processed for the P system.

Note 1. In the above definition we have imposed a confluence property in
the following sense: for every input u ∈ IX , either every computation of Π(h(u))
with input g(u) is an accepting computation or every computation of Π(h(u))
with input g(u) is a rejecting computation.

Solving Graph Problems by P Systems 7

Definition 43 The polynomial complexity class associated with a collection of
recognizing P systems, F , is defined as follows:

PMCF =
⋃

fpolynomial

MCF (f).

In particular, the union of all classes MCF (f), for f a linear function, is denoted
by LMCF .

Note 2. If a decision problem belongs to PMCF , then we say that it is
solvable in polynomial time by a family of P systems which are constructed in
polynomial time starting from the size of the instances of the problem.

We say that a family of P systems F is polynomially semi-uniform, if there
exists a deterministic Turing machine that constructs a P system in polyno-
mial time from each instance of the problem [4]. We denote the corresponding
complexity classes by LMCS

F and PMCS
F .

5 Solving the Vertex Cover Problem

Given a graph G with n vertices and m edges, a vertex cover of G is a subset
of the vertices such that every edge of G is adjacent to one of those vertices;
the vertex cover problem (denoted by VCP) asks whether or not there exists a
vertex cover for G of size k, where k is a given integer less than or equal to n.
The vertex cover problem is an NP-complete problem [1].

Next we construct a family of recognizing P systems with active membranes
using 2-division solving the vertex cover problem in linear time.

For that, first we consider the (size) function h defined on IV CP by h(G) =
((m + n)(m + n + 1)/2) + m, with G = (V,E), where V = {v1, v2, · · · , vn},
E = {e1, e2, · · · , em}. The function h is polynomial time computable since the
function 〈m,n〉 = ((m+n)(m+n+1)/2)+m is primitive recursive and bijective
from N2 onto N. Also, the inverse function of h is polynomial.

For each (m,n) ∈ N2 we consider the P system (Π(〈m,n〉), Σ(m,n),
i(m,n)), where Σ(m,n) = {ex,(i,j) | 1 ≤ x ≤ m, 1 ≤ i, j ≤ n, the
two vertices of edge ex are vi and vj}, i(m,n) = 2 and Π(〈m,n〉) =
(Γ (m,n), {1, 2}, [1[2]2]1, w1, w2, R), with Γ (m,n) defined as follows:

Γ (m,n) = Σ(m,n) ∪ {di | 1 ≤ i ≤ 3n + 2m + 3}
∪ {ri,j | 0 ≤ i ≤ m, 1 ≤ j ≤ 2n} ∪ {ci,j | 0 ≤ i ≤ k, 1 ≤ j ≤ 4n− 1}
∪ {fi | 1 ≤ i ≤ m + 2} ∪ {t, λ, yes, no}.

The initial content of each membrane is: w1 = ∅ and w2 = {d1, c0,1}. The set
of rules, R, is given by (we also give explanations about the use of these rules
during the computations):

8 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

1. [2di]
0
2 → [2di]

+
2 [2di]

−
2 , 1 ≤ i ≤ n.

By using a rule of type 1, a membrane with label 2 is divided into two
membranes with the same label, but with different polarizations. These rules
allow us to duplicate, in one step, the total number of membranes with
label 2.

2. [2ex,(1,j) → rx,1]
+
2 , 1 ≤ x ≤ m, 2 ≤ j ≤ n.

[
2
ex,(1,j) → λ]−

2
, 1 ≤ x ≤ m, 2 ≤ j ≤ n.

The rules of type 2 try to implement a process allowing membranes with
label 2 to encode whether vertex v1 appears in a subset of vertices, in such a
way that if vertex v1 appears in a subset of vertices, then the objects ex,(1,j)

encoding edges ex which are adjacent to vertex v1 will evolve to objects rx,1

in the corresponding membranes with label 2; otherwise, the objects ex,(1,j)

will disappear.
3. [2ex,(i,j) → ex,(i−1,j)]

+
2 , 1 ≤ x ≤ m, 2 ≤ i ≤ n, i ≤ j ≤ n.

[2ex,(i,j) → ex,(i−1,j)]
−
2 , 1 ≤ x ≤ m, 2 ≤ i ≤ n, i ≤ j ≤ n.

The evolving process described previously is always made with respect to
the vertex v1. Hence, the rules of type 3 take charge of making a cyclic path
through all the vertices to get that, initially, the first vertex is v1, then v2,
and so on.

4. [2ci,j → ci+1,j]
+
2 , 0 ≤ i ≤ k − 1, 1 ≤ j ≤ 2n− 1.

[2ck,j → λ]+2 , 1 ≤ j ≤ 2n− 1.
The rules of type 4 supply counters in the membranes with label 2, in such a
way that we increase the first subscript of ci,j , when the membrane has not
more than k vertices; when the membrane has more than k vertices, then
the counter-object ck,j will disappear. So when the process of generating
all subsets of vertices is finished, the object ck,j (note the first subscript is
k) will appear only in the membrane with label 2 encoding a subset with
cardinality exactly k.

5. [2di]
+
2 → [2]02di, 1 ≤ i ≤ n.

[2di]
−
2 → [2]02di, 1 ≤ i ≤ n.

di[2]02 → [2di+1]
0
2, 1 ≤ i ≤ n− 1.

The rules of type 5 are used as controllers of the generating process of all
subsets of vertices and the listing of adjacent edges: the objects d are sent to
the membrane with label 1 at the same time the listing of adjacent edges and
the counting of vertices are made, and they come back to the membranes
with label 2 to start the division of these membranes.

6. [
2
ri,j → ri,j+1]

0
2
, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n− 1.

The use of objects r in the rules of types 12, 13, and 14 makes necessary to
perform a “rotation” of these objects. This is the mission of the rules of type
6.

7. [
2
ci,j → ci,j+1]

0
2
, 0 ≤ i ≤ k, 1 ≤ j ≤ 2n− 1.

The second subscript of ci,j (also in the rule of type 9) is used to control
when the process of checking whether a subset of vertices with cardinality k
is a vertex cover will start.

Solving Graph Problems by P Systems 9

8. [1di → di+1]
0
1, n ≤ i ≤ 3n− 2.

Through the counter-objects d, the rules of type 8 control the rotation of
the elements ri,j in the membranes with label 2.

9. [2ck,j → ck,j+1]
0
2, 2n ≤ j ≤ 4n− 3.

[2ck,4n−2 → ck,4n−1f1]
0
2.

When the generating process of all subsets of vertices and the listing of
adjacent edges is finished, the second subscript of all objects ci,j (1 ≤ i ≤ k)
is 2n. After that, the second subscript of only objects ck,j (note that the
first subscript is k) will increase. The object ck,4n−2 evolves to ck,4n−1f1.
The object ck,4n−1 will change the polarization of the membrane to negative
(using the rule of type 10). The object f1 is a new counter.

10. [2ck,4n−1]
0
2 → [2]−2 ck,4n−1.

[
1
d3n−1 → d3n]0

1
.

The application of these rules will show that the system is ready to check
which edges are covered by the vertices in a subset with cardinality exactly
k encoded by membrane with label 2.

11. [1di → di+1]
0
1, 3n ≤ i ≤ 3n + 2m + 2.

The rules of type 11 supply counters in the membrane with label 1, through
objects d, in such a way that if the objects d3n+2m appear, then they show
the end of the checking of vertex cover. The objects di, with 3n + 2m + 1 ≤
i ≤ 3n + 2m + 3, will control the final stage of the computation.

12. [2r1,2n]−2 → [2]+2 r1,2n.
The applicability of the rule of type 12 encodes the fact that the vertices
encoded by a membrane with label 2 cover the edge e1 represented by the
object r1,2n, through a change in the sign of its polarization.

13. [2ri,2n → ri−1,2n]+2 , 1 ≤ i ≤ m.
In the copies of membrane 2 with positive polarization, hence only those
where we have found r1,2n in the previous step, we decrease the first sub-
scripts of all objects ri,2n from those membranes. Thus, if the second edge
was covered by the vertices from a membrane, that is r2,2n was present in
a membrane, then r2,2n becomes r1,2n – hence the rule of type 12 can be
applied again. Note the important fact that passing from r2,2n to r1,2n is
possible only in membranes where we already had r1,2n, hence we check
whether the second edge is covered only after knowing that the first edge
was covered.

14. r1,2n[2]+2 → [2r0,2n]−2 .
At the same time as the use of rule of type 13, the object r1,2n from the
skin membrane returns to membranes with label 2, changed to r0,2n (which
will never evolve again), and returning the polarization of the membrane to
negative (this makes possible the use of the rule of type 12).

15. [
2
fi → fi+1]

+
2
, 1 ≤ i ≤ m.

The presence of objects fi (with 2 ≤ i ≤ m + 1) in the membranes with
label 2 shows that the corresponding subsets of vertices covering every edge
of {e1, · · · , ei−1} are being determined.

10 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

16. [2fm+1]
−
2 → [2]−2 fm+1.

The rule of type 16 sends to the skin membrane the objects fm+1 appearing
in the membranes with label 2.

17. [1fm+1 → fm+2t]
0
1.

By using the rule of type 17 the objects fm+1 in the skin evolve to objects
fm+2t. The objects t in the skin are produced simultaneously with the ap-
pearance of the objects d3n+2m+2 in the skin, and they will show that there
exists some subset of vertices which is a vertex cover with cardinality k.

18. [1t]
0
1 → [1]+1 t.

The rule of type 18 sends out of the system an object t changing the po-
larization of the skin to positive, then objects t remaining in the skin are
not able to evolve. Hence, an object fm+2 can exit the skin producing an
object yes. This object is then sent out to the environment through the rule
of type 19, telling us that there exists a vertex cover with cardinality k, and
the computation halts.

19. [1fm+2]
+
1 → [1]−1 yes.

The applicability of the rule of type 19 changes the polarization in the skin
membrane to negative in order that the objects fm+2 remaining in it are not
able to continue evolving.

20. [1d3n+2m+3]
0
1 → [1]+1 no.

By the rule of type 20 the object d3n+2m+3 only evolves when the skin has
neutral charge (this is the case when there does not exist any vertex cover
with cardinality k). Then the system will evolve sending out to the environ-
ment an object no and changing the polarization of the skin to positive, in
order that objects d3n+2m+3 remaining in the skin do not evolve.

From the previous explanation of the use of rules, one can easily see how these
P systems work. It is easy to prove that the designed P systems are deterministic.

Now, we prove that the family Π = (Π(t))t∈N solves the vertex cover problem
in linear time.

The above description of the evolution rules is computable in an uniform
way. So, the family Π = (Π(t))t∈N is polynomially uniform because:

– The total number of objects is 2nm + 4nk + 9n + 4m− k + 8 ∈ O(n3).
– The number of membranes is 2.
– The cardinality of the initial multisets is 2.
– The total number of evolution rules is O(n3).
– The maximal length of a rule (the number of symbols necessary to write a

rule, both its left and right sides, the membranes, and the polarizations of
membranes involved in the rule) is 13.

We consider the (input) function g : IV CP → ∪t∈NIΠ(t), defined as follows:

g(G) = {ex,(i,j)|1 ≤ x ≤ m, 1 ≤ i, j ≤ n,

the two vertices of edge ex are vi and vj}.

Solving Graph Problems by P Systems 11

Then g is a polynomial time computable function. Moreover, the pair (g, h)
is a polynomial encoding from VCP to Π since for each G ∈ IV CP we have
g(G) ∈ IΠ(h(G)).

We will denote by C = (Ci)0≤i≤s the computation of the P system Π(h(G))
with input g(G). That is, Ci is the configuration obtained after i steps of the
computation C.

The execution of the P system Π(h(G)) with input g(G) can be structured
in four stages: a stage of generation of all subsets of vertices and counting the
cardinality of subsets of vertices; a stage of synchronization; a stage of checking
whether there is some subset with cardinality k which is a vertex cover; and a
stage of output.

The generating and counting stages are controlled by the objects di, with
1 ≤ i ≤ n.

– The presence in the skin of one object di, with 1 ≤ i ≤ n, will show that all
possible subsets associated with {v1, · · · , vi} have been generated.

– The objects ci,j with 0 ≤ i ≤ k, 1 ≤ j ≤ 2n are used to count the number
of vertices in membranes with label 2. When this stage ends, the object ck,j

(note the first subscript is k) will appear only in the membrane with label 2
encoding a subset with cardinality exactly k.

– In this stage, we simultaneously encode in every internal membrane all the
edges being covered by the subset of vertices represented by the membrane
(through the objects ri,j).

– The object d1 appears in the skin after the execution of 2 steps. From the
appearance of di in the skin to the appearance of di+1, with 1 ≤ i ≤ n− 1,
3 steps have been executed.

– This stage ends when the object dn appears in the skin.

Hence, the total number of steps in the generating and counting stages is 3n−1.
The synchronization stage has the goal of unifying the second subscripts of

the objects ri,j , to make them equal to 2n.

– This stage starts with the evolution of the object dn in the skin.
– In every step of this stage the object di, with n ≤ i ≤ 3n − 1, in the skin

evolves to di+1.
– In every step of this stage, the second subscript of objects ck,j (note that the

first subscript is k) will increase. The object ck,4n−2 evolves to ck,4n−1f1.
– This stage ends as soon as the object d3n appears in the skin, that is the

moment when the membrane with label 2 encoding a subset with cardinality
k has negative charge (by using the first rule of type 10).

Therefore, the synchronization stage needs a total of 2n steps.
The checking stage has the goal to determine how many edges are covered in

the membrane with label 2 encoding the subset of vertices with cardinality k.
This stage is controlled by the objects fi, with 1 ≤ i ≤ m + 1.

– The presence of an object fi in a membrane with label 2 shows that the
edges e1, · · · , ei−1 are covered by the subset of vertices represented by such
membrane.

12 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

– From every fi (with 1 ≤ i ≤ m) the object fi+1 is obtained in some mem-
branes after the execution of 2 steps.

– The checking stage ends as soon as the object d3n+2m appears in the skin.

Therefore, the total number of steps of this stage is 2m.
The output stage starts immediately after the appearance of the object

d3n+2m in the skin and it is controlled by the objects fm+1 and fm+2.

– To produce the output yes the object fm+1 must have been produced in
some membrane with label 2 of the configuration C5n+2m−1. Then, after 4
steps the system returns yes to the environment, through the evolution of
objects fm+2 present in the skin, and when it has positive charge.

– To produce the output no, no object fm+1 appears in any membrane with
label 2 of the configuration C5n+2m−1. Then after 4 steps the system returns
no to the environment, through the evolution of objects d3n+2m+3 present
in the skin, and when it has neutral charge.

Therefore, the total number of steps in the output stage is 4.
Let us see that the family Π is linearly bounded, with regard to (g, h). For

that, it is enough to note that the time of the stages of the execution of Π(h(G))
with input g(G) is: (a) generation stage, 3n−1 steps; (b) synchronization stage,
2n steps; (c) checking stage, 2m steps; and (d) output stage, 4 steps. Hence, the
total execution time of Π(h(G)) with input g(G) is 5n + 2m + 3 ∈ O(n + m).

Now, let us see that the family Π is VCP-sound and VCP-complete, with
respect to the polynomial encoding (g, h). For that it is sufficient to verify that
the following results are true:

1. If s is a subset with cardinality k covering all edges, then at the end of
the checking stage (that is, in the configuration C5n+2m−1), the object fm+1

appears in the membrane associated with s.
2. If s is not a subset with cardinality k covering all edges, then at the end of

the checking stage (that is, in the configuration C5n+2m−1), the object fm+1

does not appear in the membrane associated with s.

Next we justify that the designed P systems Π(t), with t ∈ N, are recognizing
devices.

By inductive processes it can be proved that the configuration C5n+2m−1

verifies the following properties:

(a) It has 2n membranes with label 2. The membranes with label 2 encoding
subsets of vertices with cardinality exactly k have negative charge. The other
membranes with label 2 have neutral charge.

(b) The skin has neutral charge and its content is d2n

3n+2m.
(c) If the object fm+1 is present in a membrane with label 2, then the subset of

vertices encoded by it is a vertex cover.

Proposition 51 Suppose that there exist exactly q membranes with label 2 (with
1 ≤ q ≤ (nk)) of C5n+2m−1 containing some object fm+1. Then, in the last step
of the computation, the P system sends out the object yes to environment.

Solving Graph Problems by P Systems 13

Proof. Under the hypothesis of the proposition it is verified that:

(a) Structure of C5n+2m.
The rule [2fm+1]

−
2 → [2]−2 fm+1 is applicable over the membranes with label

2 of C5n+2m−1 containing the object fm+1, since their charge is negative.
Hence, in the skin of C5n+2m−1 the objects f q

m+1 and d2n

3n+2m+1 must appear,
because of the application of the rule [1d3n+2m → d3n+2m+1]

0
1. The other

membranes of C5n+2m−1 have no applicable rules.
(b) Structure of C5n+2m+1.

The objects fm+1 and d3n+2m+1 in the skin evolve to fm+2t and d3n+2m+2,
respectively, because of the application of the rules [1fm+1 → fm+2t]

0
1 and

[
1
d3n+2m+1 → d3n+2m+2]

0
1
. The other membranes of C5n+2m have no appli-

cable rules.
(c) Structure of C5n+2m+2.

The rule [1t]
0
1 → [1]+1 t sends out of the system an object t and changes the

polarization of the skin to positive (in order that the objects t remaining in
the skin do not continue being expelled of the system). Moreover, the objects
d3n+2m+2 in the skin produce d3n+2m+3 because of the application of the
rule [1d3n+2m+2 → d3n+2m+3]

0
1. The other membranes of C5n+2m+1 have no

applicable rules.
(d) Structure of C5n+2m+3.

Having in mind that the polarization of the skin in the configuration
C5n+2m+2 is positive, an object fm+2 will be expelled from the system pro-
ducing the object yes, because of the application of the rule [1fm+2]

+
1 →

[1]−1 yes. Moreover, the polarization of the skin changes to negative in order
that no objects fm+2 remaining in the skin is able to continue evolving. The
other membranes of C5n+2m+2 have no applicable rules.

Finally, in the configuration C5n+2m+3 there is no applicable rule, so, it is a
halting configuration. As the system has expelled the object yes to the environ-
ment in the last step, C is an accepting computation.

In a similar way we prove the following result.

Proposition 52 Let us suppose that no membrane with label 2 of C5n+2m−1

contains an object fm+1. Then, in the last step of the computation, the P system
sends out the object no to environment.

From the above propositions we deduce the soundness and completeness of
the family Π, with respect to the vertex cover problem.

Proposition 53 (Soundness) Let G be a graph. If the computation of
Π(h(G)) with input g(G) is an accepting computation, then G has a vertex cover
with cardinality k.

14 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

Proof. Let G be a graph. Let us suppose that the computation of Π(h(G)) with
input g(G) is an accepting computation. From Propositions 51 and 52 we deduce
that some membranes with label 2 of C5n+2m−1 contain the object fm+1. Hence
some membrane with label 2 of C5n+2m−1 encodes a subset of vertices with
cardinality k covering all edges of the graph. Therefore, G has a vertex cover
with cardinality k.

Proposition 54 (Completeness) Let G be a graph. If it has a vertex cover
with cardinality k, then the computation of Π(h(G)) with input g(G) is an ac-
cepting computation.

Proof. Let G be a graph, which has a vertex cover with cardinality k. Then some
membrane with label 2 of the configuration C5n+2m−1 (encoding a relevant subset
of vertices for G) contains an object fm+1 . From Proposition 52 it follows that
C5n+2m−1 is an accepting configuration. That is, the computation of Π(h(G))
with input g(G) is an accepting computation.

The main result follows from all above.

Theorem 1. The vertex cover problem can be solved in linear time with respect
to the number of vertices and edges of the graph by recognizing P systems with
restricted elementary active membranes.

6 Solving the Vertex Cover Problem

In this section we will solve the vertex cover problem in linear time (n + 2k +
2m + 8) by P systems with restricted elementary active membranes. Unlike the
solution in the previous section, the solution is semi-uniform, but the resources,
such as the number of objects, rules, and symbols in the description of the P
systems is linear with respect to the number of vertices and the number of edges
in the graph.

Theorem 2. The vertex cover problem can be solved in linear time with respect
to the number of vertices and edges of the graph by semi-uniform P systems with
restricted elementary active membranes and linear resources.

Proof. Let G = (V,E) be a graph with n vertices and m edges, V = {v1, v2,
· · · , vn}, E = {e1, e2, · · · , em}. For k = 1, 2, n − 1, and n, it is easy to check
whether a given graph has a vertex cover of size k, so we can assume 3 ≤ k ≤
n− 2.

We construct the system

Π = (O,H, μ,w1, w2, R),

Solving Graph Problems by P Systems 15

where

O = {ai, di, ti, t
′
i, fi | 1 ≤ i ≤ n} ∪ {hi, h

′
i | 0 ≤ i ≤ k} ∪ {ei | 0 ≤ i ≤ m}

∪ {gi | 1 ≤ i ≤ m + 1} ∪ {g′i | 1 ≤ i ≤ m} ∪ {a, b, p, q, u, yes},
H = {1, 2},
μ = [1[2]02]

0
1,

w1 = λ,

w2 = a1a2 · · · and1,

and the set R contains the following rules

1. [2ai]
0
2 → [2ti]

0
2[2fi]

0
2, 1 ≤ i ≤ n.

The objects ai correspond to vertices vi, 1 ≤ i ≤ n. By using a rule as
above, for i non-deterministically chosen, we produce the two objects ti and
fi associated to vertex vi, placed in two separate copies of membrane 2,
where ti means that vertex vi appears in some subset of vertices, and fi

means that vertex vi does not appear in some subset of vertices. Note that
the charge remains the same for both membranes, namely neutral, hence
the process can continue. In this way, in n steps we get all 2n subsets of
V , placed in 2n separate copies of membrane 2. In turn, these 2n copies
of membrane 2 are within membrane 1 – the system always has only two
levels of membranes. Note that in spite of the fact that in each step the
object ai is non-deterministically chosen, after n steps we get the same result,
irrespective of which objects were used in each step.

2. [2di → di+1]
0
2, 1 ≤ i ≤ n− 1.

3. [2dn → qqh0]
0
2.

The objects di are counters. Initially, d1 is placed in membrane 2. By division
(when using rules of type 1), we introduce copies of the counter in each new
membrane. In each step, in each membrane with label 2, we pass from di to
di+1, thus “counting to n”. In step n we introduce both q and h0; the objects
q will exit the membrane (at steps n + 1, n + 2), changing its polarization,
the object h0 is a new counter which will be used at the subsequent steps as
shown below. Note that at step n we have also completed the generation of
all subsets.
Now we pass to the next phase of computation – counting the number of
objects ti (1 ≤ i ≤ n) in each membrane with label 2, which corresponds to
the cardinality of each subset; we will select out the subsets with cardinality
exactly k.

4. [2q]
0
2 → [2]−2 u.

5. [2q]
−
2 → [2]02u.

6. [
2
ti → abt′i]

−
2
, 1 ≤ i ≤ n.

7. [2hi → h′
i]

0
2, 0 ≤ i ≤ k.

8. [2h
′
i → hi+1]

+
2 , 0 ≤ i ≤ k − 1.

9. [2a]02 → [2]+2 u.

16 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

10. [2b]
+
2 → [2]02u.

At step n+1, h0 evolves to h′
0, and at the same time one copy of q exits the

membrane, changing its polarization to negative. At step n+2, ti evolves to
abt′i, and at the same time the other copy of q exits the membrane, changing
its polarization to neutral. At step n+ 3, one copy of a exits the membrane,
changing its polarization to positive. At step n + 4, h′

0 evolves to h1, and at
the same time one copy of b exits the membrane, returning its polarization
to neutral (this makes possible the use of rules of types 7 and 9).
The rules of types 7, 8, 9, and 10 are applied as many times as possible (in
one step rules of types 7 and 9, in the next one rules of types 8 and 10, and
then we repeat the cycle). Clearly, at step n + 2 + 2k, a membrane contains
object hk if and only if the cardinality of the corresponding subset is at
least k. At step n + 3 + 2k, in the membranes whose corresponding subsets
have cardinality more than k, hk evolves to h′

k, and one copy of a changes
their polarization to positive. These membranes will no longer evolve, as no
further rule can be applied to them. In the membranes whose corresponding
subsets have cardinality exactly k, hk evolves to h′

k, and their polarization
remains neutral, because there is no copy of a which can be used. We will
begin the next phase of computation with the rule of type 11 – checking
whether a subset with cardinality k is a vertex cover.

11. [2h
′
k → qqg1]

0
2.

12. [2t
′
i → ei1 · · · eil

]−2 , 1 ≤ i ≤ n, and vertex vi is adjacent to edges ei1 · · · eil
.

At step n + 4 + 2k, in the membranes with label 2 and polarization 0, h′
k

evolves to qqg1. At step n+5+2k, one copy of q exits the membrane, changing
its polarization to negative. At step n + 6 + 2k, in parallel t′i (1 ≤ i ≤ n)
evolves to ei1 · · · eil

, and at same time the other copy of q exits the membrane,
changing its polarization to neutral. After completing this step, if there is at
least one membrane with label 2 which contains all symbols e1, · · · , em, then
this means that the subset corresponding to that membrane is a vertex cover
of cardinality k. Otherwise (if in no membrane we get all objects e1, · · · , em),
there exists no vertex cover of cardinality k. In the following steps, we will
“read” the answer, and send a suitable signal out of the system. This will be
done by the following rules.

13. [2gi → g′ip]02, 1 ≤ i ≤ m.

14. [2e1]
0
2 → [2]+2 u.

Object gi evolves to g′ip. At the same time for all subsets of cardinality k, we
check whether or not e1 is present in each corresponding membrane. If this is
the case, then one copy of e1 exits the membrane where it is present, evolving
to u, and changing in this way the polarization of that membrane to positive
(the other copies of e1 will immediately evolve to e0, which will never evolve
again). The membranes which do not contain the object e1 remain neutrally
charged and they will no longer evolve, as no further rule can be applied to
them.

15. [2ei → ei−1]
+
2 , 1 ≤ i ≤ m.

16. [2g
′
i → gi+1]

+
2 , 1 ≤ i ≤ m.

Solving Graph Problems by P Systems 17

17. [2p]+2 → [2]02u.
In the copies of membrane 2 corresponding to subsets of cardinality k with
a positive polarization, hence only those where we have found e1 in the
previous step, we perform two operations in parallel: g′i evolves to gi+1 (so we
count the number of edges), and we decrease the subscripts of all objects ej

from that membrane. Thus, if e2 is present in a membrane, then e2 becomes
e1 – hence the rule of type 14 can be applied again. Note the important fact
that passing from e2 to e1 is possible only in membranes where we already
had e1, hence we check whether edge e2 appears only after knowing that edge
e1 appears. At the same time, the object p exits the membrane, evolving to
u, and returning the polarization of the membrane to neutral (this makes
possible the use of rules of types 13 and 14).
The rules of types 13, 14, 15, 16, and 17 are applied as many times as possible
(in one step rules of types 13 and 14, in the next one rules of types 15, 16, and
17, and then we repeat the cycle). Clearly, if a membrane does not contain
an object ei, then that membrane will stop evolving at the time when ei is
supposed to reach the subscript 1. In this way, after 2m steps we can find
whether there is a membrane which contains all objects e1, e2, · · · , em. The
membranes with this property, and only they, will get the object gm+1.

18. [2gm+1]
0
2 → [2]02yes.

19. [1yes]
0
1 → [1]+1 yes.

The object gm+1 exits the membrane which corresponds to a vertex cover
with cardinality k, producing the object yes. This object is then sent to the
environment, telling us that there exists a vertex cover with cardinality k,
and the computation stops. Note that the application of rule 19 changes the
polarization of the skin membrane to positive in order that the objects yes
remaining in it are not able to continue exiting it.

From the previous explanation of the use of rules, one can easily see how this
P system works. It is clear that we get the object yes if only if there exists a vertex
cover of size k. The object yes exits the system at moment n + 2k + 2m + 8.
If there exists no vertex cover of size k, then the computation stops earlier
and we get no output, because no membrane was able to produce the object
gm+1, hence the object yes. Therefore, the family of membrane systems we
have constructed is sound, confluent, and linearly efficient. To prove that the
family is semi-uniform in the sense of Section 1, we have to show that for a given
instance, the construction described in the proof can be done in polynomial time
by a Turing machine. We omit the detailed construction due to the fact that it
is straightforward although cumbersome as explained in the proof of Theorem
7.2.3 in [4].

So the vertex cover problem was decided in linear time (n + 2k + 2m + 8) by
P systems with restricted elementary active membranes, and this concludes the
proof.

18 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

7 Solving the Clique Problem

Given a graph G with n vertices and m edges, a clique of G is a subset of the
vertices such that every vertex is connected to every other vertex by an edge; the
clique problem (denoted by CP) asks whether or not there exists a clique for G
of size k, where k is a given integer less than or equal to n. The clique problem
is an NP-complete problem [1].

For a graph G = (V,E), we define the complementary graph G′ = (V,E′),
where E′ = {(vi, vj) �∈ E | vi, vj ∈ V }. In figure 2, an example of a graph with
five vertices and five edges is given.

In this section we will solve the clique problem in linear time (3n + 2k + 12)
by recognizing P systems with restricted elementary active membranes.

Theorem 3. The clique problem can be solved in linear time with respect to the
number of vertices of the graph by recognizing P systems with restricted elemen-
tary active membranes.

1

2

3 4

5

1

2

3 4

5

(a) (b)

Figure 2. The original graph (a) and its complementary graph (b).

Proof. Let G = (V,E) be a graph with n vertices and m edges, V = {v1, v2,
· · · , vn}, E = {e1, e2, · · · , em}. The instance of the problem is encoded by a
(multi)set in the alphabet Σ(〈n, k〉) = {pi,j,n+2k+5, ei,j,n+2k+5 | 1 ≤ i, j ≤ n, i �=
j}. The object pi,j,n+2k+5 stands for (vi, vj) ∈ E, while ei,j,n+2k+5 represents
(vi, vj) /∈ E. For given values of n and k we construct a recognizing P system
(Π(〈n, k〉), Σ(〈n, k〉), i(〈n, k〉)) with i(〈n, k〉) = 2

Π(〈n, k〉) = (O(〈n, k〉), H, μ, w1, w2, R),

where

O(〈n, k〉) = {ai, di, ti, fi, yi, zi | 1 ≤ i ≤ n}
∪ {hi, h

′
i | 0 ≤ i ≤ k} ∪ {gi | 0 ≤ i ≤ n + 3}

∪ {ei,j,l | 1 ≤ i ≤ n + 2, 1 ≤ j ≤ n + 2, 0 ≤ l ≤ n + 2k + 5}
∪ {ci | 0 ≤ i ≤ 3n + 2k + 11} ∪ {a, b, g, p, q, u, yes, no},

H = {1, 2},
μ = [1[2]02]

0
1,

w1 = c3n+2k+11,

w2 = a1a2 · · · and1,

Solving Graph Problems by P Systems 19

and the set R contains the following rules (we also give explanations about the
use of these rules during the computations):

1. [2ai]
0
2 → [2ti]

0
2[2fi]

0
2, 1 ≤ i ≤ n.

2. [2di → di+1]
0
2, 1 ≤ i ≤ n− 1.

3. [2dn → qqh0]
0
2.

We omit the explanations about the use of the rules of types 1, 2, and 3,
because they are the same as the explanations in the proof of Theorem 2.
Now we pass to the next phase of computation – counting the number of
objects ti (1 ≤ i ≤ n) in each membrane with label 2, which corresponds to
the cardinality of each subset.

4. [2q]
0
2 → [2]−2 u.

5. [2q]
−
2 → [2]02u.

6. [2ti → ab]−2 , 1 ≤ i ≤ n.
7. [2hi → h′

i]
0
2, 0 ≤ i ≤ k.

8. [2h
′
i → hi+1]

+
2 , 0 ≤ i ≤ k − 1.

9. [2a]02 → [2]+2 u.

10. [2b]
+
2 → [2]02u.

The rules of types 4-10 are used in the same way as the corresponding rules
from the proof of Theorem 2, the only difference is that at step n + 2, ti
evolves to ab.
The rules of types 7, 8, 9, and 10 are applied as many times as possible (in
one step rules of types 7 and 9, in the next one rules of types 8 and 10, and
then we repeat the cycle). Clearly, at step n + 2 + 2k, a membrane contains
object hk if and only if the cardinality of the corresponding subset is at least
k. At step n + 3 + 2k, in the membrane whose corresponding subset has
cardinality more than k, hk evolves to h′

k, and one copy of a changes its
polarization to positive. This membrane will no longer evolve, as no further
rule can be applied to it. In the membrane whose corresponding subset has
cardinality exactly k, hk evolves to h′

k, and its polarization remains neutral,
because there is no copy of a which can be used. We pass to the next phase
of computation – checking whether a subset with cardinality k is a clique.
(A subset A of vertices is a clique if and only if for each edge (vi, vj) ∈ E′,
xi ∈ V −A or xj ∈ V −A, i.e., E′ ⊆ V × (V −A)∪ (V −A)×V . The process
of checking whether a subset with cardinality k is a clique is based on this
fact.)

11. [2h
′
k → qqg]02.

12. [2fi → yizi]
−
2 , 1 ≤ i ≤ n.

13. [2g → g0]
−
2 ,

[2ei,j,l → ei,j,l−1]
α
2 , 1 ≤ i, j ≤ n, 1 ≤ l ≤ n + 2k + 5, α ∈ {+,−, 0}.

At step n + 4 + 2k, in the membranes with label 2 and polarization 0, h′
k

evolves to qqg. At step n+5+2k, one copy of q exits the membrane, changing
its polarization to negative. At step n + 6 + 2k, in parallel, fi (1 ≤ i ≤ n)
evolves to yizi, g evolves to g0 and an object ei,j,0 appears for each (vi, vj) ∈

20 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

E′. At same time the other copy of q exits the membrane, changing its
polarization to neutral.

14. [2yi → yi+1]
0
2, 1 ≤ i ≤ n− 1.

15. [
2
zi → zi+1]

0
2
, 1 ≤ i ≤ n− 1.

16. [2ei,j,0 → es(i),s(j),0]
0
2, 1 ≤ i, j ≤ n, where s(t) = min(t + 1, n + 2).

17. [2gi → gi+1]
0
2, 0 ≤ i ≤ n− 1.

18. [2zn → p]02.
19. [2yn]02 → [2]+2 u.

At step n + 2k + 7, yi, zi (1 ≤ i ≤ n − 1) evolve to yi+1, zi+1, g0 evolves to
g1, zn evolves to p, ei,j,0 (1 ≤ i, j ≤ n) evolve to es(i),s(j),0, where s(t) =
min(t + 1, n + 2); at same time, yn exits the membrane where it appears,
changing the polarization of that membrane to positive.

20. [2ei,n+1,0 → u]+2 , 1 ≤ i ≤ n + 1.
21. [2en+1,i,0 → u]+2 , 1 ≤ i ≤ n + 1.
22. [2p]+2 → [2]02u.

In the membranes with label 2 and positive polarization (i.e., the membranes
where yn appear in the last step, this means that vertex vn does not belong
to the corresponding subset), ei,n+1,0 and en+1,i,0 (1 ≤ i ≤ n + 1) evolve to
u (which will never evolve again); at the same time, object p exits the mem-
brane, returning the polarization of the membrane to neutral (this makes
possible the use of rules of types 14, 15, 16, 17, 18, and 19).
In the membranes with label 2 and neutral polarization (i.e., the membranes
where yn do not appear in the last step, this means that vertex vn belongs
to the corresponding subset), using rule of type 16, ei,n+1,0 and en+1,i,0

(1 ≤ i ≤ n+1) evolve to ei+1,n+2,0 and en+2,i+1,0 (this means that the edges
ei,n and en,i do not belong to V × (V − A) ∪ (V − A) × V , where A is the
corresponding subset).
The rules of types 14, 15, 16, 17, 18, 19, 20, 21, and 22 are applied as many
times as possible (in one step rules of types 14, 15, 16, 17, 18, and 19, in
the next one rules of types 20, 21, and 22, and then we repeat the cycle).
In this way, after 2n steps, a membrane will contain an object en+2,n+2,0

if and only if that membrane contains an edge which does not belong to
V × (V − A) ∪ (V − A) × V , where A is the corresponding subset. In the
following steps, we will let the membranes corresponding to a positive answer
send out an object.

23. [2gn → gn+1q]
0
2.

24. [2gn+1 → gn+2]
0
2.

25. [2gn+2 → gn+3]
−
2 .

26. [
2
en+2,n+2,0]

−
2
→ [

2
]+
2
u.

27. [2gn+3]
−
2 → [2]−2 yes.

28. [
1
yes]0

1
→ [

1
]+
1
yes.

At step 3n + 2k + 7, gn evolves to gn+1q. At step 3n + 2k + 8, gn+1 evolves
to gn+2, and at the same time, object q exits the membrane, changing the
polarization to negative (using rule of type 4). At step 3n + 2k + 9, in the

Solving Graph Problems by P Systems 21

membranes which contain object en+2,n+2,0, gn+2 evolve to gn+3, and at the
same time, en+2,n+2,0 exit these membranes, changing the polarization of
these membranes to positive, they will never evolve again; in the membranes
which do not contain object en+2,n+2,0, gn+2 evolve to gn+3, the polarization
of these membranes remains negative, in the next step they will produce the
object yes. This object is then sent to the environment, telling us that there
exists a clique with cardinality k, and the computation stops. The application
of rule 28 changes the polarization of the skin membrane to positive in order
that the objects yes remaining in it are not able to continue exiting it.

29. [
1
ci → ci−1]

0
1
, 1 ≤ i ≤ 3n + 2k + 11.

30. [
1
c0]

0
1
→ [

1
]0
1
no.

At step 3n + 2k + 11, the skin membrane has object c0, originating in
c3n+2k+11. Note that if there exists no vertex cover of size k, then at this mo-
ment the polarization of the skin membrane is neutral. In the next step, c0

produces the object no, and the object no is sent to the environment, telling
us that there exists no clique with cardinality k, and the computation stops.

From the previous explanation of the use of rules, one can easily see how
this P system works. It is clear that we get the object yes if only if there exists
a clique of size k. The object yes exits the system at moment 3n + 2k + 11. If
there exists no vertex cover of size k, then at step 3n+2k+12 the system sends
the object no to the environment. Therefore, the family of membrane systems
we have constructed is sound, confluent, and linearly efficient. To prove that the
family is uniform in the sense of Section 1, we have to show that for a given size,
the construction of P systems described in the proof can be done in polynomial
time by a Turing machine. Again, we omit the detailed construction.

So the clique problem was decided in linear time (3n+2k+12) by recognizing
P systems with restricted elementary active membranes, and this concludes the
proof.

8 Conclusions

We have shown that the vertex cover problem and the clique problem can be
solved in linear time with respect to the number of vertices and edges of the
graph by recognizing P systems with restricted elementary active membranes. It
is also interesting to solve other related graph problems, in a “uniform” manner,
by P systems which are the same, excepting a module specific to each problem.

The solution presented in Section 5 differs from the solution in Section 6 in
the following sense: a family of recognizing P systems with active membranes is
constructed, associated with the problem that is being solved, in such a way that
all the instances of such problem that have the same length (according to a given
polynomial-time computable criteria) are processed by the same P system (to
which an appropriate input, that depends on the concrete instance, is supplied).
On the contrary, in the solutions presented in Section 6, a single P system is
associated with each one of the instances of the problem.

22 Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan

Let us denote by AM the class of recognizing P systems with active mem-
branes and with 2-division. Then from Theorem 1 and Theorem 2 we have
V CP ∈ LMCAM ⊆ PMCAM and CP ∈ LMCAM ⊆ PMCAM. Be-
cause the class PMCAM is stable under polynomial time reduction, we have
NP ⊆ PMCAM. Similarly, from Theorem 3 we have V CP ∈ PMCS

AM
and NP ⊆ PMCS

AM, which can also be obtained from V CP ∈ PMCAM,
NP ⊆ PMCAM and the fact PMCAM ⊆ PMCS

AM.
The following problems are open:

(1) Does NP = PMCAM or NP = PMCS
AM hold?

(2) Find a class F of P systems such that NP = PMCF or NP = PMCS
F .

Acknowledgments. The work of the first author was supported by grant
2001CAJAL-BURV from Rovira i Virgili University; the work of the last author
was supported by grant DGU-SB2001-0092 from Spanish Ministry for Educa-
tion, Culture, and Sport, National Natural Science Foundation of China (Grant
No. 60373089), and Huazhong University of Science and Technology Foundation.

References

1. M.R. Garey, D.J. Johnson, Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco, 1979.

2. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and TUCS Research Report 208, 1998 (http://www.tucs.fi).

3. Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

4. Gh. Păun, Membrane Computing: An Introduction, Springer, Berlin, Heidelberg,
2002.

5. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity Classes
in Cellular Computing with Membranes, Proceedings of Brainstorming Week on
Membrane Computing (M. Cavaliere, C. Mart́ın-Vide and Gh. Păun eds.), Tarrag-
ona, Spain, February, (2003) 270–278.

6. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A Polynomial Com-
plexity Class in P Systems Using Membrane Division, Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, Budapest, Hungary, July
12–14, 2003.

Writing Information into DNA

Masanori Arita

Department of Computational Biology
Graduate School of Frontier Sciences

University of Tokyo
Kashiwanoha 5-1-5, 277-8561 Kashiwa, Japan

arita@k.u-tokyo.ac.jp

Abstract. The time is approaching when information can be written
into DNA. This tutorial work surveys the methods for designing code
words using DNA, and proposes a simple code that avoids unwanted
hybridization in the presence of shift and concatenation of DNA words
and their complements.

1 Introduction

As bio- and nano-technology advances, the demand for writing information into
DNA increases. Areas of immediate application are:

– DNA computation which attempts to realize biological mathematics, i.e.,
solving mathematical problems by applying experimental methods in molec-
ular biology [1]. Because a problem must be first encoded in DNA terms, the
method of encoding is of crucial importance. Typically, a set of fixed-length
oligonucleotides is used to denote logical variables or graph components.

– DNA tag/antitag system which designs fixed-length short oligonucleotide
tags for identifying biomolecules (e.g., cDNA), used primarily for monitoring
gene expressions [2,3,4].

– DNA data storage which advocates the use of bacterial DNA as a long-lasting
high-density data storage, which can also be resistant to radiation [5].

– DNA signature which is important for registering a copyright of engineered
bacterial and viral genomes. Steganography (an invisible signature hidden in
other information) is useful for the exchange of engineered genomes among
developers.

These fields are unlike conventional biotechnologies in that they attempt to
encode artificial information into DNA. They can be referred to as ‘encoding
models’. Although various design strategies for DNA sequences have been pro-
posed and some have been demonstrated, no standard code like the ASCII code
exists for these models, presumably because data transfer in the form of DNA
has not been a topic of research. In addition, requirements for DNA sequences
differ for each encoding model.

In this tutorial work, the design of DNA words as information carriers is
surveyed and a simple, general code for writing information into biopolymers is

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 23–35, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

24 Masanori Arita

proposed. After this introduction, Section 2 introduces major constraints consid-
ered in the word design. In Section 3, three major design approaches are briefly
overviewed and our approach is described in Section 4. Finally, Section 5 shows
an exemplary construction of DNA code words using our method.

2 Requirements for a DNA Code

DNA sequences consist of four nucleotide bases (A: adenine, C: cytosine, G: gua-
nine, and T: thymine), and are arrayed between chemically distinct terminals
known as the 5’- and 3’-end. The double-helix DNA strands are formed by a
sequence and its complement. The complementary strand, or complement, is ob-
tained by the substitution of base A with base T, and base C with base G and vice
versa, and reversing its direction. For example, the sequence 5’-AAGCGCTT-3’

is the complement of itself: 5′ − AAGCGCTT− 3′

3′ − TTCGCGAA− 5′ . A non-complementary base in

a double strand cannot form stable hydrogen bonds and is called a (base) mis-
match. The stability of a DNA double helix depends on the number and distri-
bution of base mismatches [6].

Now consider a set of DNA words for information interchange. Each word
must be as distinct as possible so that no words will induce unwanted hybridiza-
tion (mishybridization) regardless of their arrangement. At the same time, all
words must be physico-chemically uniform (concerted) to guarantee an unbiased
reaction in biological experiments.

In principle, there are two measures for evaluating the quality of designed
DNA words: statistical thermodynamics and combinatorics. Although the ther-
modynamic method may yield a more accurate estimation, its computational
cost is high. Therefore, since combinatorial estimations approximate the ther-
modynamic ones, the focus in this work is on the former method, described in
terms of discrete constraints that DNA words should satisfy. In what follows,
formal requirements for the DNA word set will be introduced.

2.1 Constraints on Sequences

DNA words are assumed to be of equal length. This assumption holds true in
most encoding models. (Some models use oligonucleotides of different lengths
for spacer- or marker sequences. As such modifications do not change the nature
of the problem, their details are not discussed here.) The design problem posed
by DNA words has much in common with the construction of classical error-
correcting code words.

Let x = x1x2 · · ·xn be a DNA word over four bases {A,C,G,T}. The reverse
of x is denoted xR = xnxn−1 · · ·x1, and the complement of x, obtained by
replacing base A with T, and base C with G in x and vice versa, is denoted
xC . The Hamming distance H(x, y) between two words x = x1x2 . . . xn and
y = y1y2 . . . yn is the number of indices i such that xi �= yi. For a set of DNA
words S, SRC is its complementation with reverse complement sequences, i.e.,
{x | x ∈ S or (xR)C ∈ S}.

Writing Information into DNA 25

Hamming Constraints As in code theory, designed DNA words should keep
a large Hamming distance between all word pairs. What makes the DNA code-
design more complicated than the standard theory of error-correcting code is
that we must consider not only H(x, y) but also H(xC , yR) to guarantee the
mismatches in the hybridization with other words and their complements (Fig 1).

Fig. 1. Binary Pattern of Hybridization. The complementary strand has a re-
verse pattern of {A,T} and {G,C} bases. A reverse complement of a DNA word
corresponds to its complementary strand.

Comma-Free Constraints It is desirable for the designed words to be comma-
free because DNA has no fixed reading frames. By definition, a code S is comma-
free if the overlap of any two, not necessarily different, code words x1x2 · · ·xn ∈ S
and y1y2 · · · yn ∈ S, (i.e., xr+1xr+2 · · · xny1y2 · · · yr; 0 < r < n) does not result
in another code word in S [7,8]. The property by which any overlapping word
differs from another word in at least d positions is called comma-free with index
d. Thus, our DNA code should be comma-free with a high index. 1

Note that comma-freeness is not replaced by introducing predefined ‘spacer’
words between code words. Such spacers may facilitate the decoding of words,
but they do not contribute to the avoidance of mishybridization. Moreover, spac-
ers lengthen the encoded DNA and lower its information content.

Energy Constraints In addition to the above constraints on mismatches, the
melting temperatures of DNA words must be very similar to guarantee their
concerted behavior in vitro. The most reliable estimation is the nearest neighbor
approximation, where the temperature is computed from the frequency of 16
base dimers (from AA to TT) [12,6]. Arita and Kobayashi proposed its further
approximation by grouping [GC] and [AT], where the temperature depends on
the frequency of only 3 patterns ([GC][GC], [GC][AT] or [AT][GC], and [AT][AT]) [13].
Dimer frequency of a sequence x is the three tuple of integers, each describing
the frequency of the above 3 patterns in this order. To integrate the terminal

1 The idea of comma-freeness originated in the elucidation of DNA translation mech-
anism. Early on, DNA codons for 20 amino acids were thought to be encoded in
the comma-free manner [9]. Incidentally, the number of comma-free code words of
length 3 over 4 bases is at most 20. The systematic design of a comma-free code of
index 1 was soon proposed [10,11].

26 Masanori Arita

bases, we assume as if x is cyclic in the computation of frequency. For example,
AAGCGCTT and TACGGCAT exhibit close melting temperatures because they share
the same dimer frequency (3, 2, 3). Thus, all DNA code words should share the
same dimer frequency to guarantee their concerted behavior.

Other Constraints Depending on the model used, there are constraints in
terms of base mismatches. We focus on the first 2 constraints in this paper.

1. Forbidden subwords that correspond to restriction sites, simple repeats, or
other biological signal sequences, should not appear anywhere in the designed
words and their concatenations. This constraint arises when the encoding
model uses pre-determined sequences such as genomic DNA or restriction
sites for enzymes.

2. Any subword of length k should not appear more than once in the designed
words. This constraint is imposed to ensure the avoidance of base pair nu-
cleation that leads to mishybridization. The number k is usually ≥ 6.

3. A secondary structure that impedes expected hybridization of DNA words
should not arise. To find an optimal structure for these words, the mini-
mum free energy of the strand is computed by dynamic programming [14].
However, the requirement here is that the words do not form some struc-
ture. This constraint arises when temperature control is important in the
encoding models.

4. Only three bases, A,C, and T, may be used in the word design. This constraint
serves primarily to reduce the number of mismatches by biasing the base
composition, and to eliminate G-stacking energy [15]. In RNA word design,
this constraint is important because in RNA, both G-C pairs and G-U pairs
(equivalent to G-T in DNA) form stably.

2.2 Data Storage Style

Because there is no standard DNA code, it may seem premature to discuss meth-
ods of aligning words or their storage, i.e., their data-addressing style. However,
it is worth noting that the storage style depends on the word design; the im-
mobilization technique, like DNA chips, has been popular partly because its
weaker constraint on words alleviates design problems encountered in scaling up
experiments.

Surface-Based Approach In the surface-based (or solid-phase) approach,
DNA words are placed on a solid support (Fig 2). This method has two ad-
vantages: (1) since one strand of the double helix is immobilized, code words can
be separated (washed out) from their complements, thereby reducing the risk of
unexpected aggregation of words [16]; (2) since fluorescent labeling is effective,
it is easier to recognize words, e.g., for information readout.

Writing Information into DNA 27

Fig. 2. The Surface-Based versus the Soluble Approach. While they are indis-
tinguishable in solution, immobilization makes it easy to separate information
words (gray) from their complements (black).

Soluble Approach Easier access to information on surfaces simultaneously
limits the innate abilities of biomolecules. DNA fragments in solution acquire
more flexibility as information carriers, and have been shown capable of sim-
ulating cellular automata [17]. Other advantages of the soluble approach are:
(1) it opens the possibility of autonomous information processing [18]; (2) it is
possible to introduce DNA words into microbes. The words can also be used for
nano structure design.

Any systematic word design that avoids mishybridization should serve both
approaches. Therefore, word constraints must extend to complements of code
words. Our design problem is then summarized as follows.

Problem: Given two integers l and d (l > d > 0), design a set S
of length-l DNA words such that SRC is comma-free with index d and
for any two sequences x, y ∈ SRC , H(x, y) ≥ d and H(xC , yR) ≥ d.
Moreover, all words in SRC share the same dimer frequency.

3 Previous Works

Due to the different constraints, there is currently no standard method for de-
signing DNA code words. In this section, three basic approaches are introduced:
(1) the template-map strategy, (2) De Bruijn construction, and (3) the stochastic
method.

3.1 Template-Map Strategy

This simple yet powerful construction was apparently first proposed by Condon’s
group [16]. Constraints on the DNA code are divided and separately assigned
to two binary codes, e.g., one specifies the GC content (called templates), the
other specifies mismatches between any word pairs (called maps). The product
of two codes produces a quaternary code with the properties of both codes (Fig
3). Frutos et al. designed 108 words of length 8 where (1) each word has four
GCs; (2) each pair of words, including reverse complements, differs in at least
four bases [16]. Later, Li et al., who used the Hadamard code, generalized this
construction to longer code words that have mismatches equal to or exceeding

28 Masanori Arita

half their length [19]. They presented, as an example, the construction of 528
words of length 12 with 6 minimum mismatches.

Fig. 3. Template-Map Strategy. In this figure, templates specify that the se-
quences contain 50% GCs and four mismatches between them and their comple-
ments. Maps are error-correcting code words and specify the choice between A
and T, or G and C.

The drawback of this construction is twofold. First, the melting tempera-
tures of the designed quaternary words may differ regardless of their uniform
GC content. This property was analyzed in Li et al. and the predicted melting
temperatures of the 528 words differed over 20 ◦C range [19]. The second problem
is the comma-freeness. Although the design has been effectively demonstrated
in the surface-based approach, scaling up to multiple words will be difficult due
to mishybridization.

3.2 De Bruijn Construction

The longer a consecutive run of matched base pairs, the higher is the risk of
mishybridization. The length-k subword constraint to avoid mishybridization is
satisfied with a binary De Bruijn sequence of order k, a circular sequence of
length 2k in which each subword of length k occurs exactly once. 2 A linear time
algorithm for the construction of a De Bruijn sequence is known [20]. Ben-Dor
et al. showed an optimal choosing algorithm of oligonucleotide tags that satisfy
the length-k subword constraint and also share similar melting temperatures [4].

One disadvantage is that the number of mismatches between words may be
small, because the length-k constraint guarantees only one mismatch for each
k-mer. Another disadvantage is again the comma-freeness.

3.3 Stochastic Method

The stochastic method is the most widely used approach in word design; there
are as many types of design software as there are reported experiments.
2 De Bruijn sequence can be quaternary. By using the binary version, however, we can

easily satisfy the constraint that the subword does not occur in the complementary
strand.

Writing Information into DNA 29

Deaton et al. used genetic algorithms to find code words of similar melting
temperatures that satisfy the ‘extended’ Hamming constraint, i.e., a constraint
where mismatches in the case of shift are also considered [21]. (The constraint
they named the H-measure, is different from comma-freeness in that it considers
mismatches between two words, not their overlaps.) Due to the complexity of
the problem, they reported that genetic algorithms can be applied to code words
of up to length 25 [22].

Landweber et al. used a random word-generation program to design two sets
of 10 words of length 15 that satisfy the conditions (1) no more than five matches
over a 20-nucleotide window in any concatenation between all 210 combinations;
(2) similar melting temperatures of 45 ◦C; (3) avoidance of secondary structures;
and (4) no consecutive matches of more than 7 base pairs. 3 All of the strong
constraints could be satisfied with only 3 bases [15]. Other groups that employed
three-base words likewise used random word-generation for their word design
[24,23].

Although no detailed analyses for such algorithms are available, the power
of stochastic search is evident in the work of Tulpan et al., who could increase
the number of code words designed by the template-map strategy [25]. However,
they reported that the stochastic search failed to outperform the template-map
strategy if searches were started from scratch. Therefore it is preferable to apply
the stochastic method to enlarge already designed word sets.

4 Methods

4.1 Comma-Free Error-Correcting DNA Code

Among the different constraints on DNA code words, the most difficult to satisfy
is comma-freeness; no systematic construction is known for a comma-free code of
high index. The stochastic search is also not applicable because its computational
cost is too high.

The comma-free property is, however, a necessary condition for the design of
a general-purpose DNA code. This section presents the construction method for a
comma-free error-correcting DNA code, and proposes a DNA code: 112 words of
length 12 that mismatch at at least 4 positions in any mishybridization, share no
more than 6 consecutive subsequences, and retain similar melting temperatures.

Basic Design For this design, we employed the method of Arita and Kobayashi
[13]. It can systematically generate a set of words of length � such that any of
its members will have approximately �/3 mismatches with other words, their
complements, and overlaps of their concatenations. They constructed sequences
as a product of two types of binary words as in the template-map strategy, except
that they used a single binary word, denoted T , as the template. Template T is

3 The fourth condition is unnecessary if the first one is satisfied; presented here are
all conditions considered in the original paper.

30 Masanori Arita

chosen so that its alignment with subsequent patterns always contains equal to
or more than d mismatches.

T R TT R T RT TT T RT R (1)

The template specifies the GC positions of the designed words: [GC] corre-
sponds to either 1’s or 0’s in the template. Since the pattern T R specifies the
AT/GC pattern of reverse complements, the mismatches between T and T R

guarantee the base mismatches between forward strands and reverse strands of
designed DNAs. Other patterns from TT to T RT R are responsible for shifted
patterns.

For the map words, any binary error-correcting code of minimum distance
d or greater is used. Then, any pair of words in the resulting quaternary code
induces at least d mismatches without block shift because of the error-correcting
code, and with block shift or reversal because of the chosen template.

Comma-freeness is not the only advantage of their method. Because a single
template is used to specify GC positions for all words, the GC arrangement of
resulting code words is uniform, resulting in similar melting temperatures for all
words in the nearest neighbor approximation [13].

Other Constraints In this subsection, methods to satisfy other practical con-
straints are introduced.

Forbidden subword
Since the error-correcting property of the map words is invariant under exchang-
ing and 0-1 flipping columns of all words, this constraint can be easily satisfied.

Length-k subword
For the DNA words to satisfy this constraint, two additional conditions are nec-
essary: First, the template should not share any length-k subword with patterns
in (1). Second, the map words should not share any length-k subword among
them.

The first condition can be imposed when the template is selected. To satisfy
the second condition, the obvious transformation from word selection to the Max
Clique Problem is used: the nodes correspond to the words, and the edges are
linked only when two words do not share any length-k subword (without block
shift). Note that the clique size is upper bounded by 2k.

Secondary structure
Since all words are derived from the same template, in the absence of shifts,
the number of mismatches can be the minimum distance of the error-correcting
code words. Hybridization is therefore more likely to proceed without shifts. To
avoid secondary structures, the minimum distance of the error-correcting code
words is kept sufficiently large and base mismatches are as much distributed
as possible. The latter constraint is already achieved by imposing the length-k
subword constraint.

Writing Information into DNA 31

5 Results

5.1 DNA Code for the English Alphabet

Consider the design for the English alphabet using DNA. For each letter, one
DNA word is required. One short error-correcting code is the nonlinear (12,144,4)
code [26]. 4 Using a Max Clique Problem solver 5, 32, 56, and 104 words could
be chosen that satisfied the length-6, -7, -8 subword constraint, respectively.

There are 74 template words of length 12 and of minimum distance 4; they are
shown in the Appendix. Since 128 words cannot be derived from a single template
under the subword constraint, two words, say S and T , were selected from the
74 templates such that both S and T induce more than 3 mismatches with any
concatenation of 4 words T, S, T R, and SR (16 patterns), and each chosen word
shares no more than length-5, -6, or -7 subword with the other and with their
concatenations. Under the length-6 subword constraint, no template pair could
satisfy all constraints. Under the length-7, and -8 subword constraints, 8 pairs
were selected. (See the Appendix.) All pairs had the common dimer frequency.
Under this condition, DNA words derived from these templates can be shown to
share close melting temperatures.

Thus, we found 2 templates could be used simultaneously in the design of
length-12 words. There were 8 candidate pairs. By combining one of 8 pairs
with the 56 words in the Appendix, 112 words were obtained that satisfied the
following conditions:

– They mismatched in at least 4 positions between any pair of words and their
complements.

– The 4 mismatch was guaranteed under any shift and concatenation with
themselves and their complements (comma-freeness of index 4).

– None shared a subword of length 7 or longer under any shift and concatena-
tion.

– All words had close melting temperatures in the nearest neighbor approxi-
mation.

– Because all words were derived from only two templates, the occurrence of
specific subsequences could be easily located. In addition, the avoidance of
specific subsequences was also easy.

We consider that the 112 words serve as the standard code for the English
alphabet. The number of words, 112, falls short of the 128 ASCII characters.
However, some characters are usually unused. For example, HTML characters
from to are not used. Therefore, the 112 words suffice for the DNA
ASCII code. This is preferable to loosening the constraints to obtain 128 words.

4 The notation (12,144,4) reads ‘a length-12 code of 144 words with the minimum
distance 4’ (one error-correcting).

5 http://rtm.science.unitn.it/intertools/

32 Masanori Arita

5.2 Discussion

The current status of information-encoding models was reviewed and the neces-
sity and difficulty of constructing comma-free DNA code words was discussed.
The proposed design method can provide 112 DNA words of length 12 and
comma-free index 4. This result is superior to the current standard because it
is the only work that considers arbitrary concatenation among words including
their complementary strands.

In analyzing the encoding models, error and efficiency must be clearly distin-
guished. Error refers to the impairment of encoded information due to experi-
mental missteps such as unexpected polymerization or excision. Efficiency refers
to the processing speed, not the accuracy, of experiments.

Viewed in this light, the proposed DNA code effectively minimizes errors:
First, the unexpected polymerization does not occur because all words satisfy
the length-7 subword constraint. 6 Second, the site of possible excision under
the application of enzymes is easily identified. Lastly, all words have uniform
physico-chemical properties and their interaction is expected to be in concert.
The efficiency, on the other hand, remains to be improved. It can be argued that
4 mismatches for words of length 12 are insufficient for avoiding unexpected
secondary structures. Indispensable laboratory experiments are underway and
confirmation of the applicability of the code presented here to any of the encoding
models is awaited.

Regarding code size, it is likely that the number of words can be increased
by a stochastic search.

Without systematic construction, however, the resulting code loses one good
property, i.e., the easy location of specific subsequences under any concatenation.

The error-correcting comma-free property of the current DNA words opens
a way to new biotechnologies. Important challenges include: 1. The design of a
comma-free quaternary code of high indices; 2. Analysis of the distribution of
mismatches in error-correcting code words; and 3. The development of criteria
to avoid the formation of secondary structures.

Also important is the development of an experimental means to realize ‘DNA
signature’. Its presence may forestall and resolve lawsuits on the copyright of en-
gineered genomes. Currently when a DNA message is introduced into a genome,
no convenient method exists for the detection of its presence unless the mes-
sage sequence is known. In the future, it should be possible to include English
messages, not ACGTs, on the input window of DNA synthesizers.

References

1. L.M. Adleman, “Molecular Computation of Solutions to Combinatorial Problems,”
Science 266(5187), 1021–1024 (1994).

2. S. Brenner and R.A. Lerner, “Encoded Combinatorial Chemistry,” Proc. Nation.
Acad. Sci. USA 89(12), 5381–5383 (1992).

6 The minimum length for primers to initiate polymerization is usually considered to
be 8.

Writing Information into DNA 33

3. S. Brenner, S.R. Williams, E.H. Vermaas, T. Storck, K. Moon, C. McCollum,
J.I. Mao, S. Luo, J.J. Kirchner, S. Eletr, R.B. DuBridge, T. Burcham and G. Al-
brecht, “In Vitro Cloning of Complex Mixtures of DNA on Microbeads: physical
separation of differentially expressed cDNAs,” Proc. Nation. Acad. Sci. USA 97(4),
1665–1670 (2000).

4. A. Ben-Dor, R. Karp, B. Schwikowski and Z. Yakhini, “Universal DNA Tag Sys-
tems: a combinatorial design scheme,” J. Comput. Biol. 7(3-4), 503–519 (2000).

5. P.C. Wong, K-K. Wong and H. Foote, “Organic Data Memory Using the DNA
Approach,” Comm. of ACM, 46(1), 95–98 (2003).

6. H.T. Allawi and J. SantaLucia Jr., “Nearest-neighbor Thermodynamics of Inter-
nal AC Mismatches in DNA: sequence dependence and pH effects,” Biochemistry,
37(26), 9435–9444 (1998).

7. S.W. Golomb, B. Gordon and L.R. Welch, “Comma-Free Codes,” Canadian J. of
Math. 10, 202–209 (1958).

8. B. Tang, S.W. Golomb and R.L. Graham, “A New Result on Comma-Free Codes
of Even Word-Length,” Canadian J. of Math. 39(3), 513–526 (1987).

9. H.F. Judson, The Eighth Day of Creation: Makers of the Revolution in Biology,
Cold Spring Harbor Laboratory, (Original 1979; Expanded Edition 1996)

10. J.J. Stiffler, “Comma-Free Error-Correcting Codes,” IEEE Trans. on Inform.
Theor., IT-11, 107–112 (1965).

11. J.J. Stiffler, Theory of Synchronous Communication, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1971.

12. K.J. Breslauer, R. Frank, H. Blocker and L.A. Marky, ”Predicting DNA Duplex
Stability from the Base Sequence,” Proc. Nation. Acad. Sci. USA 83(11), 3746–
3750 (1986).

13. M. Arita and S. Kobayashi, “DNA Sequence Design Using Templates,” New
Generation Comput. 20(3), 263–277 (2002). (Available as a sample paper at
http://www.ohmsha.co.jp/ngc/index.htm.)

14. M. Zuker and P. Steigler, “Optimal Computer Folding of Large RNA Sequences
Using Thermodynamics and Auxiliary Information,” Nucleic Acids Res. 9, 133–148
(1981).

15. D. Faulhammer, A.R. Cukras, R.J. Lipton and L.F. Landweber, “Molecular Com-
putation: RNA Solutions to Chess Problems,” Proc. Nation. Acad. Sci. USA 97(4),
1385–1389 (2000).

16. A.G. Frutos, Q. Liu, A.J. Thiel, A.M. Sanner, A.E. Condon, L.M. Smith and
R.M. Corn, “Demonstration of a Word Design Strategy for DNA Computing on
Surfaces,” Nucleic Acids Res. 25(23), 4748–4757 (1997).

17. E. Winfree, X. Yang and N.C. Seeman, “Universal Computation Via Self-assembly
of DNA: some theory and experiments,” In DNA Based Computers II, DIMACS
Series in Discr. Math. and Theor. Comput. Sci. 44, 191–213 (1998).

18. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh and E. Shapiro, “Pro-
grammable and Autonomous Computing Machine Made of Biomolecules,” Nature
414, 430–434 (2001).

19. M. Li, H.J. Lee, A.E. Condon and R.M. Corn, “DNA Word Design Strategy for
Creating Sets of Non-interacting Oligonucleotides for DNA Microarrays,” Lang-
muir 18(3), 805–812 (2002).

20. K. Cattell, F. Ruskey, J. Sawada and M. Serra, “Fast Algorithms to Generate
Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2),” J. Al-
gorithms, 37, 267–282 (2000).

34 Masanori Arita

21. R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti and S.E. Stevens Jr.,
“Good Encodings for DNA-based Solution to Combinatorial Problems,” In DNA
Based Computers II, DIMACS Series in Discr. Math. and Theor. Comput. Sci.
44, 247–258 (1998).

22. M. Garzon, P. Neathery, R. Deaton, D.R. Franceschetti, and S.E. Stevens Jr.,
“Encoding Genomes for DNA Computing,” In Proc. 3rd Annual Genet. Program.
Conf., Morgan Kaufmann 684–690 (1998).

23. R.S. Braich, N. Chelyapov, C. Johnson, R.W. Rothemund and L. Adleman, “So-
lution of a 20-Variable 3-SAT Problem on a DNA Computer,” Science 296(5567),
499–502 (2002).

24. K. Komiya, K. Sakamoto, H. Gouzu, S. Yokoyama, M. Arita, A. Nishikawa and
M. Hagiya, “Successive State Transitions with I/O Interface by Molecules,” In
DNA Computing: 6th Intern. Workshop on DNA-Based Computers (Leiden, The
Netherlands), LNCS 2054, 17–26 (2001).

25. D.C. Tulpan, H. Hoos and A. Condon, “Stochastic Local Search ALgorithms for
DNA Word Design,” In Proc. 8th Intern. Meeting on DNA-Based Computers (Sap-
poro, Japan), 311–323 (2002).

26. F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error-Correcting Codes,”
New York, North-Holland, 2nd reprint (1983).

Appendix

110010100000 110001010000† 110000001010 110000000101 101100100000† 101001001000†

101000010001 101000000110† 100101000100† 100100011000 100100000011 100011000010

100010010100 100010001001 100001100001† 100000110010 100000101100† 011100000010
011010000100 011000110000† 011000001001 010110001000 010100100100 010100010001

010011000001 010010010010 010001101000 010001000110 010000100011† 010000011100

001110010000† 001101000001† 001100001100 001010101000† 001010000011 001001100010
001001010100† 001000100101 001000011010† 000110100010 000110000101 000101110000†

000101001010 000100101001† 000100010110 000011100100 000011011000 000010110001†

000010001110 000001010011 000001001101† 001101011111 001110101111 001111110101

001111111010 010011011111† 010110110111† 010111101110† 010111111001 011010111011†

011011100111 011011111100 011100111101† 011101101011 011101110110 011110011110†

011111001101 011111010011† 100011111101† 100101111011 100111001111† 100111110110
101001110111 101011011011 101011101110 101100111110 101101101101 101110010111

101110111001 101111011100† 101111100011 110001101111 110010111110† 110011110011†

110101010111 110101111100† 110110011101 110110101011† 110111011010† 110111100101

111001011101 111001111010 111010001111 111010110101 111011010110† 111011101001
111100011011 111100100111 111101001110† 111101110001 111110101100 111110110010†

000000000000† 111111111111† 000000111111 000011101011† 000101100111 000110011011†

000110111100 001001111001 001010011101 001010110110 001100110011† 001111000110†

010001110101† 010010101101† 010100001111† 010100111010 010111010100 011000010111
011000101110 011011001010† 011101011000† 011110100001 111111000000 111100010100†

111010011000† 111001100100 111001000011† 110110000110 110101100010 110101001001

110011001100 110000111001† 101110001010† 101101010010† 101011110000 101011000101†

101000101011 100111101000 100111010001 100100110101† 100010100111† 100001011110

(12,144,4) Code. Daggers indicate 56 words that satisfy the length-7-subword
constraint.

Writing Information into DNA 35

101001100000 011001010000 101101110000 101100001000 011101101000 110011101000
001010011000 101110011000 111001011000 010110111000 001101000100 011101100100
001111010100 001110110100 111010001100 110010101100 101111000010 111001100010
010111100010 111100010010 011000001010 011010100110 100001110110 100100011110
111010010001 110110010001 100110101001 101110000101 111000100101 110101000011
110100100011

Templates of Length 12. When their reversals and 01-flips are included, the total
number of words is 74.

000110011101 and 001010111100 000110011101 and 001111010100
001010111100 and 101110011000 001111010100 and 101110011000
010001100111 and 110000101011 010001100111 and 110101000011
110000101011 and 111001100010 110101000011 and 111001100010

Template Pairs Satisfying Minimum Distance 4 and Length-7-subword Constraint.

Balance Machines: Computing = Balancing

Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

Department of Computer Science
The University of Auckland

Auckland, New Zealand
{jaru003,cristian,mjd}@cs.auckland.ac.nz

Abstract. We propose a natural computational model called a balance
machine. The computational model consists of components that resemble
ordinary physical balances, each with an intrinsic property to automati-
cally balance the weights on their left, right pans. If we start with certain
fixed weights (representing inputs) on some of the pans, then the balance–
like components would vigorously try to balance themselves by filling the
rest of the pans with suitable weights (representing the outputs). This
balancing act can be viewed as a computation. We will show that the
model allows us to construct those primitive (hardware) components that
serve as the building blocks of a general purpose (universal) digital com-
puter: logic gates, memory cells (flip-flops), and transmission lines. One
of the key features of the balance machine is its “bidirectional” operation:
both a function and its (partial) inverse can be computed spontaneously
using the same machine. Some practical applications of the model are
discussed.

1 Computing as a “Balancing Feat”

A detailed account of the proposed model will be given in Section 2. In this
section, we simply convey the essence of the model without delving into technical
details. The computational model consists of components that resemble ordinary
physical balances (see Figure 1), each with an intrinsic property to automatically
balance the weights on their left, right pans. In other words, if we start with
certain fixed weights (representing inputs) on some of the pans, then the balance–
like components would vigorously try to balance themselves by filling the rest of
the pans with suitable weights (representing the outputs). Roughly speaking, the
proposed machine has a natural ability to load itself with (output) weights that
“balance” the input. This balancing act can be viewed as a computation. There is
just one rule that drives the whole computational process: the left and right pans
of the individual balances should be made equal. Note that the machine is designed
in such a way that the balancing act would happen automatically by virtue of
physical laws (i.e., the machine is self-regulating).1 One of our aims is to show
that all computations can be ultimately expressed using one primitive operation:
1 If the machine cannot (eventually) balance itself, it means that the particular in-

stance does not have a solution.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 36–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Balance Machines: Computing = Balancing 37

balancing. Armed with the computing = balancing intuition, we can see basic
computational operations in a different light. In fact, an important result of
this paper is that this sort of intuition suffices to conceptualize/implement any
computation performed by a conventional computer.

Fig. 1. Physical balance.

The rest of the paper is organized as follows: Section 2 gives a brief intro-
duction to the proposed computational model; Section 3 discusses a variety of
examples showing how the model can be made to do basic computations; Sec-
tion 4 is a brief note on the universality feature of the model; Section 5 reviews
the notion of bilateral computing and discusses an application (solving the classic
SAT problem); Section 6 concludes the paper.

2 The Balance Machine Model

At the core of the proposed natural computational model are components that
resemble a physical balance. In ancient times, the shopkeeper at a grocery store
would place a standard weight in the left pan and would try to load the right pan
with a commodity whose weight equals that on the left pan, typically through
repeated attempts. The physical balance of our model, though, has an intrinsic
self-regulating mechanism: it can automatically load (without human interven-
tion) the right pan with an object whose weight equals the one on the left pan.
See Figure 2 for a possible implementation of the self-regulating mechanism.

In general, unlike the one in Figure 2, a balance machine may have more than
just two pans. There are two types of pans: pans carrying fixed weights which re-
main unaltered by the computation and pans with variable (fluid) weights that
are changed by activating the filler–spiller outlets. Some of the fixed weights
represent the inputs, and some of the variable ones represent outputs. The in-
puts and outputs of balance machines are, by default, non–negative reals unless
stated otherwise. The following steps comprise a typical computation by a given
balance machine:

38 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

X Y

1 2

X + Y

“filler” outlet

“spiller” outlet

(fluid) source

push buttons

variable weightfixed weight

Fig. 2. A self-regulating balance. The source is assumed to have (an arbitrary amount
of) a fluid–like substance. When activated, the filler outlet lets fluid from source into the
right pan; the spiller outlet, on being activated, allows the right pan to spill some of its
content. The balancing is achieved by the following mechanism: the spiller is activated
if at some point the right pan becomes heavier than left (i.e., when push button (2)
is pressed) to spill off the extra fluid; similarly, the filler is activated to add extra
fluid to the right pan just when the left pan becomes heavier than right (i.e., when
push button (1) is pressed). Thus, the balance machine can “add” (sum up) inputs x
and y by balancing them with a suitable weight on its right: after being loaded with
inputs, the pans would go up and down till it eventually finds itself balanced.

– Plug in the desired inputs by loading weights to pans (pans with variable
weights can be left empty or assigned with arbitrary weights). This defines
the initial configuration of the machine.

– Allow the machine to balance itself: the machine automatically adjusts the
variable weights till left and right pans of the balance(s) become equal.

– Read output: weigh fluid collected in the output pans (say, with a standard
weighting instrument).

See Figure 3 for a schematic representation of a machine that adds two quantities.
We wish to point out that, to express computations more complex than addition,
we would require a combination of balance machines such as the one in Figure 2.
Section 3 gives examples of more complicated machines.

3 Computing with Balance Machines: Examples

In what follows, we give examples of a variety of balance machines that carry out
a wide range of computing tasks—from the most basic arithmetic operations to

Balance Machines: Computing = Balancing 39

+

+

. . .

represents two (or more) pans

represent fixed weightssmall letters, numerals

capital letters represent variable weights

Symbol Meaning
a b

A

weights on both sides of this “bar”
should balance

whose weights add up
(these weights need not balance each other)

Fig. 3. Schematic representation of a simple balance machine that performs addition.

solving linear simultaneous equations. Balance machines that perform the oper-
ations increment, decrement, addition, and subtraction are shown in Figures 4, 5,
6, and 7, respectively. Legends accompanying the figures give details regarding
how they work.

Balance machines that perform multiplication by 2 and division by 2 are
shown in Figures 8, 9, respectively. Note that in these machines, one of the
weights (or pans) takes the form of a balance machine.2 This demonstrates that
such a recursive arrangement is possible.

We now introduce another technique of constructing a balance machine: hav-
ing a “common” weight shared by more than one machine. Another way of visual-
izing the same situation is to think of pans (belonging to two different machines)
being placed one over the other. We use this idea to solve a simple instance of
linear simultaneous equations. See Figures 10 and 11 which are self–explanatory.

An important property of balance machines is that they are bilateral comput-
ing devices. See [1], where we introduced the notion of bilateral computing. Typ-
ically, bilateral computing devices can compute both a function and its (partial)
inverse using the same mechanism. For instance, the machines that increment
and decrement (see Figures 4 and 5) share exactly the same mechanism, except

2 The weight contributed by a balance machine is assumed to be simply the sum of
the individual weights on each of its pans. The weight of the bar and the other parts
is not taken into account.

40 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+

1x

Z

Fig. 4. Increment operation. Here x represents the input; Z represents the output.

The machine computes increment(x). Both x and ‘1’ are fixed weights clinging to the

left side of the balance machine. The machine eventually loads into Z a suitable weight

that would balance the combined weight of x and ‘1’. Thus, eventually Z = x + 1, i.e.,

Z represents increment(x).

+

1X

z

Fig. 5. Decrement operation. Here z represents the input; X represents the output.

The machine computes decrement(z). The machine eventually loads into X a suitable

weight, so that the combined weight of X and ‘1’ would balance z. Thus, eventually

X + 1 = z, i.e., X represents decrement(z).

for the fact that we have swapped the input and output pans. Also, compare
machines that (i) add and subtract (see Figures 6 and 7) and (ii) multiply and
divide by 2 (see Figures 8 and 9).

Though balance machines are basically analog computing machines, we can
implement Boolean operations (AND, OR, NOT) using balance machines, pro-
vided we make the following assumption: There are threshold units that return
a desired value when the analog values (representing inputs and outputs) exceed
a given threshold and some other value otherwise. See Figures 12, 13, and 14
for balance machines that implement logical operations AND, OR, and NOT re-
spectively. We represent true inputs with the (analog) value 10 and false inputs
with 5; when the output exceeds a threshold value of 5 it is interpreted as true,
and as false otherwise. (Instead, we could have used the analog values 5 and 0
to represent true and false; but, this would force the AND gate’s output to a
negative value for a certain input combination.) Tables 1, 2, and 3 give the truth
tables (along with the actual input/output values of the balance machines).

Balance Machines: Computing = Balancing 41

+

yx

Z

Fig. 6. Addition operation. The inputs are x and y; Z represents the output. The

machine computes x + y. The machine loads into Z a suitable weight, so that the

combined weight of x and y would balance Z. Thus, eventually x+y = Z, i.e., Z would

represent x + y.

+ z

x Y

Fig. 7. Subtraction operation. Here z and x represent the inputs; Y represents the

output. The machine computes z − x. The machine loads into Y a suitable weight, so

that the combined weight of x and Y would balance z. Thus, eventually x + Y = z,

i.e., Y would represent z − x.

4 Universality of Balance Machines

The balance machine model is capable of universal discrete computation, in the
sense that it can simulate the computation of a practical, general purpose digital
computer. We can show that the model allows us to construct those primitive
(hardware) components that serve as the “building blocks” of a digital computer:
logic gates, memory cells (flip-flops) and transmission lines.

1. Logic gates
We can construct AND, OR, NOT gates using balance machines as shown in
Section 3. Also, we could realize any given Boolean expression by connecting
balance machines (primitives) together using “transmission lines” (discussed
below).

2. Memory cells
The weighting pans in the balance machine model can be viewed as “storage”
areas. Also, a standard S–R flip-flop can be constructed by cross coupling
two NOR gates, as shown in Figure 15. Table 4 gives its state table. They
can be implemented with balance machines by replacing the OR, NOT gates
in the diagram with their balance machine equivalents in a straightforward
manner.

42 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

a B A

Fig. 8. Multiplication by 2. Here a represents the input; A represents the output. The

machine computes 2a. The combined weights of a and B should balance A: a+B = A;

also, the individual weights a and B should balance each other: a = B. Therefore,

eventually A will assume the weight 2a.

a
A B

Fig. 9. Division by 2. The input is a; A represents the output. The machine “exactly”

computes a/2. The combined weights of A and B should balance a: A+B = a; also, the

individual weights A and B should balance each other: A = B. Therefore, eventually

A will assume the weight a/2.

3. Transmission lines
A balance machine like machine (2) of Figure 16 that does nothing but a
“copy” operation (copying whatever is on left pan to right pan) would serve
both as a transmission equipment, and as a delay element in some contexts.
(The pans have been drawn as flat surfaces in the diagram.) Note that the
left pan (of machine (2)) is of the fixed type (with no spiller–filler outlets)
and the right pan is a variable one.

Note that the computational power of Boolean circuits is equivalent to that
of a Finite State Machine (FSM) with bounded number of computational steps
(see Theorem 3.1.2 of [4]).3 But, balance machines are “machines with memory”:
using them we can build not just Boolean circuits, but also memory elements
(flip-flops). Thus, the power of balance machines surpasses that of mere bounded
FSM computations; to be precise, they can simulate any general sequential cir-
cuit. (A sequential circuit is a concrete machine constructed of gates and memory
devices.) Since any finite state machine (with bounded or unbounded computa-
tions) can be realized as a sequential circuit using standard procedures (see [4]),
one can conclude that balance machines have (at least) the computing power of
unbounded FSM computations. Given the fact that any practical (general pur-
pose) digital computer with only limited memory can be modeled by an FSM,
we can in principle construct such a computer using balance machines. Note,
however, that notional machines like Turing machines are more general than
balance machines. Nevertheless, standard “physics–like” models in the litera-

3 Also, according to Theorem 5.1 of [2] and Theorem 3.9.1 of [4], a Boolean circuit
can simulate any T–step Turing machine computation.

Balance Machines: Computing = Balancing 43

+ +

1 2

43

8

2X1 Y1 Y2

Y1X1

x + y = 8; x− y = 2

X2

Y2X2

Fig. 10. Solving simultaneous linear equations. The constraints X1 = X2 and Y1 = Y2

will be taken care of by balance machines (3) and (4). Observe the sharing of pans

between them. The individual machines work together as a single balance machine.

ture like the Billiard Ball Model[3] are universal only in this limited sense: there
is actually no feature analogous to the infinite tape of the Turing machine.

5 Bilateral Computing

There is a fundamental asymmetry in the way we normally compute: while we
are able to design circuits that can multiply quickly, we have relatively limited
success in factoring numbers; we have fast digital circuits that can “combine”
digital data using AND/OR operations and realize Boolean expressions, yet no
fast circuits that determine the truth value assignment satisfying a Boolean ex-
pression. Why should computing be easy when done in one “direction”, and
not so when done in the other “direction”? In other words, why should invert-
ing certain functions be hard, while computing them is quite easy? It may be
because our computations have been based on rudimentary operations (like addi-
tion, multiplication, etc.) that force an explicit distinction between “combining”
and “scrambling” data, i.e. computing and inverting a given function. On the
other hand, a primitive operation like balancing does not do so. It is the same
balance machine that does both addition and subtraction: all it has to do is
to somehow balance the system by filling up the empty variable pan (repre-
senting output); whether the empty pan is on the right (addition) or the left
(subtraction) of the balance does not particularly concern the balance machine!
In the bilateral scheme of computing, there is no need to develop two distinct
intuitions—one for addition and another for subtraction; there is no dichotomy
between functions and their (partial) inverses. Thus, a bilateral computing sys-
tem is one which can implement a function as well as (one of) its (partial)
inverse(s), using the same intrinsic “mechanism” or “structure”. See [1] where

44 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+ +8

2X

X

x− y = 2x + y = 8;

YY

Fig. 11. Solving simultaneous linear equations (easier representation). This is a sim-

pler representation of the balance machine shown in Figure 10. Machines (3) and (4)

are not shown; instead, we have used the same (shared) variables for machines (1) and

(2).

+ +

10x y Z

Fig. 12. AND logic operation. x and y are inputs to be ANDed; Z represents the

output. The balance realizes the equality x + y = Z + 10.

we have developed bilateral computing systems based on fluid mechanics and
have given a mathematical characterization of such systems.

We now show how the classic SAT problem can be solved under a bilateral
computing scheme, using balance machines. For the time being, we make no
claims regarding the time complexity of the approach since we have not analyzed
the time characteristics of balance machines. However, we believe that it will not
be exponential in terms of the number of variables (see also [1]). The main idea
is this: first realize the given Boolean expression using gates made of balances;
then, by setting the pan that represents the outcome of the Boolean expression
to (the analog value representing) true, the balance machine can be made to
automatically assume a set of values for its inputs that would “balance” it. In
other words, by setting the output to be true, the inputs are forced to assume
one of those possible truth assignments (if any) that generate a true output. The
machine would never balance, when there is no such possible input assignment
to the inputs (i.e., the formula is unsatisfiable). This is like operating a circuit
realizing a Boolean expression in the “reverse direction”: assigning the “output”
first, and making the circuit produce the appropriate “inputs”, rather than the
other way round.

See Figure 17 where we illustrate the solution of a simple instance of SAT
using a digital version of balance machine whose inputs/outputs are positive

Balance Machines: Computing = Balancing 45

Table 1. Truth table for AND.

x y Z

5 (false) 5 (false) 0 (false)
5 (false) 10 (true) 5 (false)
10 (true) 5 (false) 5 (false)
10 (true) 10 (true) 10 (true)

Table 2. Truth table for OR.

x y Z

5 (false) 5 (false) 5 (false)
5 (false) 10 (true) 10 (true)
10 (true) 5 (false) 10 (true)
10 (true) 10 (true) 15 (true)

Table 3. Truth table for NOT.

x Y

5 (false) 10 (true)
10 (true) 5 (false)

Table 4. State table for S–R flip-flop.

S R Q Q′

0 0 previous state of Q previous state of Q′

0 1 0 1
1 0 1 0
1 1 undefined undefined

integers (as opposed to reals). Note that these machines work based on the
following assumptions:

1. Analog values 10 and 5 are used to represent true and false respectively.
2. The filler–spiller outlets let out fluid only in (discrete) “drops”, each weighing

5 units.
3. The maximum weight a pan can hold is 10 units.

6 Conclusions

As said earlier, one of our aims has been to show that all computations can be
ultimately expressed using one primitive operation: balancing. The main thrust
of this paper is to introduce a natural intuition for computing by means of a
generic model, and not on a detailed physical realization of the model. We have
not analysed the time characteristics of the model, which might depend on how

46 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+ +

5x y Z

Fig. 13. OR logic operation. Here x and y are inputs to be ORed; Z represents the

output. The balance realizes the equality x + y = Z + 5.

+ 15

x Y

Fig. 14. NOT logic operation. Here x is the input to be negated; Y represents the

output. The balance realizes the equality x + Y = 15.

R

S
Q′

Q

Fig. 15. S–R flip-flop constructed using cross coupled NOR gates.

we ultimately implement the model. Also, apart from showing with illustrative
examples various possible (valid) ways of constructing balance machines, we have
not detailed a formal “syntax” that governs them.

Finally, this note shows that one of the possible answers to the question
“What does it mean to compute?” is: “To balance the inputs with suitable out-
puts (on a suitably designed balance machine).”

Balance Machines: Computing = Balancing 47

2 31

Fig. 16. Balance machine as a “transmission line”. Balance machine (2) acts as a

transmission line feeding the output of machine (1) into the input of machine (3).

3

2

5

+

1

5

0 0 0
0 1 1
1 0 0
1 1 1

15+

+ +

10

+

10

Truth table

Satisfiability of (a + b)(a′ + b)

A B Extra1 B Extra2

A

(a + b)(a′ + b)

A′

A′

a b

Fig. 17. Solving an instance of SAT: The satisfiability of the formula (a + b)(a′ + b)

is verified. Machines (1), (2) and (3) work together sharing the variables A, B and A′

between them. OR gates (labeled 1 and 2) realize (a + b) and (a′ + b) respectively and

the NOT gate (labeled 3) ensures that a and a′ are “complementary”. Note that the

“output” of gates (1) and (2) are set to 10. Now, one has to observe the values eventually

assumed by the variable weights A and B (that represent “inputs” of OR gate (1)).

Given the assumptions already mentioned, one can easily verify that the machine will

balance, assuming one of the two following settings: (i) A = 5, B = 10, (Extra1 = 0,

Extra2 = 5) or (ii) A = 10, B = 10, (Extra1 = 5, Extra2 = 0). These are the only

configurations that make the machine balanced. In situations when both the left pans

of gate (1) assume 10, Extra1 will automatically assume 5 to balance off the extra

weight on the left side. (Extra2 plays a similar role in gate (2).)

48 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

References

1. J.J. Arulanandham, C.S. Calude, M.J. Dinneen. Solving SAT with bilateral comput-
ing, Romanian Journal of Information Science and Technology (2003), to appear.

2. J.L. Balcázar, J.Dı́az, J. Gabarró. Structural Complexity I, Springer–Verlag, Berlin,
1988.

3. E. Fredkin, T. Toffoli. Conservative logic, Int’l J. Theoret. Phys. 21 (1982), 219–253.
4. J.E. Savage. Models of Computation, Addison–Wesley, Reading, Mass., 1998.

Eilenberg P Systems with Symbol-Objects

Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

Department of Computer Science
The University of Sheffield

Regent Court, Portobello Street, Sheffield, S1 4DP, UK
{F.Bernardini, M.Gheorghe, M.Holcombe}@dcs.shef.ac.uk

Abstract. A class of P systems, called EOP systems, with symbol ob-
jects processed by evolution rules distributed alongside the transitions
of an Eilenberg machine, is introduced. A parallel variant of EOP sys-
tems, called EOPP systems, is also defined and the power of both EOP
and EOPP systems is investigated in relationship with three parameters:
number of membranes, states and set of distributed rules. It is proven
that the family of Parikh sets of vectors of numbers generated by EOP
systems with one membrane, one state and one single set of rules coin-
cides with the family of Parikh sets of context-free languages. The hier-
archy collapses when at least one membrane, two states and four sets of
rules are used and in this case a characterization of the family of Parikh
sets of vectors associated with ET0L languages is obtained. It is also
shown that every EOP system may be simulated by an EOPP system
and EOPP systems may be used for solving NP-complete problems. In
particular linear time solutions are provided for the SAT problem.

1 Introduction

P systems were introduced by Gh. Păun [12] as a computational model in-
spired by the structure and functioning of the cell. A central role in this con-
text is played by membranes delimiting regions and allowing or preventing the
transport of different molecules and chemicals among them. Different classes
of P systems dealing with string objects or symbol objects, considering sets
or multisets of elements leading to various families of languages were inves-
tigated [13] (an up-to-date bibliography of the whole area may be found at
http://psystems.disco.unimib.it/). Because rewriting alone even in the context
of a highly parallel environment of a membrane structure is not enough to lead
to characterizations of recursively enumerable languages, various other features
have been considered, such as a priority relationship over the set of rules, permit-
ting or forbidding conditions associated with rules, restrictions on the derivation
mode, the possibility to control the membrane permeability [7] etc (for more de-
tails see [13]). In general the most used priority relationship on the set of rewrit-
ing rules is a partial order relationship, well studied in the context of generative
mechanisms with restrictions in derivation [5].

In [1] the priority relationship were replaced by a transition diagram associ-
ated with an Eilenberg machine giving birth to two classes of Eilenberg systems,

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 49–60, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

a sequential version and a parallel one, called EP systems and EPP systems,
respectively. In both variants, each transition has a specific set of evolution rules
acting upon the string objects contained in different regions of the membrane
system. The power of both variants working with string objects was investigated
as well as the suitability of EPP systems to solve hard problems. In this paper
multisets of symbol objects are considered and the corresponding of Eilenberg
P systems are called EOP systems and EOPP systems. The definition and the
behaviour of EOP and EOPP systems are very similar to those of EP and EPP
systems, respectively. More precisely, the system will start in a given state and
with an initial set of symbol objects. Given a state and a current multiset of
symbol objects, in the case of EOP systems, the machine will evolve by applying
rules associated with one of the transitions going out from the current state.
The system will resume from the destination state of the current transition. In
the parallel variant, instead of one state and a single multiset of symbol objects
we may have a number of states, called active states, that are able to trigger
outgoing transitions and such that each state hosts a different multiset of symbol
objects; all the transitions emerging from every active state may be triggered
once the rules associated with them may be applied; then the system will resume
from the next states, which then become active states. EOP systems are mod-
els of cells evolving under various conditions when certain factors may inhibit
some evolution rules or some catalysts may activate other rules. Both variants
dealing with string objects and symbol objects have some similarities with the
grammar systems controlled by graphs [4], replacing a one-level structure, which
is the current sentential form, with a hierarchical structure defined by the mem-
brane system. On the other hand, these variants of P systems may be viewed
as Eilenberg machines [6] having sets of evolution rules as basic processing re-
lationships. EP and EOP systems share some similar behaviour with Eilenberg
machines based on distributed grammar systems [8].

Eilenberg machines, generally known under the name of X machines [6], have
been initially used as a software specification language [9], further on intensively
studied in connection with software testing [10]. Communicating X-machine sys-
tems were also considered [2] as a model of parallel and communicating processes.

In this paper it is investigated the power of EOP and EOPP systems in
connection with three parameters: number of membranes, states and set of dis-
tributed rules. It is proven that the family of Parikh sets of vectors of numbers
generated by EOP systems with one membrane, one state and one single set
of rules coincides with the family of Parikh sets of context-free languages. The
hierarchy collapses when at least one membrane, two states and four sets of
rules are used and in this case a characterization of the family of Parikh sets of
vectors associated with ET 0L languages is obtained. It is also shown that every
EOP system may be simulated by an EOPP system and EOPP systems may
be used for solving NP-complete problems. In particular linear time solutions
are provided for the SAT problem. The last result relies heavily on similarities
between EOPP systems and P systems with replicated rewriting [11] and EPP
systems [1].

Eilenberg P Systems with Symbol-Objects 51

2 Definitions

Definition 1. A stream Eilenberg machine is a tuple

X = (Σ,Γ,Q,M,Φ, F, I, T,m0),

where:

– Σ and Γ are finite sets called the input and the output alphabets, respectively;
– Q is the finite set of states;
– M is a (possibly infinite) set of memory symbols;
– Φ is a set of basic partial relations on Σ ×M ×M × Γ ∗;
– F is the next state function F : Q× Φ→ 2Q;
– I and T are the sets of initial and final states;
– m0 is the initial memory value.

Definition 2. An EOP system is a construct Π = (μ,X), where μ is a mem-
brane structure consisting of m membranes, with the membranes and the regions
labelled in a one to one manner with the elements 1, . . . ,m and an Eilenberg
machine whose memory is defined by the regions 1, . . . ,m of μ. The Eilenberg
machine is a system

X = (V,Q,M1, . . . ,Mm, Φ, F, I),

having the following properties

– V is the alphabet of the system;
– Q,F are as in Definition 1;
– M1, . . . ,Mm are finite multisets over V and represent the initial values oc-

curring in the regions 1, . . . ,m of the system;
– Φ = {φ1, . . . , φp}, φi = (Ri,1, . . . Ri,m), 1 ≤ i ≤ p and Ri,j is a set of

evolution rules (possibly empty) associated with region j, of the form X →
(u1, tar1) . . . (uh, tarh), with X a multiset over V, ui ∈ V, tari ∈ {here, out,
in}, 1 ≤ i ≤ h; the indication here will be omitted.

– I = {q0}, q0 ∈ Q is the initial state; all the states are final states (equivalent
to Q = T).

It may be observed that the set Σ and m0 from Definition 1 are no longer used
in the context of EOP systems. In fact, these concepts have been replaced by V
and M1, . . . ,Mm, respectively (all the symbols are output symbols, Γ = V).

A P system has m sets of evolution rules, each one associated with a region.
An EOP system has the evolution rules distributed among p components φi,
1 ≤ i ≤ p, each one containing m sets of evolution rules.

A computation in Π is defined as follows: it starts from the initial state q0

and an initial configuration of the memory defined by M1, . . .Mm and proceeds
iteratively by applying in parallel rules in all regions, processing in each one
all symbol objects that can be processed; in a given state q, each multiset that

52 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

coincides with the left hand side of a rule is processed and the results are then
distributed to various regions according to the target indications of that rule
(for instance, when rewriting X by a rule X → (u1, tar1) . . . (uh, tarh), the com-
ponent of the multiset u1 . . . uh obtained will be send to the regions indicated
by tari, 1 ≤ i ≤ h with the usual meaning in P systems (see [3], [13], [7])); the
rules are from a component φi which is associated with one of the transitions
emerging from the current state q and the resulting symbols constitute the new
configuration of the membrane structure with the associated regions; the next
state, belonging to F (q, φi), will be the target state of the selected transition.
The result represent the number of symbols that are collected outside of the
system at the end of a halting computation.

EOPP systems have the same underlying construct (μ,X), with the only
difference that instead of one single membrane structure, it deals with a set of
instances having the same organization (μ), but being distributed across the
system. More precisely, these instances are associated with states called active
states; these instances can divide up giving birth to more instances or collide
into single elements depending on the current configuration of the active states
and the general topology of the underlying machine. Initially only q0 is an active
state and the membrane configuration associated with q0 is M1, . . . ,Mm. All
active states are processed in parallel in one step: all emerging transitions from
these states are processed in parallel (and every single transition processes in
parallel each string object in each region, if evolution rules match them).

Cell division: if qj is one of the active states, Mj,1, . . . ,Mj,m is its asso-
ciated membrane configuration instance, and φj,1, . . . , φj,t are Φ′s components
associated with the emerging transitions from qj , then the rules occurring in
φj,i, 1 ≤ i ≤ t, are applied to the symbol objects from Mj,1, . . . ,Mj,m, the
control passes onto qj,1, . . . , qj,t, which are the target states of the transitions
earlier nominated, with Mj,1,1, . . . ,Mj,m,1, . . . ,Mj,1,t, . . . ,Mj,m,t, their associ-
ated membrane configuration instances, obtained from Mj,1, . . . ,Mj,m, by ap-
plying rules of φj,1, . . . , φj,t; the target states become active states, q is de-
sactivated and Mj,1, . . . ,Mj,m vanish. Only φj,i components that have rules
matching the symbol objects of Mj,1, . . . ,Mj,m, are triggered and consequently
only their target states become active and associated with memory instances
Mj,1,i, . . . ,Mj,m,i. If none of φj,i is triggered, then in the next step q is desacti-
vated and Mj,1, . . . ,Mj,m vanish too. If some of φj,i are indicating the same com-
ponent of Φ, then the corresponding memory configurations Mj,1,i, . . . ,Mj,m,i

are the same as well; this means that always identical transitions emerging from
a state yield the same result.

Cell collision: if φ1, . . . , φt enter the same state r and some or all of them
emerge from active states, then the result associated with r is the union of
membrane instances produced by those φ′

is emerging from active states and
matching string objects from their membrane instances.

A computation of an EOP (EOPP) system halts when none of the rules
associated with the transitions emerging from the current states (active states)
may be applied.

Eilenberg P Systems with Symbol-Objects 53

If Π is an EOP system, then Ps(Π) will denote the set of Parikh vectors
of natural numbers computed as result of halting computations. The result of
a halting computation in Π is the Parikh vector ΨV (w) = (|w|a1 , . . . , |w|ah

),
where w is the multiset formed by all the objects sent out of the system during
the computation with |w|ai denoting the number of ai’s occurring in w and
V = {a1, . . . , an}.

The family of Parikh sets of vectors generated by EOP (EOPP) systems
with at most m membranes, at most s states and using at most p sets of rules
is denoted by PsEOPm,s,p(PsEOPPm,s,p). If one of these parameters is not
bounded, then the corresponding subscript is replaced by ∗. The family of sets
of vectors computed by P systems with non-cooperative rules in the basic model
is denoted by PsOP (ncoo) [13].

In what follows, we need the notion of an ET0L system, which is a construct
G = (V, T, w, P1, . . . , Pm), m ≥ 1, where V is an alphabet, T ⊆ V , w ∈ V ∗, and
Pi, 1 ≤ i ≤ m, are finite sets of rules (tables) of context-free rules over V of the
form a→ x. In a derivation step, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L(G), consists consists of all strings over T which can be generated in this way,
starting from w. An ET0L system with only one table is called an E0L system.
We denote by E0L and ET 0L the families of languages generated by E0L systems
and ET0L systems, respectively. Furthermore, we denote by by PsE0L and
PsET 0L the families of Parikh sets of vectors associated with languages in ET 0L
and E0L, respectively. It is know that PsCF ⊂ PsE0L ⊂ PsET 0L ⊂ PsCS.
Details can be found in [14].

3 Computational Power of EP Systems and EPP Systems

We start by presenting some preliminary results concerning the hierarchy on the
number of membranes and on the number of states.

Lemma 1. (i) PsEOP1,1,1 = PsOP1(ncoo) = PsCF ,
(ii) PsEOP∗,∗,∗ = PsEOP1,∗,∗,
(iii) PsEOP1,∗,∗ = PsEOP1,2,∗.

Proof. (i) EP systems with one membrane, one state and one set of rules are
equivalent to P systems with non-cooperative rules in the basic model.

(ii) The hierarchy on the number of membranes collapses at level 1. The in-
clusion PsEOP1,∗,∗ ⊆ PsEOP∗,∗,∗ is obvious. For the opposite inclusion,
the construction is nearly the same as those provided in [13] for the basic
model of P systems. We associate to each symbol an index that represent the
membrane where this object is placed and, when we move an object from a
membrane to another one, we just change the corresponding index.

(iii) The hierarchy on the number of states collapses at level 2. The inclusion
PsEOP1,2,∗ ⊆ PsEOP∗,∗,∗ is obvious. On the other hand, consider an EP
systems Π , with Ps(Π) ∈ PsEOP1,s,p for some s ≥ 3, p ≥ 1 (yet again, the
cases s = 1 or s = 2 are not interesting at all), such that:

54 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

Π = ([1]1, X),

where X = (V,Q,M1, Φ, F, q0), with Φ = {φ1, . . . , φp}. We construct an EP
systems Π ′, with Ps(Π ′) ∈ PsEOP1,2,p+2 such that:

Π ′ = ([1]1, X ′),

where
X ′ = ((V ∪Q ∪ {#, ε}), {q, q′},M ′

1, Φ
′, F ′, q),

with q, q′,#, ε /∈ (V ∪Q) (i.e., q, q′,# are new symbols that do not appear
neither in V nor in Q),

M ′
1 = M ′

1 ∪ {q0}, Φ′ = {φ′
1, . . . , φ

′
p, φp+1, φp+2}.

For each 1 ≤ j ≤ p, we have:

φ′
j = (φj ∪ {p→ q |F (φj , p) = q} ∪ {p→ # | p ∈ Q} ∪ {#→ #}),

and F ′(φ′
p, q) = q. Moreover, we have:

φp+1 = ({p→ ε | p ∈ Q }),
φp+2 = ({a→ # | a→ v ∈ φj , 1 ≤ j ≤ p} ∪ {#→ #}),

and F ′ = (φp+1, q) = q′, F ′ = (φp+2, q
′) = q′.

We have placed inside the skin membrane the initial state of the system Π .
In general, we may suppose to have inside membrane 1 an object p that
represent the current state of the state machine associated with the system
Π . Thus, we apply the rules as in the system Π , by using some φ′

j , and we
change the state by using rule p→ q, if F (φj , p) = q. At any moment, if we
choose the wrong set of rules with respect to the current state (i.e., there
does not exists any state q such that F (φj , p) = q), then we are forced to
apply a rule p → #, and, due to the rule # → #, we generate an infinite
computation. In order to finish a computation, we have to trigger on φp+1,
which replaces the current state with ε and lead the system to the state q′.
Here, if there are rules that can be still applied to the objects present inside,
then an infinite computation is generated, as we can continue to use the rules
inside membrane 1 φp+2 forever.
It follows that Ps(Π ′) = Ps(Π). �

Now, we are able to show the main result concerning the power of EP sys-
tems, which provides a characterization of the family of Parikh sets of vectors
associated with ET 0L languages.

Theorem 1. PsEOP1,2,∗ = PsEOP1,2,4 = PsET 0L.

Proof. (i) PsET 0L ⊆ PsEOP1,2,4. According to Theorem 1.3 in [14], for each
language L ∈ ET 0L there is an ET0L system that generates L and contains

Eilenberg P Systems with Symbol-Objects 55

only two tables, that is, G = (V, T, w, P1, P2). Therefore, we can construct
an EP system

Π = ([1]1, X),

where
X ′ = ((V ∪ T ∪ {#, f, f ′}), {q, q′},M1, Φ, F, q),

with q, q′,#, f /∈ (V ∪ T) (i.e., q, q′,#, f, f ′ are new symbols that do not
appear in V or in T),

M1 = w ∪ {f}, Φ = {φ1, φ2, φ3, φ4}.

We have:

φ1 = (P1),
φ2 = (P2),
φ3 = ({f → f ′}),
φ4 = ({a→ # | a ∈ (V − T) } ∪ {a→ (a, out) | a ∈ T }{#→ #}),

and F = (φ1, q) = q, F = (φ2, q) = q, F = (φ3, q) = q′, F = (φ4, q
′) = q′.

The EP system Π works as follows. We start in the state q; here, we can
use either φ1 or φ2 as many times as we want in order to simulate either the
application of the rules in P1 or the application of the rules in P2. At any
moment, we can decide to move from state q to state q′ by triggering φ3. In q′,
we use φ4 in order to replace each non-terminal symbol with # and send out
of the system each terminal symbol. In this way, if membrane 1 contains only
terminal symbols, the computation halts successfully, otherwise we generate
an infinite computation that yields no result. Thus, it is easy to see that
Ps(Π) = Ps(L(G)). Furthermore, we have Ps(Pi) ∈ PsEOP1,2,4.

(ii) Consider an EP systems Π , with Ps(Π) ∈ PsEOP1,2,p for some s ≥ 3,
p ≥ 1 (yet again, the cases s = 1 or s = 2 are not interesting at all), such
that

Π = ([1]1, X),

where X = (V,Q,M1, Φ, F, q0), with Φ = (φ1, . . . , φp). Thus, we construct
an ET0L systems

G = ((V ∪Q ∪ ∪{ā | a V } ∪ {#}), V, M̄1q0, P1, . . . , Pp, Pp+1),

where M̄1q0 denotes a string containing symbols ā for every a ∈M1 and for
each 1 ≤ j ≤ p, Pj is a table that contains:
– a rule ā→ v′, for each rule a→ v ∈ φp, with v′ a string obtained from v

as follows: it contains a symbol b if (b, out) ⊆ v, a symbol b̄, if b ⊆ v and
there exists a rule b → u ∈ φi, 1 ≤ i ≤ p, and λ (i.e., no symbol), for
each b ⊆ v such that there does not exist any rule b→ u ∈ φi, 1 ≤ i ≤ p;

– a rule p→ q, for each p, q ∈ Q such that F (φj , p) = q;
– a rule p→ #, for each p ∈ Q.

56 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

Moreover, we have:

Pp+1 = {p→ λ | p ∈ Q } ∪ {ā→ #, a→ a | a ∈ V }.

Now, it is easy to see that the ET0L system simulates the EP P system
Π correctly. We start with a string M̄1q0; we apply the tables P1, . . . , Pp

in order to simulate the application of the rules of Π an the corresponding
transitions in the underlying state machine. At any moment, if we choose
the wrong tables with respect to the current states, then we are forced
to introduce in the string the non-terminal #, which cannot be replaced
by any rule anymore. Finally, we have the Pp+1 that is used to simulate
the end of a successful computation in Π : if we use this table when there
still exist some rules that can be applied to the symbols present in the
current configuration, then we introduce the non-terminal # which can-
not be removed from the string anymore; otherwise, we get a terminal
string. �

As an E0L system is a an ET0L system with only one table, we get immedi-
ately the following result.

Corollary 1. PsE0L ⊆ PsEOP1,2,3.

EPP systems exhibit a parallel behaviour not only inside of the membrane
structure but also at the underlying machine level. Potentially, all transitions
emerging from active states may be triggered in one step giving birth to new
cells or colliding others. One problem addressed in this case is also related to the
power of these mechanisms. In the sequel we will show that EPP systems are at
least as powerful as EP systems.

Theorem 2. If Π is an EP system with m membranes, s states and p sets of
rules then there exists Π an EPP system with m′ ≥ m membranes, s′ ≥ s states
and p′ ≥ p rule transitions such that Ps(Π) = Ps(Π).

Proof. Let Π = (μ,X), be an EP system where μ is a membrane structure
consisting of m membranes, and X an Eilenberg machine

X = (V, Γ,Q,M1, . . .Mm, Φ, F, I),

where Q has s states and Φ contains p components. The following EPP system
is built Π ′ = (μ,X ′), where

X ′ = (V ′, Γ,Q′,M ′
1, . . .M

′
m, Φ′, F ′, I),

with

– V ′ = V ∪{x}∪{k | 1 ≤ k ≤ t}, where t is the maximum number of transitions
going out from every state of X ;

– Q′ = Q ∪ {qj,0 | qj ∈ Q} ∪ {qj,k | qj ∈ Q, 1 ≤ k ≤ t, };
– M ′

1 = M1 ∪ {x};M ′
j = Mj , 2 ≤ j ≤ m;

Eilenberg P Systems with Symbol-Objects 57

– Φ′ = Φ ∪ {φx, φ1x, . . . , φtx}, where
• φx = ({x→ k | 1 ≤ k ≤ t}, ∅, . . . , ∅),
• φkx = ({k → x}, ∅, . . . , ∅), 1 ≤ k ≤ t,

– for any qj ∈ Q if there are 1 ≤ u ≤ t, transitions emerging from qj and
F (qj , φj,k) = {qjk

}, 1 ≤ k ≤ u (not all φj,k are supposed to be distinct) then
the following transitions are built in ΠΠ :
F ′(qj , φx) = {qj,0}, F ′(qj,0, φkx) = {qj,k}, 1 ≤ k ≤ u,
F ′(qj,k, φj,k) = {qjk

}.
A computation in Π ′ proceeds as follows: at the beginning only the initial

state is active and the memory configuration in this state is M ′
1, . . . ,M

′
m. If the

EP system Π is in a state qj and the memory configuration is Mj,1, . . . ,Mj,m,
then Π ′ must be in qj as well. We will show that Π ′ has always only one active
state. Indeed, if qj is an active state in Π ′ and Mj,1, . . . ,Mj,m are its associated
membrane configuration, then in one step x from Mj,1 is changed by φx into k,
a value between 1 and t; if u is the number of emerging transitions from qj in
Π, then k > u implies that in the next step the current membrane configuration
will vanish as no more continuation is then allowed from qj,0; otherwise, when
1 ≤ k ≤ u, only one transition may be triggered from qj,0 and this is associated
with φkx which restores x back into Mj,1 (the other transitions emerging from qj,0

cannot be triggered). φkx leads the EPP system into qj,k,1. From this state there
are two transitions both associated with Φj,k that are triggered and consequently
Mj,1, . . . ,Mj,m are processed yielding M ′

j,1, . . . ,M
′
j,m and some symbol objects

may be sent out of the system. In every step only one state is active. In this way
Π and Π ′ compute the same objects, thus Ps(Π) = Ps(Π ′). �

Note 1. From Theorem 2 it follows that if the EP system Π has m membranes,
s states, p components of Φ, and the maximum number of transitions emerging
from every state is t then the equivalent EPP system has m′ = m membranes,
at most s′ = (1 + t)s states, and at most p′ = p + t + 1 sets of rules.

4 Linear Solution to SAT Problem

SAT (satisfiability of propositional formulae in conjunctive normal form) is a well
known NP-complete problem. This problem asks whether or not, for a given for-
mula in the conjunctive normal form, there is a truth-assignment of the variables
such that it becomes true. So far some methods to solve in polynomial or just
linear time this problem have been indicated, but at the expense of using an
exponential space of values. In [1] the problem has been solved in time linear in
the number of variables and the number of clauses by using EPP systems. It is
worth mentioning that in [1] the method used relied essentially on string objects
dealt with by EPP systems. In the sequel we will show that SAT problem may
be solved in linear Time by using EOPP systems.

Theorem 3. The SAT problem can be solved in a time linear in the number of
variables and the number of clauses by using an EOPP system.

58 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

Proof. Let γ be a formula in conjunctive normal form with m clauses, C1, . . . , Cm,
each one being a disjunction, and the variables used are x1, . . . , xn. The following
EOPP system, Π = (μ,X), may be then constructed:

μ = [1[2. . . [m+1]m+1 . . .]2]1,

X = (V,Q,M1, . . .Mm+1, Φ, F, I),
where:
– V = {(i1, . . . , ik) | ij ∈ {0, 1}, 1 ≤ j ≤ k, 1 ≤ k ≤ n};
– Q = {q};
– M1 = . . . = Mm = ∅, Mm+1 = {(0), (1)};
– Φ = {φ0, φ1, φ2};• φ0 = (∅, . . . , ∅, {(i1, . . . , ik)→ (i1, . . . , ik, 0) |

ij ∈ {0, 1}, 1 ≤ j ≤ k, 1 ≤ k ≤ n− 1}),
• φ1 = (∅, . . . , ∅, {(i1, . . . , ik)→ (i1, . . . , ik, 1) |

ij ∈ {0, 1}, 1 ≤ j ≤ k, 1 ≤ k ≤ n− 1}),
• φ2 = ({(i1, . . . , ij = 1, . . . , in) → ((i1, . . . , ij = 1, . . . , in), out) |

xj is present in C1, 1 ≤ j ≤ n}∪
{(i1, . . . , ij = 0, . . . , in)→ ((i1, . . . , ij = 0, . . . , in), out) |
¬xj is present in C1, 1 ≤ j ≤ n},
. . . ,
{(i1, . . . , ij = 1, . . . , in)→ ((i1, . . . , ij = 1, . . . , in), out) |
xj is present in Cm, 1 ≤ j ≤ n}∪
{(i1, . . . , ij = 0, . . . , in)→ ((i1, . . . , ij = 0, . . . , in), out) |
¬xj is present in Cm, 1 ≤ j ≤ n},
∅);
where (i1, . . . , ij = 1, . . . , in) and (i1, . . . , ij = 0, . . . , in) denote elements
of V having the j−th component equal to 1 and 0, respectively;

– F (q, φk) = {q}, 0 ≤ k ≤ 2;
– I = {q}.

The system Π starts from state q with ∅, . . . , ∅, {(0), (1)}. By applying n
times φ0 and φ1 in parallel one generates all truth values for the n variables in
the form of 2n symbols (i1, . . . , in) with ij = 1 or ij = 0 indicating that variable
xj is either true or false. All these combinations are obtained in n steps in state
q. In the next m steps φ2 checks whether or not at least one truth-assignment
satisfies all clause; this, if exists, will exit the system. The SAT problem is solved
in this way in n + m steps. �

There are some important similarities between the above theorem and The-
orem 5 in [1]:
– the same membrane structure;
– the first m initial regions empty;
– the truth and false values introduced in parallel;

but also relevant distinct features:
– less states and a simpler definition of F in the above theorem;
– linear (in n) number of symbols in V and rules, in the case of Theorem 5 [1],

but exponential number of corresponding components, in the above theorem.

Eilenberg P Systems with Symbol-Objects 59

5 Conclusions

In this paper two types of Eilenberg P systems, namely EOP systems and EOPP
systems, have been introduced. They combine the control structure of an Eilen-
berg machine as a driven mechanism of the computation with a cell-like structure
having a hierarchical organisation of the objects involved in the computational
process. The computational power of EOP systems is investigated in respect of
three parameters: number of membranes, number of states, and number of sets
of rules.

It is proven that the family of Parikh sets of vectors of numbers generated by
EOP systems with one membrane, one state and one single set of rules coincides
with the family of Parikh sets of context-free languages. The hierarchy collapses
when at least one membrane, two states and four sets of rules are used and in
this case a characterization of the family of Parikh sets of vectors associated
with ET0L languages is obtained. It is also shown that every EOP system may
be simulated by an EOPP system.

EOPP systems represent the parallel counterpart of EOP systems, allowing
not only the rules inside of the cell-like structure to develop in parallel, but also
the transitions emerging from the same state. More than this, all states that are
reached during the computation process as target states, may trigger in the next
step all transitions emerging from them. It is shown that a general method to
simulate an EOP system as an EOPP system may be stated. Apart from the
fact that EOPP systems might describe interesting biological phenomena like cell
division and collision, it is also an effective mechanism for solving NP-complete
problems, like SAT, in linear time.

References

1. Bălănescu T, Gheorghe M, Holcombe M, Ipate, F (2003) Eilenberg P systems. In:
Păun Gh, Rozenberg G, Salomaa A, Zandron C, (eds.), Membrane Computing.
International Workshop, WMC-CdeA 02, Curtea de Arges, Romania, August 19-
23, 2002. LNCS 2597, Springer, Berlin, 43–57

2. Bălănescu T, Cowling T, Georgescu H, Gheorghe M, Holcombe M, Vertan C (1997)
Communicating stream X-machines systems are no more than X-machines, J. Uni-
versal Comp. Sci. 5:494–507

3. Calude C, Păun Gh (2000) Computing with Cells and Atoms. Taylor and Francis,
London

4. Csuhaj-Varju E, Dassow J, Kelemen J, Păun Gh (1994) Grammar Systems. A
Grammatical Approach to Distribution and Cooperation. Gordon & Breach, London

5. Dassow J, Păun Gh (1989) Regulated Rewriting in Formal Language Theory.
Springer, Berlin

6. Eilenberg S (1974) Automata, Languages and Machines. Academic Press, New York

7. Ferretti C, Mauri G, Păun Gh, Zandron C (2001) On three variants of rewrit-
ing P systems. In: Martin-Vide C, Păun Gh (eds.), Pre-proceedings of Workshop
on Membrane Computing (WMC-CdeA2001), Curtea de Argeş, Romania, August
2001, 63–76, and Theor. Comp. Sci. (to appear)

60 Francesco Bernardini, Marian Gheorghe, and Mike Holcombe

8. Gheorghe M (2000) Generalised stream X-machines and cooperating grammar sys-
tems, Formal Aspects of Computing 12:459-472

9. Holcombe M (1998) X-machines as a basis for dynamic system specification, Soft-
ware Engineering Journal 3:69-76

10. Holcombe M, Ipate F (1998) Correct Systems Building a Business Process Solution.
Springer, Berlin, Applied Computing Series

11. Krishna SN, Rama R (2001) P systems with replicated rewriting, Journal of Au-
tomata, Languages and Combinatorics 6:345-350

12. Păun Gh (1998) Computing with membranes, Journal of Computer System Sci-
ences 61:108–143 (and Turku Center for Computer Science (1998) TUCS Report
208, http://www.tucs.fi)

13. Păun Gh (2002) Membrane computing. An Introduction, Springer, Berlin
14. Rozenberg G, Salomaa A (1980) The Mathematical Theory of L Systems, Academic

Press. New York

Molecular Tiling and DNA Self-assembly

Alessandra Carbone1 and Nadrian C. Seeman2

1 Institut des Hautes Études Scientifiques
35, route de Chartres, 91440 Bures-sur-Yvette, France

carbone@ihes.fr
2 Department of Chemistry, New York University

New York, NY 10003, USA
ned.seeman@nyu.edu

Abstract. We examine hypotheses coming from the physical world and
address new mathematical issues on tiling. We hope to bring to the at-
tention of mathematicians the way that chemists use tiling in nanotech-
nology, where the aim is to propose building blocks and experimental
protocols suitable for the construction of 1D, 2D and 3D macromolecu-
lar assembly. We shall especially concentrate on DNA nanotechnology,
which has been demonstrated in recent years to be the most effective
programmable self-assembly system. Here, the controlled construction
of supramolecular assemblies containing components of fixed sizes and
shapes is the principal objective. We shall spell out the algorithmic prop-
erties and combinatorial constraints of “physical protocols”, to bring the
working hypotheses of chemists closer to a mathematical formulation.

1 Introduction to Molecular Self-assembly

Molecular self-assembly is the spontaneous organisation of molecules under ther-
modynamic equilibrium conditions into a structurally well-defined and rather
stable arrangement through a number of non-covalent interactions [5,26,52]. It
should not be forgotten that periodic self-assemblies of molecules lead to crystals
in one, two or three dimensions; we often do not understand the interactions
between the constituents of a crystal, but their presence in our world was an
existence-proof for 3D self-assembly long before the notion was voiced. By a
non-covalent interaction, we mean the formation of several non-covalent weak
chemical bonds between molecules, including hydrogen bonds, ionic bonds and
van der Waals interactions. These interactions (of the order of 1-5 kcal/mol)
can be considered reversible at normal temperatures, while covalent interactions
(typically > 50 kcal/mol) are regarded as irreversible.

The self-association process leads the molecules to form stable hierarchical
macroscopic structures. Even if the bonds themselves are rather weak, their
collective interaction often results in very stable assemblies; think, for example,
of an ice cube, held together by hydrogen bonds. Two important elements of
molecular self-assembly are complementarity and self-stability, where both the
size and the correct orientation of the molecules are crucial in order to have a
complementary and compatible fitting.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 61–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

62 Alessandra Carbone and Nadrian C. Seeman

The key engineering principle for molecular self-assembly is to design molec-
ular building blocks that are able to undergo spontaneous stepwise interactions
so that they self-assemble via weak bonding. This design is a type of “chemical
programming”, where the instructions are incorporated into the covalent struc-
tural framework of each molecular component, and where the running of the
algorithm is based on the specific interaction patterns taking place among the
molecules, their environment, and the intermediate stages of the assembly. The
aim of the game is to induce and direct a controlled process.

Molecular self-assembly design is an art and to select from the vast virtual
combinatorial library of alternatives is far from being an automatic task [19].
There are principles though, that could be mathematically analyzed and one
of the purposes of this paper is to lead the reader towards such possibilities.
We shall talk mainly about self-assembly from branched DNA-molecules, which
in the last few years have produced considerable advances in the suggestion
of potential biological materials for a wide range of applications [39]. Other
directions using peptides and phospholipids have been also pursued successfully
[57,35,4].

We shall start with an abstract overview of some of the principles governing
self-assembly which have been investigated by chemists (for an introduction see
also [27]), with a special emphasis on DNA self-assembly. With the desire to for-
malise in an appropriate mathematical language such principles and develop a
combinatorial theory of self-assembly, we try to suggest mathematical structures
that arise naturally from physical examples. All through the paper, we support
our formalistic choices with experimental observations. A number of combinato-
rial and algorithmic problems are proposed. The word “tile” is used throughout
the paper in a broad sense, as a synonym of “molecule” or of “combinatorial
building block” leading to some assembly.

2 Examples of Molecular Self-assembly and Scales

Self-assembled entities may be either discrete constructions, or extended assem-
blies, potentially infinite, and in practice may reach very large sizes. These assem-
blies include such species as 1-dimensional polymolecular chains and fibers, or
2-dimensional layers and membranes, or 3-dimensional solids. Due to the excep-
tionally complicated cellular environment, the interplay of the different ligand
affinities and the inherent complexity of the building blocks, it is not easy to
predict, control and re-program cellular components. Proteins can in principle
be engineered but to predict protein conformation is far from our grasp nowa-
days. At the other extreme lie chemical assemblies, such as organic or inorganic
crystals, which are constituted by much simpler structural components that are
not easily programmed. Within this spectrum of assembly possibilities, DNA
self-assembly has revealed itself as the most tractable example of programmable
molecular assembly, due to the high specificity of intermolecular Watson-Crick
base-pairing, combined with the known structure formed by the components
when they associate [31]. This has been demonstrated in recent years both the-
oretically and experimentally as we shall discuss later.

Molecular Tiling and DNA Self-assembly 63

3 Molecular Self-assembly Processes

There are three basic steps that define a process of molecular self-assembly:

1. molecular recognition: elementary molecules selectively bind to others;
2. growth: elementary molecules or intermediate assemblies are the building

blocks that bind to each other following a sequential or hierarchical assembly;
cooperativity and non-linear behavior often characterize this process;

3. termination: a built-in halting feature is required to specify the completion
of the assembly. Without it, assemblies can potentially grow infinitely; in
practice, their growth is interrupted by physical and/or environmental con-
straints.

Molecular self-assembly is a time-dependent process and because of this, tem-
poral information and kinetic control may play a role in the process, before
thermodynamic stability is reached. For example, in a recent algorithmic self-
assembly simulating a circuit constituted by a sequence of XOR gates [30], a
template describing the input for the circuit, assembled first from DNA tiles
as the temperature was lowered, because these tiles were programmed to have
stronger interactions; the individual tiles that performed the gating functions,
i.e. the actual computation of each XOR gate, assembled on the template later
(at a lower temperature), because they interacted more weakly. If, as in this
example, the kinetic product is an intermediate located on the pathway towards
the final product, such a process is sequential. If not, then the process is said to
bifurcate.

Molecular self-assembly is also a highly parallel process, where many copies
of different molecules bind simultaneously to form intermediate complexes. One
might be seeking to construct many copies of the same complex at the same time,
as in the assembly of periodic 1D or 2D arrays; alternatively, one might wish to
assemble in parallel different molecules, as in DNA-based computation, where
different assemblies are sought to test out the combinatorics of the problem
[1,22]. A sequential (or deterministic) process is defined as a sequence of highly
parallel instruction steps.

Programming a system that induces strictly sequential assembly might be
achieved, depending on the sensitivity of the program to perturbations. In a ro-
bust system, the instructions (that is the coding of the molecular interactions)
are strong enough to ensure the stability of the process against interfering inter-
actions or against the modification of parameters. Sensitivity to perturbations
limits the operational range, but on the other hand, it ensures control on the
assembly.

An example of strong instructions is the “perfect” pairing of strands of dif-
ferent length in the assembly of DNA-tiles due to Watson-Crick interacting se-
quences. The drawback in sequential assembly of DNA-tiles is due to the complex
combinatorics of sequences which are needed to construct objects with discrete
asymmetric shapes, or aperiodic assemblies. The search for multiple sequences
which pair in a controlled way and avoid unwanted interactions is far from being

64 Alessandra Carbone and Nadrian C. Seeman

an obvious task. Alternative approaches concern besides tile design, self-assembly
algorithms and protocols (Section 7).

A sequential process might either be commutative, if the order of the assem-
bly steps can be interchanged along the pathway leading to the final assembly,
or it might be non-commutative, if the intermediates need to interact in a fixed
consecutive manner. DNA-based computations, such as the assembly of graphs
[34] are commutative: a series of branched junctions can come together in any
order to yield the final product (as discussed in Section 6 for 3-color graphs). An
example of a non-commutative process is the construction of DNA tiles along the
assembly of a periodic 2D array: single stranded DNA sequences are put in a pot
at once, and since the tiles melt at a temperature higher than the intermolecu-
lar interactions, tiles are “prepared” first, before the 2D assembly takes place.
Even if indirectly, these physical conditions imply non-commutativity. Later on,
the 2D lattice can assemble with gaps that can later be filled in from the 3rd
direction. Commutativity, in this latter step, may create irregularities when 3D
arrays are considered instead, since gaps might get sealed in as a defect. Any hi-
erarchical construction, such as solid-support-based DNA object synthesis [58] is
non-commutative. Another example of a non-commutative assembly is a frame-
based construction [32], wherein an assembly is templated by a “frame” that
surrounds it: tiles assemble within the boundaries of the frame and they are
guided by the code of the tiles forming the frame. It is non-commutative, in that
the frame has to be available first.

Fig. 1. Protocol for the Synthesis of a Quadrilateral. The intermolecular addi-
tions of corners is repetitive, but a different route leads to intramolecular closure.

Another characteristic of a molecular self-assembly is that the hierarchical
build-up of complex assemblies, allows one to intervene at each step, either to
suppress the following one, or to orient the system towards a different pathway.
For example, the construction of a square from identical units using the solid-
support method entailed the same procedures to produce an object with 2, 3, or
4 corners. Once the fourth corner was in place, a different pathway was taken
to close the square [58], as shown in Figure 1. A pentagon, hexagon or higher

Molecular Tiling and DNA Self-assembly 65

Fig. 2. Triplet junctions GPV , JRV , JGS and PSR can combine in different
configurations. The two smallest ones are a tetrahedron and a cube.

polygon could have been made by the same procedure, just by choosing to close
it after adding more units.

Instructions might be strong but still allow for different objects to appear.
The same set of tiles might assemble into objects with different geometrical
shapes and different sizes, that satisfy the same designed combinatorial coding.
For instance, consider chemical “three-arm junction nodes” (name them GPV ,
JRV , JGS, PSR) accepting 6 kinds of “rods”, called G, P , V , J , S and R. Sev-
eral geometrical shapes can be generated from these junctions and rods, in such
a way that all junctions in a node are occupied by some rod. Two such shapes
are illustrated in Figure 2. In general, there is no way to prevent a given set of
strands from forming dimers, trimers, etc. Dimers are bigger than monomers,
trimers bigger than dimers, and so on, and size is an easy property for which to
screen. However, as a practical matter, entropy will favor the species with the
smallest number of components, such as the tetrahedral graph in Figure 2; it can
be selected by decreasing the concentration of the solution. If, under convenient
conditions, a variety of products results from a non-covalent self-assembly, it is
possible to obtain only one of them by converting the non-covalent self-assembly
to a covalent process (e.g., [16]). Selecting for specific shapes having the same
number of monomers though, might be difficult. It is a combinatorial question
to design a coding for a set of tiles of fixed shape, that gives rise to an easily
screenable solution set.

4 Molecular Tiling: A Mathematical Formulation

Attempts to describe molecular assembly, and in particular DNA self-assembly,
in mathematical terms have been made in [2,6]. Here, we discuss some algo-
rithmic and combinatorial aspects of self-assembly keeping in mind the physics
behind the process.

Tiles and self-assembly. Consider a connected subset T (tile) in R3, for example
a convex polyhedron, with a distinguishable subset of mutually complementary
(possibly overlapping) non-empty domains on the boundary, denoted Db, D

′
b ⊂

∂T , where b runs over a (possibly infinite) set B. We are interested in assemblies
generated by T , that are subsets A in the Euclidean space, decomposed into a

66 Alessandra Carbone and Nadrian C. Seeman

Fig. 3. A Variety of Complements to a Single Strand. Panel (a) illustrates a
conventional Watson-Crick duplex, where strand 2 complements strand 1. Panels
(b-e) illustrates a variety of complements to strand 1.

union of congruent copies of T , where two copies may intersect only at their
boundaries and have a “tendency” to meet across complementary domains on
the boundary. It is important to recognize that in the case of DNA, there are
many forms of complementarity, as a function of motif structure [41]. Figure 3
illustrates a DNA strand (named 1) complementary to a variety of other DNA
strands; more complex types of complementarity exist, such as complementarity
in the PX sense [60,46] or in the anti-junction sense [12,60].

We want to consider a biological macromolecule T (e.g., a protein or a nucleic
acid motif), with complementary binding sites Db, D

′
b such that different copies

of T bind along complementary domains and self-assemble into complexes. In
the geometric context we specify the binding properties by introducing (binding)
isometries b : R3 → R3 to each b ∈ B such that T and b(T) intersect only at
the boundary, and b(Db) = D′

b. From now on B is understood as a subset in the
Euclidean isometry group Iso(R3).

Accordingly, we define an assembly A associated with (T,B) by the following
data:

1. a connected graph G = GA with the vertex set 1 . . .N ,
2. subsets Ti in R3, where i = 1 . . .N , which may mutually intersect only at

their boundaries,
3. an isometry bk,l : R3 → R3 moving Tk onto Tl, for each edge (k, l) in G, such

that there exists an isometry ak,l which moves Tk to T and conjugates bk,l

to some binding isometry b in B. Notice that this b is uniquely determined
by bk,l up to conjugation.

Given a graph GA and a tile T , the assemblies described by GA and T
might not be unique. The assembly is unambiguously described by the isometries
associated to the edges of GA (i.e. condition (3) above). See Figure 4 for an
example.

Molecular Tiling and DNA Self-assembly 67

Fig. 4. Four copies of the same tile are arranged in two different assemblies that
correspond to the same graph GA. The labels a, ā, b, b̄ correspond to codes for
edges.

Several tiles. If we start with several different tiles T 1, . . . , T n rather than with
a single T , we consider the sets of pairs of binding isometries Bi,j ⊂ Iso(R3)×
Iso(R3) such that bi,j

1 (T i) and bi,j
2 (T j) intersect only at their boundaries and

their intersection is non-empty. The definition of an assembly associated to
({T i}, {Bi,j}) goes as above with the following modifications: the graph G has
vertices colored by the index set 1 . . . n, the corresponding subsets in R3 are de-
noted T i

k where i = 1 . . . n and k = 1 . . .Ni, and finally, we forfeit the isometries
bk,l and for each edge (ki, lj) we emphasize an isometry of R3 which moves T i

k

to bi,j
1 (T i) and T j

l to bi,j
2 (T j).

In what follows, we refer to the union of tiles defined above, as an assembly.

Qualities of an assembly. The tightness of the tiling is one quality that chemists
appreciate. This can be measured by the number of cycles in the graph G, or
equivalently by the negative Euler characteristic of the graph.

The imperfection of a tiling is measured by the “unused” areas of the bound-
aries of the tiles. First define the active domain ∂act(T) ⊂ ∂T as the union of
the intersections of ∂T with b(T) for all b ∈ B. Then define the “unused bound-
ary” ∂un(A = ∪Ti) as the union ∪N

i=1∂act(Ti) minus the union of the pairwise
intersections ∪(k,l)∈GTk ∩ Tl. An assembly is called perfect if the area of the
imperfection equals zero. We say that an assembly contained in a given subset
X ⊂ R3 is perfect with respect to ∂X , if ∂un(A) ⊂ ∂X .

The uniqueness refers to the uniqueness of an assembly subject to some
additional constraints. For example, given an X ⊂ R3, one asks first if X can
be tiled by (T,B) and then asks for the uniqueness of such a tiling. We say that
(T,B) generates an unconditionally unique assembly if every imperfect assembly
uniquely extends to a perfect assembly.

The essential problem of tiling engineering is designing a relatively simple tile
or a few such tiles which assemble with high quality into large and complicated
subsets in R3. Here is a specific example for the unit sphere S2 rather than S3,
where one uses the obvious extension of the notion of tilings to homogeneous
spaces. Given ε, δ > 0, consider triangulations of the sphere into triangles Δ with
Diam(Δ) ≤ ε and area(Δ) ≥ δDiam2(Δ). It is easy to see that the number of

68 Alessandra Carbone and Nadrian C. Seeman

mutually non-congruent triangles in such a triangulation, call it n(ε, δ), goes to
∞ for ε → 0 and every fixed δ > 0. The problem is to evaluate the asymptotic
behavior of n(ε, δ) for ε→ 0 and for either a fixed δ or δ → 0.

Complementarity of the domains. Two tiles T1 and T2 have complementary sites,
D1

b , D2
b , when they can bind along their boundaries to each other forming a con-

nected subset of R3. In physical terms, the two overlapping parts D1
b , D

2
b can have

complementary geometrical shape (e.g. think of the concave surface of a protein
and of the convex surface of a ligand binding to it, much as a classical ’lock
and key’), but might also correspond to Watson-Crick complementary sequences
(e.g. 5′ −ATTCGA− 3′ and 3′ − TAAGCT − 5′, where A is complementary to
T and C to G as discussed before; see Figure 3).

Fig. 5. Left: Rodlike tiles differing in length form an assembly that grows until
the ends exactly match. Right: polymeric structure growing until the energy
required to fit new subunits becomes too large.

assembly

template

 binding sites

Fig. 6. A tile is stable in the assembly only if it binds at two adjacent binding
sites. The stability of the whole assembly is insured by the enforced stability of
the template. The formal description of this example is not completely captured
by our model.

Real life examples. It remains unclear, in general, how cells control the size of
(imperfect, with some unused boundary) assemblies, but certain mechanisms
are understood. For example, out of two rod-like molecules of length three and
five, one gets a double rod of length 15 as illustrated in Figure 5 (left). Another
strategy is starting an assembly from a given template (see Figure 6 for a specific

Molecular Tiling and DNA Self-assembly 69

new binding site

Fig. 7. Tiles which differ in shape and binding sites. Their binding generates a
new contiguous binding site.

design). Sometimes, tiling is non-isometric: tiles distort slightly in order to fit,
and the assembly terminates when the bending energy becomes too costly or
when the accumulated distortion deforms and deactivates the binding sites (see
Figure 5 (right)). Also, the binding of a ligand to an active site might change
the shape of the molecule and thus influence the binding activity of other sites.
Another possibility is the creation of a new binding site distributed over two or
more tiles bound together at an earlier stage of the assembly (see Figure 7). These
mechanisms may produce a non-trivial dynamics in the space of assemblies in
the presence of free-energy. In particular, one may try to design a system which
induces a periodic motion of a tile over a template, something in the spirit of
RNA-polymerase cycling around a circle of DNA [11].

Fig. 8. Key Motifs in Structural DNA Nanotechnology. On the left is a Holliday
junction (HJ), a 4-arm junction that results from a single reciprocal exchange
between double helices. To its right is a double crossover (DX) molecule, re-
sulting from a double exchange. To the right of the DX is a triple crossover
(TX) molecule, that results from two successive double reciprocal exchanges.
The HJ , the DX and the TX molecules all contain exchanges between strands
of opposite polarity. To the right of the TX molecule are a pair of DNA paral-
lelograms, DNA-P -N [29], constructed from normal DNA, and DNA-P -B [43],
constructed from Bowtie junctions, containing 5’, 5’ and 3’, 3’ linkages in their
crossover strands.

DNA tiles and tensegrity. Molecules of some nanometer size, made out of DNA
strands, have been proposed in a variety of different shapes. See Figure 8 for

70 Alessandra Carbone and Nadrian C. Seeman

a representative collection of shapes. Algorithms have been developed success-
fully to produce that self-assemble into these and other motifs [36]. Branched
molecules are tiles constituted by several single strands which self-assemble along
their coding sequences in a “star-like” configuration, where a tip of the star is a
branch [36,51,38] (Figure 3a,c,e illustrate 2, 3 and 4-arm branched molecules).
Theoretically, one might think to construct k-armed branched molecules, for
any k > 2, where each strand is paired with two other strands to form a pair of
double-helical arms; in practice, molecules with 6 arms have been reported, but
larger ones are under construction. The angles between the arms are known to be
flexible in most cases. If one adds sticky ends to a branched molecule, i.e. single
stranded extensions of a double helix, a cluster is created that contains specif-
ically addressable ends [36]. This idea is illustrated in Figure 9, where a 4-arm
branched junction with two complementary pairs of sticky ends self-assembles
to produce a quadrilateral.

Fig. 9. Formation of a 2-dimensional lattice (right) from a 4-arm branched junc-
tion (left). X is a sticky end and X ′ is its complement. The same relationship
holds for Y and Y ′. X and Y are different from each other.

The search for motifs based on DNA branched junctions that behave as
though they are “rigid” while in the test tube, led to the design of several DNA-
molecules, and some are illustrated in Figure 8. Rigid shapes impose strong
limitations on the design of suitable molecular tiles; roughly speaking, a rigid,
or tense, object is a 3-dimensional solid that does not undergo deformations: we
ask that if its 1-dimensional faces do not undergo deformation, then no deforma-
tion exists. For a tetrahedron or any convex deltahedron, it is easy to see that
no change of the angles between edges (edges are 1-dimensional faces for the
tetrahedron) can take place without the edges be deformed. On the other hand,
a cube is an example of a non-tense object since we can fix the edges (1-faces) of
the cube not to undergo any deformation and still be able to deform the angles
between them.

Geometry of the boundaries: smooth deformations of tiles. It might be appropri-
ate to consider assemblies which are affected by an ε-deformation in the shape
of the tiles after binding. More precisely, a tile T ⊆ R3 is mapped in R3 by some
ε-deformation as follows: there is an embedding ε : T ⊆ R3 �→ T ′ ⊆ R3 such
that for all points x ∈ T there is a point y ∈ T ′ such that the Euclidean distance

Molecular Tiling and DNA Self-assembly 71

d(x, y) < ε. The definitions of isometry and binding site given at the beginning
of Section 4 need to be adjusted accordingly into new notions of ε-isometry and
ε-binding site, which intuitively correspond to the original notions up to some
ε-variation. One needs to establish whether an ε-deformation affects a binding
site or not, and give thresholds on the amount of deformation which is accepted
to affect non-empty domains of the boundary.

The growth of the assembly affected by ε-deformation asks for the estimation
of bounds in the size of the construction. The instability of the system comes from
a narrow range of conditions on which the assembly takes place. The formation of
singularities and of bifurcation points between different assemblies, might lead to
the disruption of the assembly, but might also lead to variety in the complexity.
Physical considerations on the shape of tiles. In addition to the need to observe
appropriate solution conditions that encourage self-assembly, it is important to
realize that there are physical constraints on the assembly of real tiles that do
not affect virtual tiles. For example, the helicity of random-sequence DNA is
≈ 10.5 nucleotide pairs per turn in solution. This value makes it easy to make
TX molecules (Figure 8) whose three helix axes form an angle of 120◦, but 90◦ is
much harder, unless one is able (perhaps through sequence variation) to change
the repeat to 10.4 nucleotide pairs per turn [45].

In a similar vein, a likely form of shaped 3D arrays will entail polyhedra whose
edges contain DX molecules (Figure 8) [40]. It might appear that a tetrahedron
would be a good polyhedron to use as the basis of such a 3D tile. However,
although the edges of a tetrahedron obviously span 3-space, there is no group of
three edges to which one can attach a single extra helix (i.e. to make those edges
DX molecules instead of single DNA helices, with the extra helices outside the
helices defining the tetrahedron) to produce the needed vectors: their diameters
would cause them to clash stereochemically when extended beyond the bound-
aries of the tetrahedron. Notice that extra-hedral domains on adjacent edges
inherently clash, and there is no group of three edges in a tetrahedron that does
not include an adjacent pair.

5 An Abstract Model to Describe the Dynamics of
Self-assembly

A formal description of the dynamics of a self-assembly on a space S, where S can
be either R, R2, R3 or any discrete approximation of those, can be formulated by
a simple iterative process as follows. Consider n tiles T1, . . . , Tn, and take a finite
number of copies of each Ti, for all i = 1 . . . n. At stage 1, randomly assign to
each physical tile a specific position in S in such a way that no two tiles overlap
and that only tiles lying side-by-side and having complementary boundary stuck
together. The set of complexes containing more than one tile with their position
in S, define a configuration on S; single tiles are removed from S and used to re-
iterate the random assignment on the next stage: the configuration of tiles lying
in S which one reaches at stage i, is filled up further by new non-overlapping
complementary adjacent tiles at stage i + 1. The process is repeated until all

72 Alessandra Carbone and Nadrian C. Seeman

tiles are used or when a sufficiently large connected area in S is filled (e.g. area
> N , for some large N).

Different outputs might result from this random process: they go from very
tight assemblies, to assemblies with several unfilled regions, to disconnected sur-
faces, and so on. The resulting configurations and the time for reaching a con-
figuration strongly depend on the coding hypothesis, e.g. whether new binding
sites can appear or not by the combination of several tiles, whether “holes” can
be filled or not, how many different competing boundary sites are in the sys-
tem, how many tiles are in the system, whether connected regions can undergo
translations in S while the process takes place, whether connected tiles might
become disconnected, etc.

The process could start from a specific configuration of S instead of using the
first iteration step to set a random configuration. Such an initial configuration,
if connected, would play the role of a template for the random process described
by the iteration steps. Figure 6 illustrates an example of templating, where a
1-dimensional array of n molecules disposed in a row is expected to play the
role of a template and interact with single molecules following a schema coded
by the boundary of the tiles. Another example is the “nano-frame” proposed in
[32], a border template constraining the region of the tiling assemblies.

6 Closed Assemblies and Covering Graphs

Closed tiling systems are assemblies whose binding sites have been all used. More
formally, this amounts to saying that the graph GA underlying the assembly A
is such that all tiles Ti corresponding to its vertices, where i = 1 . . .N , intersect
on all their boundary sites Ti. This means also that the degree of connection
of each node i of GA corresponds to the number of available interaction sites
of Ti, and that each edge (i, l) departing from i corresponds to an isometry bi,l

moving Ti onto Tl which fixes some binding site. Many graphs might be locally
embeddable in GA, and we call them covering graphs of GA: a graph G is a
covering graph of GA if there is a map p : G → GA such that

1. p is surjective, i.e. for all nodes y ∈ GA there is a node x ∈ G such that
p(x) = y,

2. if x→ y in G then p(x) → p(y) in GA,
3. degree(x) = degree(p(x)), for all nodes x in G,
4. bx,y = bp(x),p(y), for each edge x→ y ∈ G,
5. {bx,y : x→ y ∈ G} = {bp(x),z : p(x) → z ∈ GA}, for each node x ∈ G.

Condition (4), saying that the binding site between Tx and Ty is the same
as the binding site between Tp(x) and Tp(y), and condition (5), saying that the
binding sites of Tx are the same as the binding sites of Tp(x), ensure that G
and GA underly tiling systems for the same set of tiles. The graph on the left
hand side of Figure 10 does not satisfy (5) and provides a counterexample. If GA

represents a closed tiling system for a set of tiles S, then each covering graph of
GA represents a closed tiling system for S also.

Molecular Tiling and DNA Self-assembly 73

Fig. 10. Given a set of six distinct tiles whose binding sites are specific to each
pair of tile interaction described by edges in the graph GA (left), notice that G
(right) is not a covering graph for GA since it satisfies conditions (1)− (3) but it
does not satisfy (5) (see text). To see this, consider the mapping p between nodes
of G and GA which is suggested by the labels of the nodes. We want to think of
f in GA as representing a tile Tf with two distinct binding sites, one interacting
with Tc and the other with Td. Node f1 is linked to two copies of c and node f2

is linked to two copies of d; this means that Tf1 (Tf2), having the same binding
sites as Tf , should bind to Tc1 , Tc2 (Td1 , Td2). But this is impossible because the
binding would require the existence of two identical sites in Tf1 (Tf2).

Given a set of tiles one would like to characterize the family of closed assem-
blies, or equivalently, of covering graphs, if any. An important application is in
the solution of combinatorial problems.

Example 1. [22]. A graph G = (V,E) is said to be 3-colorable if there is a sur-
jective function f : V → {a, b, c} such that if v → w ∈ E, then f(v) �= f(w).
Imagine constructing the graph G with two kinds of molecules, one coding for
the nodes and one for the edges. Node-molecules are branched molecules, where
the number of branches is the degree of the node, and edge-molecules are two-
branched molecules. Each branch of a node-molecule has a sticky end whose
code contains information on the node of the graph that connects to it and on
a color for the node. The n branches of a same node-molecule are assumed to
have the same code. Edge-molecules have two sticky ends and their code con-
tains information on the origin and target nodes as well as on the colors of such
nodes. The two colors are supposed to be different.

To consider three colors in the physical realization of the graph G, one con-
structs a node-molecule for each one of the three colors, together with all possible
combinations of pairs of different colors for edge-molecules.

By combining several identical copies of these molecules and ligating them,
open and possibly closed assemblies will form. Open assemblies are discharged
(this can be done with the help of exonuclease enzymes that digest molecules with
free ends) and closed assemblies, if any, ensure that the graph is 3-colorable. The
only closed assemblies that can be formed in the test tube are covering graphs.

74 Alessandra Carbone and Nadrian C. Seeman

7 A Random Model for Sequential Assembly

The random model introduced in Section 5 needs to be adjusted slightly to
simulate sequential assembly. Sequentiality presupposes the formation of specific
intermediates, i.e. complexes, at specific moments along the assembly process.
This means that one can start from a random configuration in S, let the input
tiles form complexes at random, remove from S isolated tiles and use them as
input tiles to re-iterate the process until a sufficiently large number of specific
intermediates is formed. This will provide one step of the sequential assembly,
and in the simplest case, this step will be re-iterated to model the next steps of
the sequential process, until all steps are realized. Different types of tiles might
be used as input tiles to perform different steps of the sequential process.

In more complicated cases, the above model, might need to integrate new
kinds of steps. It might be that some of the steps of the sequential process
require the intervention of specific enzymes, cleaving or ligating DNA tiles. Such
operations are random and their effect on tiles and complexes can be described
rigorously. Also, one might need to consider that tiles forming a complex at step
i, disassemble in step i + 1 because of the interaction with new molecular tiles.
This process is also random and can be formally described.

As mentioned in Section 3, the difficulty in inducing a sequential assembly
comes from the complex combinatorics needed to realize objects of irregular but
well-defined shape or aperiodic assemblies. A number of solutions have been
proposed to overcome these combinatorial difficulties; they concern tile design
(1)-(2), the algorithm for self-assembly (3)-(4) and the engineering protocol (5):

1. a variety of different forms of cohesion have been proposed, such as sticky
ended cohesion, where single-stranded overhangs cohere between molecules
[10]; PX cohesion, where topologically closed molecules cohere in a double-
stranded interaction [60]; edge-sharing, where the interactions are charac-
terized by lateral interactions [46]; tecto-RNA, where RNA domains pair
laterally through loop osculations [21];

2. one can allow different forms of coding within the same molecule, which can
involve the Watson-Crick sequences as well as the geometry of the molecule
[9];

3. one can use “instructed gluing” elements together with DNA-tiles [7]; the
idea is to add structural sub-units, as gluing elements between tiles, along
the self-assembly process; in many cases, the use of such sub-units decreases
the complexity of the protocol: the number of elementary molecules becomes
smaller and the assembly algorithms becomes more specific;

4. the use of protecting groups, through which some of the potential interaction
sites of the molecules are momentarily inhibited, is inherently a sequential
protocol, applicable both to DNA objects [58] and to fractal assemblies [9];

5. the solid-support methodology in DNA nanotechnology [58] is an example of
sequential assembly; it was used to construct the most complex DNA object
to date, a truncated octahedron [59]; the step-wise synthesis of a square is
illustrated in Figure 1 – here, enzymes intervene in some of the sequential
steps.

Molecular Tiling and DNA Self-assembly 75

8 Hierarchical Tiling

A set of tiles {T1, . . . , Tn} is self-consistent if for each Ti with binding site Di

there is a tile Tj with binding site Dj such that b(Di) = Dj , for some isometry
b. Notice that i need not be different from j. In particular, a single tile T is self-
consistent with itself if it has at least two binding sites which are complementary
to each other.

Let {T1, . . . , Tn} be basic elementary tiles which assemble in a variety of tile
complexes S1, . . . , Sl, i.e. finite assemblies Si with unused binding sites. A set
of tile complexes is self-consistent if for each Si with binding site Di there is a
tile complex Sj with binding site Dj such that b(Di) = Dj, for some isometry b
defined on tile complexes. New binding sites Di generated from the assembly of
a tile complex (as in Figure 7) are allowed.

A hierarchical tiling is an assembly X of tiles {T1, . . . , Tn} that is obtained
by successive steps of assembly generating intermediary sets of tile complexes
F0, . . . ,Fm such that:

1. F0 = {T1, . . . , Tn};
2. Fi = {Si,1, ..., Si,li}, for i = 1 . . .m, where each Si,j is a tile complex in Fi−1;

3. Fi is a self-consistent set of tile complexes;
4. X is an assembly of Sm,1, . . . , Sm,lm .

The value of m is called order of the hierarchical tiling. A hierarchical tiling
is non-trivial if for each family Fi there is at least one tile complex Si,j which is
not in Fi−1 already. Notice that not all assemblies can be defined as hierarchical
assemblies of order m, for m > 1.

A dynamical model of hierarchical tiling. It can be defined by a repeated iter-
ation of the random model for self-assembly presented in Section 5, where the
tile complexes used as input tiles at step i + 1 are the complexes formed in S at
the end of step i. In general, a hierarchical assembly is not a sequential assem-
bly. It might happen though, that certain assembly processes are defined by a
combination of sequential steps during the hierarchical self-assembly.

Some concrete examples of hierarchical assembly. Suitable selection of structural
units allows the design of molecular entities undergoing self-organisation into
well-defined architectures, which subsequently may self-assemble into supramolec-
ular fibrils and networks. The assembly of “infinite” tubes and spheres has been
realized many times and in many laboratories with different kinds of molecules.
A basic approach is to design a rod-like molecule with an hydrophobic end and
a hydrophilic one. Then, one puts the molecules in different media and observes
the formation of spheres, where the hydrophilic side of the molecules lies either
inside or outside the sphere, depending on the properties of the medium. Alter-
natively, one might observe the formation of a long tube where, again, on the
surface one finds sides with identical hydrophilic/hydrophobic properties. The
formation of spheres and tubes leads us to ask how these shapes might assemble

76 Alessandra Carbone and Nadrian C. Seeman

among themselves into supramolecular periodic or aperiodic structures. What
other shapes do allow for the assembly of 1D, 2D and 3D arrays of such tile
complexes?

Besides spheres, tubes and networks, chemists work on the design of synthetic
molecules which lead to helical architectures of both molecular and supramolec-
ular nature by hierarchical self-organization, or again to the formation of mush-
room-like shapes and to a consequent assembly of such complexes into 3D arrays
[18] (these arrangements are not regular, in the sense that they are not crys-
tals). Mimicking nucleic-acid sequences, specific sequences of hydrogen bonding
residues are led to act as structure-inducing codons, and such structural coding
allows for the spontaneous but controlled generation of organized materials, e.g.
[18].

Fig. 11. A variety of two-dimensional arrays that have been formed from DNA
tiles. Panels (a) and (b) illustrate 2D arrays composed of DX and DX + J
molecules. Panel (c) illustrates patterns obtained from TX molecules. Panel (d)
illustrates an array made of DNA parallelograms.

At a different scale, for nanoscale molecules, like DNA, a broader range of
possibilities can be explored since all of the contacts can be forced to be of a
Watson-Crick form, although many other types of interaction are possible (e.g.,

Molecular Tiling and DNA Self-assembly 77

[60]). The ifferent shapes of tiles introduced at the end of Section 4, enabled the
assembly of several different kinds of periodic 1D and 2D arrays (see Figure 11).
These hierarchical assemblies have order 2: single strands make the starting set
of tiles, which assemble into specific intermediary molecular tiles (described in
Section 4), and finally these molecular tiles self-assemble into a 2D array.

Periodic assemblies in 3 dimensions are still an open problem. Protocols for
the assembly have been proposed, but highly ordered programmed 3D arrange-
ments have not yet been realized to resolutions below 1 nm in the laboratory
for DNA tiles. Aperiodic arrangements, typically harder to assemble and ana-
lyze than periodic assemblies, present an even greater challenge, because their
characterization cannot rely on diffraction analysis in a simple fashion.

Example 2. Fractal assemblies. [8,9] Fractal constructions are a special case of
aperiodic assemblies. The algorithm here is simple: from a starting molecular
shape, which can look like a square or a triangle, and is designed to interact
with copies of itself, one constructs a molecule with the same shape but a larger
size, and re-iterates the process to get larger and larger assemblies of the given
shape. The difficulty lies in the design of a set of basic shapes which can self-
assemble into new self-similar shapes of larger sizes, and whose binding sites
are coded by self-similar coding. An appropriate coding is important to ensure
that tile complexes will self-assemble and that undesired binding is avoided. The
order of this hierarchical tiling, corresponding to the number of iterations of the
algorithm, is m, for potentially any value of m. In practice, a chemist would be
happy with m = 4, 5.

These examples lead to some questions: within the set of feasible shapes and
interactions, can we classify potential complexes? Once a complex is formed, can
it be used as a building block to construct larger 1D, 2D or 3D arrays?

9 Size of the Assembly

How can the size of an assembly be controlled?
Rough termination is easy to induce. An obvious way is to limit the number

of molecules in the solution. Another way is to use protecting groups, i.e. DNA
molecules, which might be single strands for instance, whose binding sites are
complementary to the binding sites of the tiles used in the assembly. The idea
being that protecting groups might be added to the solution during the process
of self-assembly to prevent new tiles from binding to available sites.

Exact termination is a consequence of the coding for the termination. If a
synthesis or an assembly is templated, it is always possible to limit growth, by
leaving out the constituent that is coded at the terminal position, for instance.
The algorithmic synthesis of triangular circuits illustrated in Figure 6, provides
another example where this is done [7]. In general, exact size control of a DNA
self-assembly is hard to achieve. A few protocols have been presented so far.

In theory, DNA tiles can be used to “count” by creating boundaries with
programmable sizes for 1D, 2D and possibly 3D periodic assemblies. The idea

78 Alessandra Carbone and Nadrian C. Seeman

is to build periodic arrays of size n ×m by generating repeatedly the Boolean
truth table for n entries until m rows of the table have been filled [54,56]. If
this schema can be physically implemented, then self-assembly of precisely-sized
nanoscale arrays will be possible.

Fractal assemblies [8,9] can be thought of as a way to generate fixed geomet-
rical shapes of controlled size. Besides the rectangular shapes of n ×m arrays,
one would like to have a way to grow assemblies with other shapes such as trian-
gles, hexagons, etc. Fractal assembly allows us to do so by constructing objects
with fixed sizes that are powers of some value: for instance, for the Sierpinski
fractal, the size of the squares is 3k, where k is the dimension.

10 Algorithmic Assembly

The combination of different instructions in a “molecular program” has been
used to design self-assembly systems which follow specific assembly pathways.
This idea has its mathematical analogue in the work of Wang [48,49,50], who
proposed a finite set of tiles mimicking the behavior of any Turing Machine.

Wang tiles are squared tiles in R2 whose binding sites are the four sides of
the square, and whose interaction is possible on binding sites labelled by the
same color. If T1, T2, . . . , Tn are Wang tiles, then one asks that {T1, T2, . . . , Tn}
be a self-consistent set. Once a set of Wang tiles is given, one asks whether the
plane can be tiled with it, and what are the properties of the tiling, namely if
the set generates periodic tiling only, or both periodic and non-periodic tiling,
or aperiodic tiling only.

The molecular realization of Wang tiles (where a square becomes a 4-arm
branched molecule with Watson-Crick complementary sticky ends as binding
sites) can, theoretically, be used to make computations [54]. This notion has
not yet been realized experimentally in more than one dimension [30]. A three-
dimensional framework for computing 2D circuits and constructing DNA-objects
with given shapes, has been suggested [7], where again, DNA tiles mimic Wang
tiles. It is important to stress that molecular tiles are not conceived to generate
only uniform tiling of the plane, but on the contrary, they can be used to induce
the assembly of objects of arbitrary shapes.
Combinatorial optimisation problems: fixing a single shape. Two combinatorial
problems have been stated in [3]. The first concerns minimum tile sets, i.e. given
a shape, find the tile system with the minimum number of tile types that can
uniquely self-assemble into this shape. The second concerns tile concentration,
i.e. given a shape and a tile system that uniquely produces the given shape,
assign concentrations to each tile-type so that the expected assembly time for
the shape is minimized. The first combinatorial problem is NP-complete and the
second is conjectured to be #P [3]. These problems have been formulated for
any given shape even though only square tiles, i.e. Wang tiles, have been studied
until now.
Templates and fixed shapes. Can one find a small set of relatively simple tiles
such that, starting from a template supporting a linear code (that may be a DNA

Molecular Tiling and DNA Self-assembly 79

or RNA molecule incorporated into a macromolecular complex), the assembly
process will create a given three dimensional shape in the space? We think here of
interacting tiles performing a transformation from labeled templates into three
dimensional structures and we ask what kind of transformations can be realized
in this way [7]. Also, one wants to understand how much the complexity of the
construction depends on the complexity of the tiles, where the latter can be
measured by the number of the binding sites of the tiles, the size of the sets Bi,j ,
etc.
Combinatorial optimisation problems: fixing a “family” of shapes. Fractal as-
sembly provides an example of an iterative algorithm for self-assembly which
generates fractals of arbitrary dimension and not just a single shape with a
given size. For each dimension, the building blocks necessary to build the corre-
sponding fractal shape need to satisfy the same self-similar properties, and the
design of a tile set which satisfies these properties is not obvious. For instance,
given a Sierpinski square fractal and an iterative algorithm that produces arbi-
trarily large instances of this shape, is there a set of Wang tiles that can uniquely
assemble into any fractal size? It is not at all clear that a set of Wang tiles with
self-similar coding exists. In [9] a set of tiles, whose boundaries are characterized
by both a coding sequence and a geometrical shape, is proposed. Does geometry
have to be included in the coding of the tile boundaries to impose extra control
on the assembly? What is the minimum number of tiles necessary to generate a
family of shapes?

In general, let an algorithm for self-assembly be fixed. What are the properties
of the tiles which are necessary to realize the algorithm?
Dynamic tiling. A molecular feature that has been used in algorithmic self-
assembly is the possibility to program and change the status of a molecule.
This means that the molecule passes in time through several possible physical
conformations, i.e. geometrical shapes. In DNA nanotechnology, this has been
done by using “template” molecules (programmable tiles) that interact with
DNA single strands [47,46]: the pairing of the single stranded DNA present in
the solution to a single strand subsequence of the tile induces this latter to
change its conformation. Because of these conformational changes, tiles get a
different status during the assembly, with the effect that one is able to control
the dynamics of the algorithm and the direction of the assembly. As a result,
one can generate different architectures out of the same set of tiles by varying
their conformations.

Example 3. One can imagine a basic molecular system that is fundamentally a
layer of programmable tiles which can guide the assembly of multiple layers of tiles
above it [7]. In the 2-dimensional case this device can compute tree-like boolean
circuits, and in 3D, it can induce finite regular and less regular shapes. Multiple
regular layers are obtained by completely filling up the template board: a new
layer of tiles will cover-up the old one and will play the role of a new board in
allowing the creation of a third layer, and so on. “Walls” with specified “height”,
or discrete irregular shapes are obtained by partially filling-up the board, and
this can be achieved by inserting appropriate coding in the programmable tiles

80 Alessandra Carbone and Nadrian C. Seeman

that form the template board. The coding will discriminate what are the tiles
that will interact with new ones and what are those that will avoid interaction.

In the example, a change in the programming of the board induces the for-
mation of different shapes out of the same input set. This suggests that a formal
notion of complexity describing self-assembly of molecular systems cannot be
based merely on the variety of shapes that potentially can be assembled, but
rather on the much larger variety of algorithms that allow their assembly.
DNA computing. Last, we want to mention the effort in designing algorithms for
DNA-computation. The landmark step is in [1], where DNA is used to solve an
instance of the Hamiltonian Path problem, asking to establish whether there is
a path between two cities, given an incomplete set of available roads. A set of
strands of DNA is used to represent cities and roads (similar to the description
of the 3-coloring problem in Section 6), and the coding is such that a strand
representing a road would connect (according to the rules of base-pairing) to any
two strands representing a city. By mixing together strands, joining the cities
connected by roads, and weeding out any wrong answers, it has been shown that
the strands could self-assemble to solve the problem.

The first link between DNA-nanotechnology and DNA-computation was es-
tablished in [54] with the suggestion that short branched DNA-molecules could
be “programmed” to undergo algorithmic self-assembly and thus serve as the
basis of computation. Other work has followed as [30,34,25].

11 Discussion

Most examples in this paper were based on Watson-Crick interactions of DNA
molecules. Other kinds of interaction, usually referred to as tertiary interactions,
can be used to lead a controlled behavior in the assembly of DNA molecules,
for example, DNA triplexes [15], tecto-RNA [21] and G-quartet formation [42].
In the combinatorial DNA constructions that we presented, tertiary interactions
were carefully avoided with the goal of maximizing control on the dynamics of
the assembly. Tertiary interactions are not as readily controlled as Watson-Crick
interactions. The next generation of structural DNA nanotechnologists will be
likely to exploit this wider range of structural possibilities and it appears possible
that new combinatorics might arise from these options.

Acknowledgement

The authors would like to thank Roberto Incitti and Natasha Jonoska for their
comments on preliminary versions of this manuscript.

This research has been supported by grants GM-29554 from the National
Institute of General Medical Sciences, N00014-98-1-0093 from the Office of
Naval Research, grants DMI-0210844, EIA-0086015, DMR-01138790, and CTS-
0103002 from the National Science Foundation, and F30602-01-2-0561 from
DARPA/AFSOR.

Molecular Tiling and DNA Self-assembly 81

References

1. L.M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021-4, 1994.

2. L.M. Adleman. Toward a mathematical theory of self-assembly. Technical Report
00-722, Department of Computer Science, University of Southern California, 2000.

3. L.M. Adleman, Q. Cheng, A. Goel, M-D. Huang, D. Kempe, P. Moisset de Es-
panés, P.W.K. Rothemund. Combinatorial optimisation problems in self-assembly.
STOC’02 Proceedings, Montreal Quebec, Canada, 2002.

4. A. Aggeli, M. Bell, N. Boden, J.N. Keen, P.F. Knowles, T.C.B. McLeish,
M. Pitkeathly, S.E. Radford. Responsive gels formed by the spontaneous self-
assembly of peptides into polymeric beta-sheet tapes, Nature 386:259-62, 1997.

5. P. Ball Materials Science: Polymers made to measure, Nature, 367:323-4, 1994.
6. A. Carbone, M. Gromov. Mathematical slices of molecular biology, La Gazette des

Mathématiciens, Numéro Spéciale, 88:11–80, 2001.
7. A. Carbone, N.C. Seeman. Circuits and programmable self-assembling DNA struc-

tures. Proceedings of the National Academy of Sciences USA, 99:12577-12582, 2002.
8. A. Carbone, N.C. Seeman. A route to fractal DNA-assembly, Natural Computing,

1:469-480, 2002.
9. A. Carbone, N.C. Seeman. Coding and geometrical shapes in nanostructures: a

fractal DNA-assembly, Natural Computing, 2003. In press.
10. S.N. Cohen, A.C.Y. Chang, H.W. Boyer, R.B. Helling. Construction of biologically

functional bacterial plasmids in vitro, Proceedings of the National Academy of
Science USA, 70:3240-3244, 1973.

11. A.M. Diegelman, E.T. Kool. Generation of circular RNAs and trans-cleaving cat-
alytic RNAs by rolling transcription of circular DNA oligonucleotides encoding
hairpin ribozymes, Nucleic Acids Research, 26, 3235-3241, 1998.

12. S.M. Du, S. Zhang, N.C. Seeman. DNA Junctions, Antijunctions and Mesojunc-
tions, Biochemistry, 31:10955-10963, 1992.

13. I. Duhnam, N. Shimizu, B.A. Roe et al. The DNA sequence of human chromosome
22, Nature, 402:489–95, 1999.

14. B.F. Eichman, J.M. Vargason, B.H.M. Mooers, P.S. Ho. The Holliday junction in
an inverted repeat DNA sequence: Sequence effects on the structure of four-way
junctions, Proceedings of the National Academy of Science USA, 97:3971-3976,
2000.

15. G. Felsenfeld, D.R. Davies, A. Rich. Formation of a three-stranded polynucleotide
molecule, J. Am. Chem. Soc., 79:2023-2024, 1957.

16. T.-J. Fu, B. Kemper and N.C. Seeman. Endonuclease VII cleavage of DNA double
crossover molecules, Biochemistry 33:3896-3905, 1994.

17. B. Grünbaum, G.C. Shephard. Tilings and Patterns, W.H. Freeman and Company,
1986.

18. J.D. Hartgerink, E. Beniash, and S.I. Stupp. Self-assembly and mineralization of
peptide-amphiphile nanofibers, Science, 294:1684, 2001.

19. I. Huck, J.M. Lehn. Virtual combinatorial libraries: dynamic generation of molec-
ular and supramolecular diversity by self-assembly, Proceedings of the National
Academy of Sciences USA, 94:2106-10, 1997.

20. S. Hussini, L. Kari, S. Konstantinidis. Coding properties of DNA languages, The-
oretical Computer Science, 290:1557-1579, 2003.

21. L. Jaeger, E. Westhof, N.B. Leontis. TectoRNA: modular assembly units for the
construction of RNA nano-objects, Nucleic Acids Research, 29:455-463, 2001.

82 Alessandra Carbone and Nadrian C. Seeman

22. N. Jonoska. 3D DNA patterns and Computing, Pattern formation in Biology,
Vision and Dynamics, edited by A. Carbone, M. Gromov, P. Prusinkiewicz, World
Scientific Publishing Company, 310-324, 2000.

23. G. von Kiedrowski. Personal communication, February 2003.

24. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, N.C. Seeman.
The construction, analysis, ligation and self-assembly of DNA triple crossover com-
plexes, J. Am. Chem. Soc. 122:1848-1860, 2000.

25. T.H. LaBean, E. Winfree, J.H. Reif. Experimental progress in computation by
self-assembly of DNA tilings, Proc. DNA Based Computers V, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, E. Win- free and
D.K. Gifford (eds), American Mathematical Society, Providence, RI, vol.54:123-
140, 2000.

26. J.M. Lehn. Sopramolecular Chemistry, Science, 260:1762-3, 1993

27. J.M. Lehn. Toward complex matter: Supramolecular chemistry and self-
organisation. Proceedings of the National Academy of Science USA, 99(8):4763-
4768, 2002.

28. F. Liu, R. Sha and N.C. Seeman. Modifying the surface features of two-dimensional
DNA crystals, Journal of the American Chemical Society 121:917-922, 1999.

29. C. Mao, W. Sun and N.C. Seeman. Designed two-dimensional DNA Holliday
junction arrays visualized by atomic force microscopy, Journal of the American
Chemical Society, 121:5437-5443, 1999.

30. C. Mao, T. LaBean, J.H. Reif, N.C. Seeman. Logical computation using algorith-
mic self-assembly of DNA triple-crossover molecules. Nature 407:493-496, 2000;
Erratum: Nature 408:750-750, 2000.

31. H. Qiu, J.C. Dewan and N.C. Seeman. A DNA decamer with a sticky end: The
Ccystal structure of d-CGACGATCGT, Journal of Molecular Biology, 267:881-
898, 1997.

32. J.H. Reif. Local parallel biomolecular computation, DNA Based Computers, III,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol
48 (ed. H. Rubin), American Mathematical Society, 217-254, 1999.

33. J.H. Reif. Molecular assembly and computation: from theory to experimental
demonstrations, 29-th International Colloquium on Automata, Languages, and
Programming(ICALP), Málaga, Spain (July 8, 2002). Volume 2380 of Lecture
Notes in Computer Science, New York, pages 1-21, 2002.

34. P. Sa-Ardyen, N. Jonoska, N.C. Seeman. Self-assembling DNA graphs, DNA
Computing, 8th International Workshop on DNA-based Compters, LNCS 2568:1-
9, 2003.

35. J.M. Schnur. Lipid tubules: a paradigm for molecularly engineered structures,
Science, 262:1669-76, 1993.

36. N.C. Seeman. Nucleic acid junctions and lattices, J. Theor. Biol., 99:237-247,
1982.

37. N.C. Seeman, N.R. Kallenbach. Design of immobile nucleic acid junctions, Bio-
physical Journal, 44:201-209, 1983.

38. N.C. Seeman, N.R.Kallenbach. Nucleic-acids junctions: a successfull experiment in
macromolecular design, Molecular Structure: Chemical Reactivity and Biological
Activity, J.J. Stezowski, J.L. Huang, M.C. Shao (eds.), Oxford University Press,
Oxford, 189-194, 1988.

39. N.C. Seeman. DNA engineering and its application to nanotechnology, Trends in
Biotech., 17:437-443, 1999.

Molecular Tiling and DNA Self-assembly 83

40. N.C. Seeman. DNA nanotechnology: from topological control to structural con-
trol, Pattern formation in Biology, Vision and Dynamics, edited by A. Carbone,
M. Gromov, P. Prusinkiewicz, World Scientific Publishing Company, 310-324, 2000.

41. N.C. Seeman. In the nick of space: Generalized nucleic acid complementarity and
the development of DNA nanotechnology, Synlett, 1536-1548, 2000.

42. D. Sen, W. Gilbert, Formation of parallel four-stranded complexes by guanine-rich
motifs in DNA and applications to meiosis. Nature, 334:364-366, 1988.

43. R. Sha, F. Liu, D.P. Millar and N.C. Seeman. Atomic force microscopy of parallel
DNA branched junction arrays, Chemistry & Biology 7:743-751, 2000.

44. Z. Shen. DNA Polycrossover Molecules and their Applications in Homology Recog-
nition. Ph.D. Thesis, New York University, 1999.

45. W.B. Sherman, N.C. Seeman. (in preparation)
Abstract “The design of nucleic acid nanotubes” appeared in Journal of
Biomolecular Structure & Dynamics, online at http://www.jbsdonline.com/

index.cfm?search=seeman&d=3012&c=4096&p11491&do=detail, 2003.
46. H. Yan, X. Zhang, Z. Shen, N.C. Seeman. A robust DNA mechanical device

controlled by hybridization topology. Nature, 415:62-5, 2002.
47. B. Yurke, A.J. Turberfield, A.P.Jr. Mills, F.C. Simmel, J.L. Neumann. A DNA-

fuelled molecular machine made of DNA. Nature, 406:605-608, 2000.
48. H. Wang. Proving theorems by pattern recognition, Bell System Tech. J., 40:1-42,

1961.
49. H. Wang. Dominos and the AEA case of the decision problem. In Proceedings of

the Symposium on the Mathematical Theory of Automata, 23-56, Polytechnic, New
York, 1963.

50. H. Wang. Games, logic and computers, Scientific American, November, 98–106,
1965.

51. Y. Wang, J.E. Mueller, B. Kemper, and N.C. Seeman. The assembly and charac-
terization of 5-arm and 6-arm DNA junctions, Biochemistry 30:5667-5674, 1991.

52. G.M. Whitesides, J.P. Mathias, C.T. Seto. Molecular self-assembly and nanochem-
istry: a chemical strategy for the synthesis of nanostructures, Science, 254:1312-9,
1991.

53. W.R. Wikoff, L. Liljas, R.L. Duda, H. Tsuruta, R.W. Hendrix, J.E. Johnson. Topo-
logically linked protein rings in the bacteriophage HK97 caspid. Science, 289:2129-
2133, 2000.

54. E. Winfree. On the computational power of DNA annealing and ligation, DNA
based computers, Proceedings of a DIMACS workshop, April ???4, 1995, Princeton
University, eds. R.J. Lipton and E.B. Baum, AMS Providence, 199-219, 1996.

55. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman. Design and self-assembly of two-
dimensional DNA crystals, Nature, 394:539–44, 1998.

56. E. Winfree. Algorithmic self-assembly of DNA: theoretical motivations and 2D
assembly experiments. J. Biol. Mol. Struct. Dynamics Conversat., 2:263-270, 2000.

57. S. Zhang, T. Holmes, C. Lockshin, A. Rich. Spontaneous assembly of a self-
complementary oligopeptide to form a stable macroscopic membrane. Proceeding
of the National Academy of Sciences USA, 90:3334-8, 1993.

58. Y. Zhang, N.C. Seeman. A solid-support methodology for the construction of
geometrical objects from DNA, J. Am. Chem. Soc., 114:2656-2663, 1992.

59. Y. Zhang, N.C. Seeman. The construction of a DNA truncated octahedron, J.
Am. Chem. Soc., 116:1661-1669, 1994.

60. X. Zhang, H. Yan, Z. Shen and N.C. Seeman. Paranemic cohesion of topologically-
closed DNA molecules, J Am. Chem. Soc., 124:12940-12941, 2002.

On Some Classes of Splicing Languages�

Rodica Ceterchi1, Carlos Mart́ın-Vide2, and K.G. Subramanian3

1 Faculty of Mathematics, University of Bucharest
14, Academiei st., 70109 Bucharest, Romania
rc@funinf.math.unibuc.ro, rc@fll.urv.es

2 Research Group in Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
cmv@astor.urv.es

3 Department of Mathematics
Madras Christian College

Tambaram, Chennai 600059, India
kgsmani@vsnl.net

Abstract. We introduce some classes of splicing languages generated
with simple and semi-simple splicing rules, in both, the linear and circular
cases. We investigate some of their properties.

1 Introduction

The operation of splicing was introduced as a generative mechanism in formal
language theory by Tom Head in [9], and lays at the foundation of the field of
DNA based computing (see [11] and [14].)

We are concerned in this paper with some classes of languages which arise
when considering very simple types of splicing rules. Our main inspiration is the
study of [12], where the notion of simple H system and the associated notion of
simple splicing languages have been introduced.

A simple splicing rule is a rule of the form (a, 1; a, 1) with a ∈ A a symbol
called marker. More precisely, we will call such a rule a (1, 3)-simple splicing
rule, since the marker a appears on the 1 and 3 positions of the splicing rule,
and since one can conceive of (i, j)-simple splicing rules for all pairs (i, j) with
i = 1, 2, j = 3, 4. We denote by SH(i, j) the class of languages generated by
simple splicing rules of type (i, j). The paper [12] focuses basically on the study
of the SH(1, 3) class (which is equal to the SH(2, 4) class and is denoted by SH).
Only towards the end of the paper the authors of [12] show that there are three
such distinct and incomparable classes, SH = SH(1, 3) = SH(2, 4), SH(2, 3)
and SH(1, 4), of (linear) simple splicing languages. They infer that most of the
results proven for the SH class will hold also for the other classes, and point out
towards studying one-sided splicing rules of radius at most k: rules (u1, 1;u3, 1)
� This work was possible thanks to the grants SAB2000-0145, and SAB2001-0007,

from the Secretaŕıa de Estado de Educación y Universidades, Spanish Ministry for
Education, Culture and Sport.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 84–105, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Some Classes of Splicing Languages 85

with |u1| ≤ k, |u3| ≤ k. Note that the “one-sidedness” they are considering is of
the (1, 3) type, and that other (i, j) types can be considered, provided they are
distinct from (1, 3).

The notion of semi-simple splicing rules introduced by Goode and Pixton in
their paper [8] seems to follow the research topic proposed by [12] considering
the simplest case, with k = 1. More precisely, semi-simple splicing rules are rules
of the form (a, 1; b, 1) with a, b ∈ A, symbols which again we will call markers.
Again the one-sidedness is of the (1, 3) type, and we denote by SSH(1, 3) the
class of languages generated by such rules.

Goode and Pixton state explicitly that their interest lies in characterizing
regular languages which are splicing languages of this particular type (we will
be back to this problem later), and not in continuing the research along the lines
of [12].

Instead, we are interested here in analyzing different classes, for their sim-
ilarities or dissimilarities of behavior. We show that the classes SSH(1, 3) and
SSH(2, 4) are incomparable, and we provide more examples of languages of these
types.

The connections between (linear) splicing languages and regular languages
are well explored in one direction: it has been shown that iterated splicing which
uses a finite set of axioms and a finite set of rules generates only regular lan-
guages (see [6] and [15]). On the other hand, the problem of characterizing the
regular languages which are splicing languages is still open. Very simple regular
languages, like (aa)∗, are not splicing languages. The problem is: starting from
a regular language L ⊂ V ∗, can we find a set of rules R, and a (finite) set of
axioms A ⊂ V ∗, such that L is the splicing language of the H system (V,A,R)?
This problem is solved for simple rules in [12] with algebraic tools. The problem
is also addressed by Tom Head in [10], and solved for a family of classes, a family
to which we will refer in Section 5. In [8] the problem is solved for (1, 3)-semi-
simple rules. The characterization is given in terms of a certain directed graph,
the (1, 3) arrow graph canonically associated to a regular language respected by
a set of (1, 3)-semi-simple rules. We show in Section 4 that their construction
can be dualized: we construct the (2, 4) arrow graph for a language respected
by (2, 4)-semi-simple splicing rules. We obtain thus an extension of the charac-
terization from [8]. Among other things, this enables us to prove for languages
in SSH(2, 4) properties valid for languages in SSH(1, 3). The construction also
makes obvious the fact that the other two semi-simple types have to be treated
differently.

In Section 5 we try to find more connections to the study in [10] and point
out certain open problems in this direction.

The second part of this paper is concerned with circular splicing. Splicing of
circular strings has been considered as early as the pioneering paper [9], but it
does not occupy in the literature the same volume as that occupied by linear
splicing. With respect to the computational power, it is still unknown precisely
what class can be obtained by circular splicing, starting from a finite set of rules
and a finite set of axioms (see [1], [15]). It is known that finite circular splicing

86 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

systems can generate non-regular circular languages (see [17],[15]). On the other
hand, there are regular circular languages (for instance the language (̂aa)∗b)
which cannot be generated by any finite circular splicing system (with Păun
type of rules) (see [2], [3]). The fact that the behavior in the circular case is
by no means predictable from the behavior in the linear case is made apparent
by the example of the (̂aa)∗ circular language, which is both a regular and a
splicing language (see [2], [3]).

This has motivated the beginning of the study of simple circular H systems
in the paper [5]. We recall briefly in Section 6 some results of [5], which are
completed here by some closure properties.

In Section 7 we introduce the semi-simple circular splicing systems and first
steps in the study of such systems are made by proving the incomparability of
classes SSH◦(1, 3) and SSH◦(2, 4), a situation which is totally dissimilar to the
simple circular case, where more classes colapse than in the simple linear case.

The following table summarizes the notations used for the different types of
H systems and the respective classes of languages considered throughout the
paper, and the main references for the types already studied in the literature.

Table 1. Types of splicing systems and languages

linear case, V ∗ circular case, V ◦

simple SH [12] SH◦ [5]

semi-simple SSH [8] SSH◦

k-simple SkH [10]

k-semi-simple SSkH

2 Preliminaries and Notations

For a finite alphabet V we denote by V ∗ the free monoid over V , by 1 the empty
string, and we let V + = V ∗ \ {1}. For a string w ∈ V ∗ we denote by |w| its
length, and if a ∈ V is a letter, we denote by |w|a the number of occurrences of
a in w. We let mi : V ∗ −→ V ∗ denote the mirror image function, and we will
denote still by mi its restriction to subsets of V ∗. For a word w ∈ V ∗, we call
u ∈ V ∗ a factor of w, if there exist x, y ∈ V ∗ such that w = xuy. We call u ∈ V ∗

a factor of a language L, if u is a factor of some word w ∈ L.
On V ∗ we consider the equivalence relation given by xy ∼ yx for x, y ∈ V ∗

(the equivalence given by the circular permutations of the letters of a word).
A circular string over V will be an equivalence class w.r.t. the relation above.

We denote by ˆw the class of the string w ∈ V ∗. We denote by V ◦ the set of
all circular strings over V , i.e., V ◦ = V ∗/ ∼. The empty circular string will be
denoted 1̂, and we let V ⊕ = V ◦ \ {̂ 1}. Any subset of V ◦ will be called a circular
language.

For circular words, the notions of length and number of occurrences of a
letter, can be immediately defined using representatives: |̂ w| = |w|, and |̂ w|a =

On Some Classes of Splicing Languages 87

|w|a. Also the mirror image function mi : V ∗ −→ V ∗ can be readily extended to
mi : V ◦ −→ V ◦; if ˆw is read in a clockwise manner, mi(̂ w) = ˆmi(w) consists of
the letters of w read in a counter-clockwise manner. We will denote composition
of functions algebraically.

To a language L ⊆ V ∗ we can associate the circular language Cir(L) = {̂ w |
w ∈ L} which will be called the circularization of L. The notation L◦ is also
used in the literature.

To a circular language C ⊆ V ◦ we can associate several linearizations, i.e.,
several languages L ⊆ V ∗ such that Cir(L) = C. The full linearization of the
circular language C will be Lin(C) = {w | ˆw ∈ C}.

Having a family FL of languages we can associate to it its circular counterpart
FL◦ = {Cir(L) | L ∈ FL}. We can thus speak of FIN◦, REG◦, etc. A circular
language is in REG◦ if some linearization of it is in REG.

Next we recall some notions on splicing. A splicing rule is a quadruple r =
(u1, u2;u3, u4) with ui ∈ V ∗ for i = 1, 2, 3, 4. The action of the splicing rule r on
linear words is given by

(x1u1u2x2, y1u3u4y2) �r x1u1u4y2.

In other words, the string x = x1u1u2x2 is cut between u1 and u2, the string
y = y1u3u4y2 between u3 and u4, and two of the resulting substrings, namely
x1u1 and u4y2, are pasted together producing z = x1u1u4y2.

For a language L ⊆ V ∗ and a splicing rule r, we denote

r(L) = {z | (x, y) �r z for some x, y ∈ L}.

We say that a splicing rule r respects a language L if r(L) ⊆ L. In other
words, L is closed w.r.t. the rule r. A set of rules R respects the language L if
R(L) ⊆ L.

For an alphabet V , a (finite) A ⊂ V ∗ and a set R of splicing rules, a triple
S = (V,A,R) is called a splicing system, or H system. The pair σ = (V,R) is
called a splicing (or H) scheme.

For an arbitrary language L ⊆ V ∗, we denote σ0(L) = L, σ(L) = L ∪ {z |
for some r ∈ R, x, y ∈ L, (x, y) �r z}, and for any n ≥ 1 we define σn+1(L) =
σn(L) ∪ σ(σn(L)). The language generated by the H scheme σ starting from
L ⊆ V ∗ is defined as

σ∗(L) =
⋃
n≥0

σn(L).

The language generated by the H system S = (V,A,R), denoted L(S), is
L(S) = σ∗(A), i.e., what we obtain by iterated splicing starting from the strings
in the axiom set A. We recall that L(S) can be also characterized as being the
smallest language L ⊆ V ∗ such that:

(i) A ⊆ L ;
(ii) r(L) ⊆ L for any r ∈ R.
In a similar manner we define splicing on circular languages. The only differ-

ence is that we start from circular strings as axioms, A ⊂ V ◦, and the application

88 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

of a splicing rule produces a circular string from two circular strings (as we will
formally define in section 6).

Other notations and definitions will be introduced, whenever necessary,
throughout the paper.

3 Simple Linear H Systems and Languages

We recall in this section some of the results of [12] on simple linear H systems.
A simple (linear) splicing rule is a splicing rule of one of the four following

forms: (a, 1; a, 1), (1, a; 1, a), (1, a; a, 1), (a, 1; 1, a), where a is a symbol in V ,
called marker. The action of the four types of simple splicing rules on strings is
illustrated below:

type(1, 3) : (xax′, yay′) �(a,1;a,1) xay′,
type(2, 4) : (xax′, yay′) �(1,a;1,a) xay′,
type(2, 3) : (xax′, yay′) �(1,a;a,1) xy′,
type(1, 4) : (xax′, yay′) �(a,1;1,a) xaay′.

We note that the action of rules of type (1, 3) and (2, 4) coincide.
A simple H system is a triple S = (V,A,R) consisting of an alphabet V , a

finite set A ⊂ V ∗ called the set of axioms (or initial strings), and a finite set R
of simple splicing rules of one of the types (i, j), with i = 1, 2, j = 3, 4.

The language generated by a simple H system S as above is defined as usual
for splicing schemes

L = σ∗(A).

where σ = (V,R). If the rules in R are of type (i, j), this language will be called
an (i, j)-simple splicing language. The class of all (i, j)-simple splicing languages
will be denoted by SH(i, j). We have SH(1, 3) = SH(2, 4) and let SH denote
this class.

Theorem 1. (Theorem 11 of [12]) Each two of the families SH, SH(1, 4) and
SH(2, 3) are incomparable.

We have, from the more general results of [15] and [6], that all three classes
contain only regular languages, i.e., SH, SH(1, 4), SH(2, 3) ⊂ REG. In [12] the
inclusion SH ⊂ REG is also proved directly, using a representation result.

The inverse problem, of characterizing those regular languages which are
simple splicing languages is solved via an algebraic characterization.

4 Semi-simple Linear H Systems and Languages

Semi-simple splicing rules were first considered by Goode and Pixton in [8]. In
[12] it is mentioned that “it is also of interest to consider one-sided splicing rules
of radius at most k: (u1, 1;u2, 1) with |u1| ≤ k, |u2| ≤ k”. The semi-simple

On Some Classes of Splicing Languages 89

splicing rules are one-sided splicing rules of radius k = 1. Moreover, the “one-
sidedness” of the rules considered by Goode and Pixton is of the (1, 3) type. We
present the basic definitions for the four possible types.

For two symbols a, b ∈ V a semi-simple (linear) splicing rule with markers a
and b is a splicing rule of one of the following four types: (a, 1; b, 1), (1, a; 1, b),
(1, a; b, 1), (a, 1; 1, b).
The action of the four rules on strings is obvious.

A semi-simple H system is an H system S = (V,A,R) with all rules in R
semi-simple splicing rules of one of the types (i, j), with i = 1, 2, j = 3, 4.

The language generated by a semi-simple H system S as above is defined as
usual for splicing schemes, L = σ∗(A), where σ = (V,R). If the rules in R are
semi-simple rules of type (i, j), this language will be called an (i, j)-semi-simple
splicing language. The class of all (i, j)-semi-simple splicing languages will be
denoted by SSH(i, j).

In [8] only the class SSH(1, 3) is considered. Since in [8] only one example
of a semi-simple language of the (1, 3) type is given, we find it useful to provide
some more.

Example 1 Consider S3 = ({a, b}, {aba}, {(a, 1; b, 1)}). The language generated
by S3 is L3 = L(S3) = aa+ ∪ aba+ ∈ SSH(1, 3).

Example 2 Consider S4 = ({a, b}, {aba}, {(1, a; 1, b)}). The language generated
by S4 is L4 = L(S4) = b+a ∪ ab+a ∈ SSH(2, 4).

The following result shows that, even for the types (1, 3) and (2, 4), which
share some similarity of behavior, unlike in the case of simple rules, the respective
classes of languages are incomparable.

Theorem 2. The classes SSH(1, 3) and SSH(2, 4) are incomparable.

Proof: Note first that simple splicing languages in the class SH are in the inter-
section SSH(1, 3) ∩ SSH(2, 4).

The language L1 = a+ ∪ a+ab∪ aba+ ∪ aba+b belongs to SSH(1, 3), but not
to SSH(2, 4).

For the first assertion, L1 is generated by the (1, 3)-semi-simple H system
S1 = ({a, b}, {abab}, {(a, 1; b, 1)}). We sketch the proof of L1 = L(S1). Denote
by r the unique splicing rule, r = (a, 1; b, 1). For the inclusion L1 ⊆ L(S1), note
first that

(a|bab, abab|) �r a,

(a|bab, ab|ab) �r a2b.

Next, if anb ∈ L(S1), then an, an+1b ∈ L(S1), for any natural n ≥ 2, since

(an|b, abab|) �r an,

(an|b, ab|ab) �r an+1b.

Thus, by an induction argument, it follows that a+ ⊆ L(S1) and a+ab ⊆ L(S1).

90 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

Similarly, using induction, from

(aba|b, abab|) �r aba,

(aba|b, ab|an) �r aban+1, for any n ≥ 1,

it follows that aba+ ⊆ L(S1), and from

(aba|b, ab|ab) �r aba2b,

(aba2|b, ab|ab) �r aban+1b, for any n ≥ 2,

it follows that aba+b ⊆ L(S1).
For the other inclusion, L(S1) ⊆ L1, we use the characterization of L(S1) as

the smallest language which contains the axioms, and is respected by the splicing
rules. It is a straightforward exercise to prove that L1 contains the axiom of S1,
and that it is respected by the splicing rule of S1.

To show that L1 /∈ SSH(2, 4), note that each word in L1 has at most two
occurrences of b. Suppose L1 were in SSH(2, 4). Then it would have been gen-
erated by (and thus closed to) rules of one of the forms: (1, a; 1, b), (1, b; 1, a),
(1, a; 1, a), (1, b; 1, b). But we have:

(ab|ab, a|bab) �(1,a;1,b) abbab /∈ L1,

(aba|b, |abab) �(1,b;1,a) abaabab /∈ L1,

(ab|ab, |abab) �(1,a;1,a) ababab /∈ L1,

(aba|b, a|bab) �(1,b;1,b) ababab /∈ L1,

where we have marked the places where the cutting occurs, and all the words
obtained are not in L1 because they contain three occurrences of b.

The language L2 = b+ ∪ abb+ ∪ b+ab ∪ ab+ab belongs to SSH(2, 4), but not
to SSH(1, 3).

For the first assertion, L2 is generated by the (2, 4)-semi-simple H system
S2 = ({a, b}, {abab}, {(1, a; 1, b)}). The proof is along the same lines as the proof
of L1 ∈ SSH(1, 3).

For the second assertion, note that each word in L2 has at most two occur-
rences of a. If L2 were in SSH(1, 3) it would be closed to rules of one of the forms
(a, 1; b, 1), (b, 1; a, 1), (a, 1; a, 1), (b, 1; b, 1). But, even starting from the axiom,
we can choose the cutting places in such a way as to obtain words with three
occurrences of a, and thus not in L2:

(aba|b, ab|ab) �(a,1;b,1) abaab /∈ L2,

(abab|, a|bab) �(b,1;a,1) abab2ab /∈ L2,

(aba|b, a|bab) �(a,1;a,1) ababab /∈ L2,

(abab|, ab|ab) �(b,1;b,1) ababab /∈ L2. �

The languages in the proof of Theorem 2 also provide examples of semi-simple
splicing languages which are not simple.

On Some Classes of Splicing Languages 91

For the (1, 3) type, we have L1 ∈ SSH(1, 3) \ SH(1, 3). L1 is not respected
by the simple rules (a, 1; a, 1) and (b, 1; b, 1); for instance,

(abamb|, ab|an) �(b,1;b,1) abamban /∈ L1,

(abak|asb, a|banb) �(a,1;a,1) abakbanb /∈ L1.

In a similar manner one can show that L2 ∈ SSH(2, 4) \ SH(2, 4).

Splicing rules can be seen as functions from V ∗ × V ∗ to 2V ∗
: if r =

(u1, u2;u3, u4) and x, y ∈ V ∗, then r(x, y) = {z ∈ V ∗ | (x, y) �r z}. Of course, if
there is no z such that (x, y) �r z (that is, x and y cannot be spliced by using
rule r), then r(x, y) = ∅. We denote by inv the function inv : A×B −→ B×A,
defined by inv(x, y) = (y, x), for x ∈ A, y ∈ B, and arbitrary sets A and B.

We have a strong relationship between semi-simple splicing rules of types
(1, 3) and (2, 4).

Proposition 1. Let a, b ∈ V be two symbols. The following equality of functions
from V ∗ × V ∗ to 2V ∗

holds:

(a, 1; b, 1)mi = inv(mi×mi)(1, b; 1, a).

Proof. Let x, y ∈ V ∗. If |x|a = 0 or |y|b = 0, or both, then, clearly, both
(a, 1; b, 1)mi and inv(mi×mi)(1, b; 1, a) return ∅. For any x1ax2 ∈ V ∗aV ∗ and
y1by2 ∈ V ∗bV ∗, we have, on one hand:

(x1a|x2, y1b|y2) �(a,1;b,1) x1ay2 −→mi mi(y2)ami(x1).

On the other hand, inv(mi × mi)(x1ax2, y1by2) = (mi(y2)bmi(y1),mi(x2)a
mi(x1)), and

(mi(y2)|bmi(y1),mi(x2)|ami(x1)) �(1,b;1,a) mi(y2)ami(x1). �

Corollary 1. There exists a bijection between the classes of languages
SSH(1, 3) and SSH(2, 4).

Proof. We construct ϕ : SSH(1, 3) −→ SSH(2, 4) and ψ : SSH(2, 4) −→
SSH(1, 3). First, making an abuse of notation, we define ϕ and ψ on types
of semi-simple splicing rules, by:

ϕ(a, 1; b, 1) = (1, b; 1, a),
ψ(1, b; 1, a) = (a, 1; b, 1), for all a, b ∈ V ∗.

ϕ transforms a (1, 3) rule into a (2, 4) one, and ψ makes the reverse transforma-
tion. Obviously, ψ(ϕ(r)) = r, and ϕ(ψ(r′)) = r′, for any (1, 3) rule r, and any
(2, 4) rule r′. For a set of (1, 3) rules, R, let ϕ(R) denote the corresponding set
of (2, 4) rules, and for R′, set of (2, 4) rules, let ψ(R′) denote the corresponding
set of (1, 3) rules.

92 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

Let S = (V,A,R) be a (1, 3) semi-simple splicing system. Again, making
an abuse of notation, we let ϕ(S) denote the (2, 4) semi-simple splicing sys-
tem ϕ(S) = (V,mi(A), ϕ(R)). For S′ = (V,A′, R′) a (2, 4) semi-simple splic-
ing system, let ψ(S′) denote the (1, 3) semi-simple splicing system ψ(S′) =
(V,mi(A′), ψ(R′)).

Now we define ϕ and ψ on the respective classes of languages by: ϕ(L(S)) =
L(ϕ(S)), for L(S) ∈ SSH(1, 3), and ψ(L(S′)) = L(ψ(S′)), for L(S′) ∈
SSH(2, 4). Note that L(ϕ(S)) = mi(L(S)), and also L(ψ(S′)) = mi(L(S′)),
thus ϕ and ψ are given by the mirror image function, and are obviously inverse
to each other. �

The above results emphasize the symmetry between the (1, 3) and the (2, 4)
cases, symmetry which makes possible the construction which follows next.

Let V be an alphabet, L ⊂ V ∗ a language, and R(L) the set of splicing rules
(of a certain predefined type) which respects L. For a subset of rules R ⊆ R(L)
we denote by σ = (V,R) a splicing scheme. We are looking for necessary and
sufficient conditions for the existence of a finite set A ⊂ V ∗ such that L = σ∗(A).
For R(L) the set of (1, 3)-semi-simple splicing rules which respect L, Goode and
Pixton have given such a characterization, in terms of a certain directed graph,
the (1, 3)-arrow graph canonically associated to a pair (σ, L). Their construction
can be modified to accomodate the (2, 4)-semi-simple splicing rules.

We present the main ingredients of this second construction, which we will
call the (2, 4)-arrow graph associated to a pair (σ, L), where σ = (V,R) is a
(2, 4)-semi-simple H scheme (all rules in R are of the (2, 4)-semi-simple type).

Enrich the alphabet with two new symbols, V̄ = V ∪{S, T }, enrich the set of
rules R̄ = R∪ {(1, S; 1, S)}∪ {(1, T ; 1, T)}, take σ̄ = (V̄ , R̄), and L̄ = SLT . The
(2, 4)-arrow graph of (σ, L) will be a directed graph G, with the set of vertices
V (G) = V̄ , and a set of (2, 4)-edges E(G) ⊂ V̄ ×V ∗× V̄ defined in the following
way: a triple e = (b′, w, b) is an edge (from b′ to b) if there exists a (2, 4) rule
r = (1, a; 1, b) ∈ R̄ such that b′wa is a factor of L̄.

In order to stress the “duality” of the two constructions, let us recall from
[8] the definition of a (1, 3)-edge: a triple e = (a, w, a′) is an edge (from a to a′)
if there exists a (1, 3) rule r = (a, 1; b, 1) ∈ R̄ such that bwa′ is a factor of L̄.

We list below some results and notions, which are analogous to the results
obtained for the (1, 3) case in [8].

Lemma 1. We have σ̄(L̄) ⊂ L̄. If A ⊂ V ∗ then σ̄∗(SAT) = Sσ∗(A)T .

Proof. For x = Sw1T and y = Sw2T two words in L̄ we have

(x, y) �(1,S;1,S) y ∈ L̄,

(x, y) �(1,T ;1,T) x ∈ L̄,

(x, y) �r Sr(w1, w2)T ∈ L̄, for any other r ∈ R.
�

Lemma 2. (S,w, T) is a (2, 4) edge iff SwT ∈ L̄.

On Some Classes of Splicing Languages 93

Proof. By definition, if (S,w, T) is a (2, 4) edge, then there exists a (2, 4) rule
r = (1, a; 1, T) ∈ R̄ such that Swa is a factor of L̄. The only rule in R̄ involving
T is (1, T ; 1, T), thus a = T , and SwT is a factor of L̄. But L̄ ⊂ SV ∗T , thus
SwT ∈ L̄. Conversely, if SwT ∈ L̄, then SwT is a factor of L̄, and since rule
(1, T ; 1, T) ∈ R̄, we have that (S,w, T) is a (2, 4) edge. �

The product of two adjacent edges in G, e1 = (b0, w1, b1) and e2 = (b1, w2, b2),
is defined as the triple e1e2 = (b0, w1b1w2, b2).

Lemma 3. (The closure property) Whenever e1 and e2 are adjacent edges in
G, e1e2 is an edge of G.

Proof. If e1 = (b0, w1, b1) and e2 = (b1, w2, b2) are adjacent (2, 4) edges in G,
then there exist the (2, 4) rules r1 = (1, a1; 1, b1) and r2 = (1, a2; 1, b2) in R̄, and
there exist the strings x0, y1, x1, y2 ∈ V̄ , such that the words x0b0w1a1y1 and
x1b1w2a2y2 are in L̄. Using r1 to splice these words we obtain

(x0b0w1|a1y1, x1|b1w2a2y2) �r1 x0b0w1b1w2a2y2 ∈ L̄,

so b0w1b1w2a2 is a factor of L̄. This fact, together with having rule r2 in R̄,
makes e1e2 = (b0, w1b1w2, b2) an edge of G. �

A path in G is a sequence π =< e1, · · · , en > of edges ek = (bk−1, wk, bk),
1 ≤ k ≤ n, every two consecutive ones being adjacent. The label of a path as
above is λ(π) = b0w1b1 · · ·wnbn. A single edge e is also a path, < e >, thus its
label λ(e) is also defined.

Lemma 4. For π =< e1, · · · , en > a path in G, the product e = e1 · · · en exists
and is an edge of G, whose label equals the label of the path, i.e., λ(e) = λ(π).

Proof. Using Lemma 3 and the definitions, one can prove by straightforward
calculations that the product of adjacent edges is associative, hence the product
of n edges of a path can be unambiguously defined, and is an edge. �

The language of the (2, 4) graph G, denoted L(G), is the set of all labels of
paths in G, from S to T .

Lemma 5. L(G) = L̄.

Proof. From Lemma 2 we have L̄ ⊆ L(G), since SwT ∈ L̄ implies (S,w, T) is
an edge, and λ(S,w, T) = SwT ∈ L(G) by definition. For the other implication,
if π is a path in G from S to T , then, according to Lemma 4 there exists the
product edge e = (S,w, T) of all edges in π and λ(π) = λ(e) = SwT ∈ L̄. �

The following is the analogue of the prefix edge property of (1, 3) arrow
graphs from [8].

Lemma 6. (Suffix edge) If (b′′, ub′v, b) is an edge of G, with b′ ∈ V , then
(b′, v, b) is an edge of G.

94 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

Proof. From (b′′, ub′v, b) being an edge, there exists a rule r = (1, a; 1, b) ∈ R̄
such that b′′ub′va is a factor of L̄. But this makes b′va a factor of L̄, which,
together with the existence of rule r, establishes that (b′, v, b) is an edge. �

By a prime edge we mean an edge which is not decomposable into a product
of edges. Similar to the (1, 3) case, a (unique) decomposition into prime edges is
possible.

Lemma 7. For every edge e there exists a sequence of prime adjacent edges
e1, · · · , en, such that e = e1 · · · en.

The prime (2, 4)-arrow graph is the subgraph G0 of G with all edges prime.

Lemma 8. L(G0) = L̄.

Proof. From Lemma 7, L(G0) = L(G), and from Lemma 5, L(G) = L̄. �

Lemma 9. If there exists a set A ⊂ V ∗ such that L = σ∗(A), then , if (b0, w, b1)
is a prime edge in G, we have that w is a factor of A.

Proof. For any edge e = (b0, w, b1) there is a rule r = (1, a1; 1, b1) ∈ R̄ such that
b0wa1 is a factor of L̄ = σ̄∗(Ā). We can thus define

N(e) = min{n | there exists r = (1, a1; 1, b1) ∈ R̄ such that
b0wa1 is a factor of σ̄n(Ā)}.

For e prime with N(e) = 0, b0wa1 is a factor of A, thus w is a factor of A, so
the assertion is true. Let e = (b0, w, b1) be a prime edge with N(e) = n > 0,
and suppose the assertion is true for all prime edges e′ with N(e′) < n. Then,
there exist a rule r1 = (1, a1; 1, b1) ∈ R̄, and a string z0 = x0b0wa1y1 in σ̄n(Ā).
Because n > 0, there exist a rule r = (1, a; 1, b) ∈ R̄, and strings z = xay′,
z′ = x′by ∈ σ̄n−1(Ā), such that (z, z′) �r z0. We analyze now the equality of the
two decompositions of z0,

z0 = xby = x0b0wa1y1,

by comparing the suffixes:
Case 1: |by| ≥ |b0wa1y1|. Then b0wa1 is a factor of by, which makes it a factor

of z′ = x′by ∈ σ̄n−1(Ā), which contradicts N(e) = n.
Case 2: |by| < |a1y1|. Then b0wa1 is a factor of x, which makes it a factor of

z = xay′ ∈ σ̄n−1(Ā), which again contradicts N(e) = n.
Case 3: |a1y1| < |by| < |b0wa1y1|. Then (we have an occurrence of b inside w)

w = ubv, from which follows the existence of the suffix edge of e, e2 = (b, v, b1) ∈
E(G). Formally, e = (b0, u, b)e2, with e and e2 edges. If e1 = (b0, u, b) is also an
edge, this would contradict the primality of e. But, from xby = x0b0ubva1y1, in
this case, it follows that x = x0b0u, thus z = x0b0uay′. This makes b0ua a factor
of z, which, together with the existence of rule r ∈ R̄, makes e1 an edge, and
thus leads to contradiction. The only remaining case is:

On Some Classes of Splicing Languages 95

Case 4: |by| = |a1y1|. Then x = x0b0w. Thus z = xay′ = x0b0way, making
b0wa a factor of z, which, together with the existence of rule r in R̄, make
e′ = (b0, w, b) an edge. Moreover, e′ is a prime edge. (If it were not, there would
exist edges e1, e2 such that e′ = e1e2. If e1 = (b0, u, b′) and e2 = (b′, v, b), then
w = ub′v. It would follow that e′2 = (b′, v, b1) is a suffix edge of e, and thus
e would admit the decomposition e = e1e

′
2, contradicting its primality.) Since

N(e′) ≤ n− 1, the assertion is true for e′, so w is a factor of A. �

The following characterization of (2, 4)-semi-simple splicing languages in
terms of (2, 4)-arrow graphs holds.

Theorem 3. (Analogue of Theorem 30.1 of [8]) For a language L ⊂ V ∗, R ⊂
R(L), where R(L) is the set of (2, 4)-semi-simple rules which respect L, take
σ = (V,R) and consider G0 the prime (2, 4)-arrow graph for (σ, L). Then there
exists a finite A ⊂ V ∗ such that L = σ∗(A) if and only if G0 is finite.

Proof. From Lemma 9, if A is finite, then so is G0.
Conversely, suppose G0 is finite. For each prime edge e = (b1, w, b0) and

each rule (1, a0; 1, b0) in R̄ select one word in L̄ which has b1wb0 as a factor.
Let Ā = SAT be the set of these strings. We prove next that L̄ = σ̄∗(Ā), thus
L = σ∗(A).

����
����

����
����

b

S

a

T�

�
�

�
��

�
�

�
�� �

�
�

��a, aba

abab

1, ab 1, ab

��� 1

Fig. 1. The (1, 3) prime arrow graph of L1 = a+ ∪ a+ab ∪ aba+ ∪ aba+b

Take any edge in G from S to T , and consider e = enen−1 · · · e1 its prime
factorization, with ek = (bk, wk, bk−1), 1 ≤ k ≤ n. For every k, select a rule
rk = (1, ak−1; 1, bk−1) and a word zk in Ā which has bkwkak−1 as a factor. For
k = 1, b0 = T , thus a0 = T , and b1w1T is a factor (actually a suffix) of z1. For
k = n, bn = S, thus Swnan−1 is a factor (actually a prefix) of zn. We splice z2

and z1 using rule r1, next z3 and the previously obtained string using r2, and
so on, until splicing of zn and the previously obtained string, using rn−1, finally
gives us λ(e). �

Corollary 2. A language L ⊆ V ∗ belongs to the class SH(2, 4) if and only if
the prime (2, 4) arrow graph constructed from (σ̂, L), with (σ̂ = (V,R(L)), is
finite.

96 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

����
����

����
����

a

S

b

T�

�
�

�
�	�

�
�

�� �
�

�
�� b, bab

abab

1, ab 1, ab

��� 1

Fig. 2. The (2, 4) prime arrow graph of L2 = b+ ∪ abb+ ∪ ab+ab ∪ b+ab

The languages from Theorem 2 have their prime arrow graphs depicted in
Figures 1 and 2.

The languages from Examples 1 and 2 have their prime arrow graphs depicted
in Figures 3 and 4.

����
����

����
����

b

S

a

T�

�
�

�
��

�
�

�
�� �

�
�

��a

aba

1, ab a

��� 1

Fig. 3. The (1, 3) prime arrow graph of L3 = aa+ ∪ aba+

For simple splicing languages in the class SH=SH(1, 3) = SH(2, 4), the
(1, 3) arrow graph and the (2, 4) arrow graph coincide, because:

– (a, w, b) is a (1, 3)-edge iff there exists a (1, 3) rule (a, 1; a, 1) such that awb
is a factor of L;

– (a, w, b) is a (2, 4)-edge iff there exists a (2, 4) rule (1, b; 1, b) such that awb
is a factor of L.

Example 3 ([12]) Let S1 = ({a, b, c}, {abaca, acaba}, {(b, 1; b, 1), (c, 1; c, 1)}) be
a (1, 3) simple splicing system. The generated language is:

L = L(S1) = (abac)+a ∪ (abac)∗aba ∪ (acab)+a ∪ (acab)∗aca.

The same language can be generated by the (2, 4) simple splicing system S2 =
({a, b, c}, {abaca, acaba}, {(1, b; 1, b), (1, c; 1, c)}), i.e., we have L = L(S2).

On Some Classes of Splicing Languages 97

����
����

����
����

a

S

b

T�

�
�

�
�	�

�
�

�� �
�

�
�� b

aba

1, ab a

��� 1

Fig. 4. The (2, 4) prime arrow graph of L4 = b+a ∪ ab+a

����
����

����
����

b

S

c

T

�����������

�
�

�
��� �

�
�

���
a a

a a

a

a
�

�

Fig. 5. The (1, 3) and also the (1, 4) prime arrow graph of L = (abac)+a ∪
(abac)∗aba ∪ (acab)+a ∪ (acab)∗aca

Note that the axiom set of S1 is closed to mirror image, and equals the axiom
set of S2. The (1, 3) arrow graph of L coincides with its (2, 4) arrow graph, and
is depicted in Figure 5.

Due to the construction of the (2, 4)-arrow graph, other results of [8] can
be extended from languages in SSH(1, 3) to languages in the class SSH(2, 4).
We give the following, without proofs, since the proofs in the (1, 3) case are
all based on the prime (1, 3) arrow graph construction, and can be replaced by
similar proofs, based on the prime (2, 4) arrow graph.

First, some relations with the notion of constant introduced by
Schützenberger [16]. A constant of a language L ⊆ V ∗ is a string c ∈ V ∗ such
that for all x, y, x′, y′ ∈ V ∗, if xcy and x′cy′ are in L, then xcy′ is in L. The rela-
tion with the splicing operation is obvious, since xcy′ = (c, 1; c, 1)(xcy, x′cy′) =
(1, c; 1, c)(xcy, x′cy′). Thus c is a constant of L iff r(L) ⊆ L for r = (c, 1; c, 1), or
iff r′(L) ⊆ L for r′ = (1, c; 1, c).

Theorem 4. A language L ⊆ V ∗ is a simple splicing language (in the class
SH=SH(1, 3) = SH(2, 4)) iff there exists an integer K such that every factor
of L of length at least K contains a symbol which is a constant of L.

There are many constants in the (1, 3) and the (2, 4) semi-simple cases.

Theorem 5. If L ∈ SSH(1, 3) ∪ SSH(2, 4) then there exists a positive integer
K such that every string in V ∗ of length at least K is a constant of L.

98 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

For L ∈ SSH(1, 3) the result is proved in [8]. For L ∈ SSH(2, 4) the same
proof holds, replacing prefix edge with suffix edge.

According to [7], a language L is strictly locally testable if and only if there
exists a positive integer K such that every string in V ∗ of length at least K is a
constant of L. We have thus:

Corollary 3. (extension of Corollary 30.2 of [8]) If L is a (1, 3) or a (2, 4)-
semi-simple splicing language, then L is strictly locally testable.

5 A Hierarchy of Classes of Semi-simple Languages

To illustrate the number and variety of open problems in this area, let us note
that there is no connection formulated yet between the semi-simple languages
as introduced by Goode and Pixton in [8], and the classes introduced by Tom
Head in [10].

Recall that, inspired by the study of simple splicing languages introduced in
[12], Head introduced the families of splicing languages {SkH | k ≥ −1} using the
null context splicing rules defined in [9]. A splicing rule, according to the original
definition of [9], is a sixtuple (u1, x, u2;u3, x, u4) (x is called the cross-over of the
rule) which acts on strings precisely as the (Păun type) rule (u1x, u2;u3x, u4).
(For a detailed discussion of the three types of splicing – definitions given by
Head, Păun, and Pixton – and a comparison of their generative power, we send
the reader to [1], [2], [3], [4].)

A null context splicing rule is a rule of the particular form (1, x, 1; 1, x, 1)
(all contexts ui are the empty string 1) and thus will be precisely a rule of type
(x, 1;x, 1) with x ∈ V ∗. Such a rule is identified by Tom Head with the string
x ∈ V ∗. For a fixed k ≥ −1, a splicing system (V,A,R) with rules (x, 1;x, 1) ∈ R
such that |x| ≤ k is called an SkH system, and languages generated by an SkH
system are the SkH languages (more appropriately, SkH(1, 3) languages).

Note that the class S1H(1, 3) is precisely the class SH of simple H systems
of [12].

For k = −1, the S−1H(1, 3) systems are precisely those for which the set of
rules R is empty. Thus the languages in the class S−1H(1, 3) are precisely the
finite languages, i.e., S−1H(1, 3) = FIN .

For k = 0, the S0H(1, 3) systems have either R empty, or R = {(1, 1; 1, 1)}.
Thus infinite languages in the class S0H(1, 3) are generated by H systems of
the form S = (V,A, {(1, 1; 1, 1)}), with A �= ∅, and it can be easily shown that
L(S) = alph(A)∗, where alph(A) denotes the set of symbols appearing in strings
of A.

The union of all classes SkH is precisely the set of null context splicing lan-
guages. It is shown in [10] that this union coincides with the family of strictly
locally testable languages (in the sense of [7]). Also from [10] we have the fol-
lowing result:

Lemma 10. The sequence {SkH(1, 3) | k ≥ −1} is a strictly ascending infinite
hierarchy of language families for alphabets of two or more symbols.

On Some Classes of Splicing Languages 99

Proof. The inclusions are obvious, their strictness is established via an example:

Example 4 [10] Let V = {a, b}. For each k ≥ −1 let Lk = ak(bka(k−1)bkak)∗.
Note that Lk = L(V,Ak, Rk) where Ak = {akbka(k−1)bkak} and Rk =
(ak, 1; ak, 1). Thus Lk ∈ SkH(1, 3) and is not in SjH(1, 3) for any j < k. �

A “semi-simple” extension of the above concepts would be to consider rules
of type (u1, 1;u3, 1) with “radius” k, i.e., |u1|, |u3| ≤ k (as suggested also in [12]).
Let us call such a rule a k-fat semi-simple rule of type (1, 3). For a fixed k ≥ −1,
a splicing system (V,A,R) with rules r ∈ R of the above form is called a k-fat
semi-simple (1, 3) H system, or briefly an SSkH(1, 3) system, and languages
generated by such systems are the SSkH(1, 3) languages.

Note that the SS1H(1, 3) class is precisely the class SSH(1, 3) considered in
[8].

For k = −1, similarly to the simple case, the SS−1H(1, 3) systems are
precisely those for which the set of rules R is empty, and thus the languages
in the class SS−1H(1, 3) are precisely the finite languages, SS−1H(1, 3) =
S−1H(1, 3) = FIN .

For k = 0, again reasoning as in the simple case, we have that SS0H(1, 3)
systems have either R empty, or R = {(1, 1; 1, 1)}. Thus we have the equality
of classes, SS0H(1, 3) = S0H(1, 3), and thus SS0H(1, 3) contains only finite
languages and languages of the form W ∗ for some subalphabet W ⊆ V .

We have the following analogue of Lemma 10:

Lemma 11. The sequence {SSkH(1, 3) | k ≥ −1} is a strictly ascending infinite
hierarchy of language families for alphabets of three or more symbols.

Proof. The inclusions are obvious, their strictness follows from the example be-
low.

Example 5 Let V = {a, b, c}. For each k ≥ −1 let

Lk = ak(bka(k−1)bkak)+ ∪ ck(bka(k−1)bkak)+.

Note that Lk = L(V,Ak, Rk) where Ak = {akbka(k−1)bkak, ckbka(k−1)bkak} and
Rk = (ak, 1; ck, 1). Thus Lk ∈ SSkH(1, 3) and is not in SSjH(1, 3) for any
j < k. �

It is unknown whether the result above holds for an alphabet of two symbols.
It remains to be investigated whether other results obtained in [10] for SkH

languages can be extended to SSkH languages. The relationship with the hier-
archy of regular languages in [13] also remains to be studied.

Considering other types (i, j), different from (1, 3), is also worth exploring
further.

For two words u, v ∈ V ∗, such that |u|, |v| ≤ k, a semi-simple k-fat (linear)
splicing rule, with markers u and v, is a splicing rule of one of the following four
types: (u, 1; v, 1), (1, u; 1, v), (1, u; v, 1), (u, 1; 1, v). The corresponding SSkH(i, j)

100 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

systems and languages can be defined as usual. For instance, a k-fat semi-simple
(2, 4) H system, or briefly an SSkH(2, 4) system, is an H system with rules of
the form (1, x; 1, y), with x, y ∈ V ∗, and |x|, |y| ≤ k. For every k ≥ −1 we will
have the corresponding class of languages, SSkH(2, 4). One can readily prove
analogues of Proposition 1 and Corollary 1 for arbitrary k ≥ −1.

Proposition 2. Let u, v ∈ V ∗ be two strings. The following equality of functions
from V ∗ × V ∗ to 2V ∗

holds:

(u, 1; v, 1)mi = inv(mi×mi)(1,mi(v); 1,mi(u)).

Corollary 4. For every k ≥ −1, there exists a bijection between the classes of
languages SSHk(1, 3) and SSHk(2, 4).

The bijection between H systems will be given by standard passing from
a k-fat (1, 3) rule (u, 1; v, 1), to the k-fat (2, 4) rule (1,mi(v); 1,mi(u), and by
mirroring the axiom set. On languages it will again be the mirror image.

Using this fact, an analogue of Lemma 11 can be readily proved for the
sequence {SSkH(2, 4) | k ≥ −1}.

6 Simple Circular H Systems

Splicing for circular strings was considered by Tom Head in [9]. In [11] the circular
splicing operation which uses a rule of the general type r = (u1, u2;u3, u4) is
defined by:

(̂ xu1u2, ŷu3u4) �r x̂u1u4yu3u2

and is depicted in Figure 6.

�

	

�

�

	

�
u1

u2 u3

u4

x y

ˆxu1u2 ˆyu3u4

�r

�

	

�

�� ��

�� ��

u1 u4

u2 u3

ˆxu1u4yu3u2

x y

Fig. 6. Circular splicing

We mention the following easy to prove properties of circular splicing, which
are not shared with the linear splicing.

Lemma 12. For every splicing rule (u1, u2;u3, u4), and every ˆx, ŷ, ẑ ∈ V ◦

such that (̂ x, ŷ) �(u1,u2;u3,u4) ẑ we have:
the length preserving property: |̂ x|+ |̂ y| = |̂ z|,
the symbol preserving property: |̂ x|b + |̂ y|b = |̂ z|b for every b ∈ V.

On Some Classes of Splicing Languages 101

For a fixed symbol a ∈ V (a marker) we can consider four types of simple
circular splicing rules: (a, 1; a, 1), (1, a; 1, a), (1, a; a, 1), (a, 1; 1, a). Their action
on circular strings is illustrated below:

type(1, 3) : (̂ xa, ŷa) �(a,1;a,1) ˆxaya,

type(2, 4) : (̂ ax,ˆay) �(1,a;1,a) ˆaxay,

type(2, 3) : (̂ ax, ŷa) �(1,a;a,1) ˆaxya,

type(1, 4) : (̂ xa,ˆay) �(a,1;1,a) ˆxaay.

For i = 1, 2 and j = 3, 4 an (i, j)-simple circular H system is a circular H
system S = (V,A,R), with the set of rules R consisting only of simple rules of
type (i, j) for some a ∈ V .

We denote by SH◦(i, j) the class of all (i, j)-simple circular languages. Only
two out of these four classes are distinct.

Theorem 6. (See Theorems 4.1 and 4.2 of [5]) We have:
(i) SH◦(1, 3) = SH◦(2, 4).
(ii) SH◦(2, 3) = SH◦(1, 4).
(iii) The classes SH◦(1, 3) and SH◦(2, 3) are incomparable.

Several other properties which emphasize the difference between the case
of linear simple splicing and that of circular simple splicing (for instance the
behavior over the one-letter alphabet) have been presented in [5].

We have SH◦(1, 3) ⊂ REG◦ as proved in [5], and in [17] in a different context.
The relationship between SH◦(1, 4) and REG◦ is still an open problem.

We give next some closure properties of SH◦(1, 3).

Theorem 7. We have the following:
(i) SH◦(1, 3) is not closed under union.
(ii) SH◦(1, 3) is not closed under intersection with REG◦.
(iii) SH◦(1, 3) is not closed under morphisms.
(iv) SH◦(1, 3) is not closed under inverse morphisms.

Proof. For assertion (i), take L1 = {̂ an | n ≥ 1} ∈ SH◦(1, 3), and L2 = {̂ (ab)n |
n ≥ 1} ∈ SH◦(1, 3). Suppose L1∪L2 ∈ SH◦(1, 3), then it would be closed under
some (1, 3) rules. But with rule (a, 1; a, 1) we get:

(̂ (a)n, (̂ab)n) �(a,1;a,1) ân(ab)n /∈ L1 ∪ L2,
and then, the only simple splicing rule which could be used to generate L1 ∪L2,
which is infinite, would be (b, 1; b, 1). But the words ân cannot be generated
using this rule.

For (ii), take V ◦ ∈ SH◦(1, 3) and L = {̂ anb | n ≥ 1} which is in REG◦ but
not in SH◦(1, 3). We have V ◦ ∩ L = L /∈ SH◦(1, 3).

For (iii), take L = {̂ an | n ≥ 1} ∪ {̂ bn | n ≥ 1} ∈ SH◦(1, 3). Take the
morphism h with h(a) = a and h(b) = ab. Then h(L) = {̂ an | n ≥ 1}∪ {̂ (ab)n |
n ≥ 1} /∈ SH◦(1, 3) (as proved in (i) above).

Fot (iv), take V = {a, b} and L = {̂ a} ∈ FIN◦ ⊂ SH◦(1, 3). Take morphism
h defined by h(a) = a, h(b) = 1. Then h−1(L) = {̂ bna | n ≥ 0} /∈ SH◦(1, 3). �

102 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

7 Semi-simple Circular Splicing Systems

For fixed letters a, b ∈ V , we will consider the following four types of semi-simple
circular splicing rules: (a, 1; b, 1), (1, a; 1, b), (1, a; b, 1), (a, 1; 1, b).

The action of the four rules on circular strings is depicted in Figures 7, 8, 9
and 10.

�

	

�

�

	

�
a

b
x y

ˆxa ˆyb

�(a,1;b,1)

�

	

�

��

��

a

b

ˆxayb

x y

Fig. 7. Circular splicing using the semi-simple rule (a,1;b,1)

�

	

�

�

	

�
a

b
x y

ˆax ˆby

�(1,a;1,b)

�

	

�

��

��

b

a

ˆaxby

x y

Fig. 8. Circular splicing using the semi-simple rule (1,a;1,b)

�

	

�

�

	

�
a b

x y

ˆax ˆyb

�(1,a;b,1)

�

	

��� ��
a b

ˆaxyb

x y

Fig. 9. Circular splicing using the semi-simple rule (1,a;b,1)

We will consider the semi-simple splicing rules as functions from V ◦ ×V ◦ to
2V ◦

. Using the mirror image function we can express some relationships between
the four types of rules seen as functions.

On Some Classes of Splicing Languages 103

�

	

�

�

	

�
a b

x y

ˆxa ˆby

�(a,1;1,b)

�

	

�

�� ��
a b

ˆxaby

x y

Fig. 10. Circular splicing using the semi-simple rule (a,1;1,b)

Lemma 13. The following equalities of functions from V ◦
a × V ◦

b to 2V ◦
hold:

(a, 1; b, 1)mi = (mi×mi)(1, a; 1, b),
(a, 1; 1, b)mi = (mi×mi)(1, a; b, 1).

Theorem 8. The classes SSH◦(1, 3) and SSH◦(2, 4) are incomparable.

Proof. Note first that simple circular splicing languages (in SH◦(1, 3) =
SH◦(2, 4)) are in the intersection SSH◦(1, 3) ∩ SSH◦(2, 4).

The semi-simple H system S1 = ({a, b, c}, {̂ aac, b̂}, {(c, 1; b, 1)}) generates
a language L1 = L(S1) ∈ SSH◦(1, 3) \ SSH◦(2, 4).

Note that the words of L1 have the following two properties:
(I) All words in L1, with the exception of the two axioms, have occurrences

of all three letters a, b, and c.
(II) All occurrences of a in the words of L1 are in subwords of the form aac.
Now, suppose L1 is (2, 4) generated. Then it would be respected by one or

several of the rules of the forms:
(i) (1, c; 1, b), (ii) (1, b; 1, c), (iii) (1, a; 1, b), (iv) (1, b; 1, a),
(v) (1, c; 1, a), (vi) (1, a; 1, c), (vii) (1, a; 1, a), (viii) (1, b; 1, b), (ix)

(1, c; 1, c).
But we have:
(v) (̂ aac,ˆaac) �(1,c;1,a) ˆaacaca /∈ L1 (no b’s),
(vi) (̂ aac,ˆaac) �(1,a;1,c) ˆaacaca /∈ L1 (no b’s),
(vii) (̂ aac,ˆaac) �(1,a;1,a) ˆcaacaa /∈ L1 (no b’s),
(ix) (̂ aac,ˆaac) �(1,c;1,c) ˆcaacaa /∈ L1 (no b’s),
(viii) (̂ b,ˆb) �(1,b;1,b) ˆbb /∈ L1 (no a’s, no c’s),
(i) (̂ aac,ˆb) �(1,c;1,b) ˆcaab /∈ L1 (contradicts (II)),
(ii) (̂ b,ˆaac) �(1,b;1,c) ˆbcaa /∈ L1 (contradicts (II)),
(iii) (̂ aac,ˆb) �(1,a;1,b) ˆacab /∈ L1 (contradicts (II)),
(iv) (̂ b,ˆaac) �(1,b;1,a) ˆbaca /∈ L1 (contradicts (II)).

The semi-simple H system S2 = ({a, b, c}, {̂ aac,ˆb}, {(1, c; 1, b)}) generates
a language L2 = L(S2) ∈ SSH◦(2, 4) \ SSH◦(1, 3). The proof that L2 is not in
SSH◦(1, 3) is similar to the above one. We note that the words of L2 have the
following properties:

104 Rodica Ceterchi, Carlos Mart́ın-Vide, and K.G. Subramanian

(I) All words in L2, with the exception of the two axioms, have occurrences
of all three letters a, b, and c.

(II) All occurrences of a in the words of L2 are in subwords of the form caa.
If we suppose L2 is (1, 3) generated, then it would be respected by one or

several of the rules of the forms:
(i) (c, 1; b, 1), (ii) (b, 1; c, 1), (iii) (a, 1; b, 1), (iv) (b, 1; a, 1),
(v) (c, 1; a, 1,) (vi) (a, 1; c, 1), (vii) (a, 1; a, 1), (viii) (b, 1; b, 1), (ix)

(c, 1; c, 1).
But we have:
(v) (̂ aac,ˆaac) �(c,1;a,1) ˆaacaca /∈ L2 (no b’s, contradicting (I)),
(vi) (̂ aac,ˆaac) �(a,1;c,1) ˆacaaac /∈ L2 (no b’s),
(vii) (̂ aac,ˆaac) �(a,1;a,1) ˆcaacaa /∈ L2 (no b’s),
(ix) (̂ aac,ˆaac) �(c,1;c,1) ˆcaacaa /∈ L2 (no b’s),
(viii) (̂ b,ˆb) �(b,1;b,1) ˆbb /∈ L2 (no a’s, no c’s),
(i) (̂ aac,ˆb) �(c,1;b,1) ˆaacb /∈ L2 (contradicts (II)),
(ii) (̂ b,ˆaac) �(b,1;c,1) ˆbaac /∈ L2 (contradicts (II)),
(iii) (̂ aac,ˆb) �(a,1;b,1) ˆacab /∈ L2 (contradicts (II)),
(iv) (̂ b,ˆaac) �(b,1;a,1) ˆbaca /∈ L2 (contradicts (II)). �

8 Conclusions and Further Research

We have introduced some particular classes of splicing languages, continuing the
studies of [12], [8], and [10]. Our emphasis was on classes associated to types,
different from the (1, 3) type, which has been more extensively studied. We have
also proposed extensions of these concepts to the circular case, continuing the
research started in [5]. We have pointed out several open problems which remain
to be investigated.

Following the lines of the extensive study in [12], many other problems can
be formulated and investigated for the other classes as well: closure properties,
decidability problems, descriptional complexity questions, characterization prob-
lems. The interesting notion of arrow graph is also worth exploring further. In
particular, the behavior of the classes which arise from considering splicing rules
of types (2, 3) and (1, 4) is expected to deviate from the “standard” of the (1, 3)
and (2, 4) classes.

Acknowledgement. Part of the material in this paper was presented at
the First Joint Meeting RSME-AMS, Sevilla, June 2003, as the conference talk
entitled “Another Class of Semi-simple Splicing Languages”.

References

1. P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, DNA and Circular Splicing, in
DNA Computing, LNCS vol.2054 (A. Condon, G. Rozenberg eds.), 2001, 117–129.

2. P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Circular Splicing and Regularity,
2002, submitted.

On Some Classes of Splicing Languages 105

3. P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Decision Problems for Linear and
Circular Splicing Systems, Proceedings DLT02, to appear.

4. P. Bonizzoni, C. Ferreti, G. Mauri, R. Zizza, Separating Some Splicing Models,
Information Processing Letters, 79/6 (2001), 255–259.

5. R. Ceterchi, K. G. Subramanian, Simple Circular Splicing Systems (to appear
ROMJIST 2003).

6. K. Culik, T. Harju, Splicing Semigroups of Dominoes and DNA, Discrete Applied
Mathematics, 31(1991), 261–277.

7. A. DeLuca, A. Restivo, A Characterization of Strictly Locally Testable Languages
and Its Application to Subsemigroups of a Free Semigroup, Information and Con-
trol, 44(1980), 300–319.

8. E. Goode, D. Pixton, Semi-simple Splicing Systems, in Where Mathematics, Com-
puter Science, Linguistics and Biology Meet (C. Mart́ın-Vide, V. Mitrana eds.)
Kluwer Academic Publ., Dordrecht, 2001, 343–352.

9. T. Head, Formal Language Theory and DNA: An Analysis of the Generative Ca-
pacity of Specific Recombinant Behavior, Bull. Math. Biol., 49 (1987), 737-759.

10. T. Head, Splicing Representations of Strictly Locally Testable Languages, Discrete
Applied Math., 87 (1998), 139–147.

11. T. Head, G. Păun, D. Pixton, Language Theory and Molecular Genetics: Gen-
erative Mechanisms Suggested by DNA Recombination, in Handbook of Formal
Languages (G. Rozenberg, A Salomaa, eds.), Springer-Verlag, Heidelberg, Vol. 2,
1997, 295–360.

12. A. Mateescu, G. Păun, G. Rozenberg, A. Salomaa, Simple Splicing Systems, Dis-
crete Applied Math., 84 (1998), 145–163.

13. G. Păun, On the Splicing Operation, Discrete Applied Math., 70(1996), 57–79.
14. G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms,

Springer-Verlag, Berlin, 1998.
15. D. Pixton, Regularity of Splicing Languages, Discrete Applied Math., 69 (1996),

101–124.
16. M. P. Schützenberger, Sur certaines operations de fermeture dans les langages

rationnels, Symposia Math., 15 (1975), 245–253.
17. R. Siromoney, K. G. Subramanian, V. R. Dare, Circular DNA and Splicing Sys-

tems, in Proc. of ICPIA, LNCS vol. 654, Springer-Verlag, Berlin, 1992, 260–273.

The Power of Networks of Watson-Crick D0L

Systems

Erzsébet Csuhaj-Varjú1 and Arto Salomaa2

1 Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende u. 13-17
H-1111 Budapest, Hungary

csuhaj@sztaki.hu
2 Turku Centre for Computer Science

Lemminkäisenkatu 14 A
FIN -20520 Turku, Finland

asalomaa@it.utu.fi

Abstract. The notion of a network of Watson-Crick D0L systems was
recently introduced, [7]. It is a distributed system of deterministic lan-
guage defining devices making use of Watson-Crick complementarity.
The research is continued in this paper, where we establish three re-
sults about the power of such networks. Two of them show how it is
possible to solve in linear time two well-known NP-complete problems,
the Hamiltonian Path Problem and the Satisfiability Problem. Here the
characteristic feature of DNA computing, the massive parallelism, is used
very strongly. As an illustration we use the propositional formula from
the celebrated recent paper, [3]. The third one shows how in the very
simple case of four-letter DNA alphabets we can obtain weird (not even
Z-rational) patterns of population growth.

1 Introduction

Many mathematical models of DNA computing have been investigated, some
of them already before the fundamental paper of Adleman, [1]. The reader is
referred to [11,2] for details. Networks of language generating devices, in the
sense investigated in this paper, were introduced in [5,6,7]. This paper continues
the work begun in [7]. The underlying notion of a Watson-Crick D0L system was
introduced and studied further in [10,8,16,17,18,20,4].

The reader can find background material and motivation in the cited ref-
erences. Technically this paper is largely self-contained. Whenever need arises,
[14,13] can be consulted in general matters about formal languages, [12] in mat-
ters dealing with Lindenmayer systems, and [19,9] in matters dealing with formal
power series.

Watson-Crick complementarity is a fundamental concept in DNA computing.
A notion, called Watson-Crick D0L system, where the paradigm of complemen-
tarity is considered in the operational sense, was introduced in [10].

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 106–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Power of Networks of Watson-Crick D0L Systems 107

A Watson-Crick D0L system (a WD0L system, for short) is a D0L system over
a so-called DNA-like alphabet Σ and a mapping φ called the mapping defining
the trigger for complementarity transition. In a DNA-like alphabet each letter
has a complementary letter and this relation is symmetric. φ is a mapping from
the set of strings (words) over the DNA-like alphabet Σ to {0, 1} with the fol-
lowing property: the φ-value of the axiom is 0 and whenever the φ-value of a
string is 1, then the φ-value of its complementary string must be 0. (The com-
plementary string of a string is obtained by replacing each letter in the string
with its complementary letter.) The derivation in a Watson-Crick D0L system
proceeds as follows: when the new string has been computed by applying the
homomorphism of the D0L system, then it is checked according to the trigger.
If the φ-value of the obtained string is 0 (the string is a correct word), then
the derivation continues in the usual manner. If the obtained string is an in-
correct one, that is, its φ-value is equal to 1, then the string is changed for its
complementary string and the derivation continues from this string.

The idea behind the concept is the following: in the course of the computation
or development things can go wrong to such extent that it is of worth to con-
tinue with the complementary string, which is always available. This argument is
general and does not necessarily refer to biology. Watson-Crick complementarity
is viewed as an operation: together with or instead of a word w we consider its
complementary word.

A step further was made in [7]: networks of Watson-Crick D0L systems were
introduced. The notion was a particular variant of a general paradigm, called
networks of language processors, introduced in [6] and discussed in details in [5].

A network of Watson-Crick D0L systems is a finite collection of Watson-Crick
D0L systems over the same DNA-like alphabet and with the same trigger. These
WD0L systems act on their own strings in a synchronized manner and after each
derivation step communicate some of the obtained words to each other. The
condition for communication is determined by the trigger for complementarity
transition. Two variants of communication protocols were discussed in [7]. In
the case of protocol (a), after performing a derivation step, the node keeps every
obtained correct word and the complementary word of each obtained incorrect
word (each corrected word) and sends a copy of each corrected word to every
other node. In the case of protocol (b), as in the previous case, the node keeps
all the correct words and the corrected ones (the complementary strings of the
incorrect strings) but communicates a copy of each correct string to each other
node. The two protocols realize different strategies: in the first case, if some error
is detected, it is corrected but a note is sent about this fact to the others. In the
second case, the nodes inform the other nodes about their correct strings and
keep for themselves all information which refers to the correction of some error.

The purpose of this paper is to establish three results about the power of such
networks, where the trigger φ is defined in a very natural manner. The results are
rather surprising because the underlying D0L systems are very simple. Two of
them show how it is possible to solve in linear time two well-known NP-complete
problems, the Hamiltonian Path Problem and the Satisfiability Problem. Here

108 Erzsébet Csuhaj-Varjú and Arto Salomaa

the characteristic feature of DNA computing, the massive parallelism, is used
very strongly. As an illustration we use the formula from the celebrated recent
paper, [3]. The third result shows how in the very simple case of four-letter
DNA alphabets we can obtain weird (not even Z-rational) patterns of population
growth.

2 Definitions

By a D0L system we mean a triple H = (Σ, g, w0), where Σ is an alphabet, g is
an endomorphism defined on Σ∗ and w0 ∈ Σ∗ is the axiom. The word sequence
S(H) of H is defined as the sequence of words w0, w1, w2, . . . where wi+1 = g(wi)
for i ≥ 0.

In the following we recall the basic notions concerning Watson-Crick D0L
systems, introduced in [10,16].

By a DNA-like alphabet Σ we mean an alphabet with 2n letters, n ≥ 1,
of the form Σ = {a1, . . . , an, ā1, . . . , ān}. Letters ai and āi, 1 ≤ i ≤ n, are
said to be complementary letters; we also call the non-barred symbols purines
and the barred symbols pyrimidines. The terminology originates from the basic
DNA alphabet {A,G,C, T}, where the letters A and G are for purines and their
complementary letters T and C for pyrimidines.

We denote by hw the letter-to-letter endomorphism of a DNA-like alphabet
Σ mapping each letter to its complementary letter. hw is also called the Watson-
Crick morphism.

A Watson-Crick D0L system (a WD0L system, for short) is a pair W =
(H,φ), where H = (Σ, g, w0) is a D0L system with a DNA-like alphabet Σ,
morphism g and axiom w0 ∈ Σ+, and φ : Σ∗ → {0, 1} is a recursive function
such that φ(w0) = φ(λ) = 0 and for every word u ∈ Σ∗ with φ(u) = 1 it holds
that φ(hw(u)) = 0.

The word sequence S(W) of a Watson-Crick D0L system W consists of words
w0, w1, w2, . . . , where for each i ≥ 0

wi+1 =
{

g(wi) if φ(g(wi)) = 0
hw(g(wi)) if φ(g(wi)) = 1.

The condition φ(u) = 1 is said to be the trigger for complementarity transi-
tion. In the following we shall also use this term: a word w ∈ Σ∗ is called correct
according to φ if φ(w) = 0, and it is called incorrect otherwise. If it is clear from
the context, then we can omit the reference to φ.

An important notion concerning Watson-Crick D0L systems is the Watson-
Crick road. Let W = (H,φ) be a Watson-Crick D0L system, where H =
(Σ, g, w0). The Watson-Crick road of W is an infinite binary word α over {0, 1}
such that the ith bit of α is equal to 1 if and only if at the ith step of the computa-
tion in W a transition to the complementary takes place, that is, φ(g(wi−1)) = 1,
i ≥ 1, where w0, w1, w2, . . . is the word sequence of W.

Obviously, various mappings φ can satisfy the conditions of defining a trig-
ger for complementarity transition. In the following we shall use a particu-
lar variant and we call the corresponding Watson-Crick D0L system standard.

The Power of Networks of Watson-Crick D0L Systems 109

In this case a word w satisfies the trigger for turning to the complemen-
tary word (it is incorrect) if it has more occurrences of pyrimidines (barred
letters) than purines (non-barred letters). Formally, consider a DNA-like al-
phabet Σ = {a1, . . . , an, ā1, . . . , ān} , n ≥ 1. Let ΣPUR = {a1, . . . , an} and
ΣPY R = {ā1, . . . , ān}. Then, we define φ : Σ∗ → {0, 1} as follows: for w ∈ Σ∗

φ(w) =
{

0 if |w|ΣP UR ≥ |w|ΣP Y R and
1 if |w|ΣP UR < |w|ΣP Y R .

Following [7], we now define the basic notion in this paper, a network of
Watson-Crick D0L systems (an NWD0L system). It is a finite collection of WD0L
systems over the same DNA-like alphabet and with the same trigger, where the
component WD0L systems act in a synchronized manner by rewriting their own
sets of strings in the WD0L manner and after each derivation step communicate
some of the obtained words to each other. The condition for communication is
determined by the trigger for complementarity transition.

Definition 1 By an NrWD0L system (a network of Watson-Crick D0L sys-
tems) with r components or nodes, where r ≥ 1, we mean an r + 2-tuple

Γ = (Σ,φ, (g1, {A1}), . . . , (gr, {Ar})),
where

– Σ = {a1, . . . , an, ā1, . . . , ān}, n ≥ 1, is a DNA-like alphabet, the alphabet of
the system,

– φ : Σ∗ → {0, 1} is a mapping defining a trigger for complementarity transi-
tion, and

– (gi, {Ai}), 1 ≤ i ≤ r, called the ith component or the ith node of Γ, is a pair
where gi is a D0L morphism over Σ and Ai is a correct nonempty word over
Σ according to φ, called the axiom of the ith component.

If the number of the components in the network is irrelevant, then we speak
of an NWD0L system. An NWD0L system is called standard if φ is defined in
the same way as in the case of standard WD0L systems.

Definition 2 For an NrWD0L system Γ = (Σ,φ, (g1, {A1}), . . . , (gr, {Ar})),
r ≥ 1, the r-tuple (L1, . . . , Lr), where Li, 1 ≤ i ≤ r, is a finite set of correct
strings over Σ according to φ, is called a state of Γ. Li, 1 ≤ i ≤ r, is called the
state or contents of the ith component. ({A1}, . . . , {Ar}) is said to be the initial
state of Γ.

NWD0L systems change their states by direct derivation steps. A direct
change of a state to another one means a rewriting step followed by communi-
cation according to the given protocol of the system. In the following we define
two variants of communication protocols, representing different communication
philosophies.

110 Erzsébet Csuhaj-Varjú and Arto Salomaa

Definition 3 Let s1 = (L1, . . . , Lr) and s2 = (L′
1, . . . , L

′
r) be two states of an

NrWD0L system Γ = (Σ,φ, (g1, {A1}), . . . , (gr, {Ar})), r ≥ 1.

– We say that s1 directly derives s2 by protocol (a), written as s1 =⇒a s2, if

L′
i = C′

i ∪r
j=1 hw(B′

j),

where
C′

i = {gi(v) | v ∈ Li, φ(gi(v)) = 0} and
B′

j = {gj(u) | u ∈ Lj , φ(gj(u)) = 1}.
– We say that s1 directly derives s2 by protocol (b), written as s1 =⇒b s2, if

L′
i = hw(B′

i) ∪r
j=1 C′

j ,

where
B′

i = {gi(u) | u ∈ Li, φ(gi(u)) = 1} and
C′

j = {gj(v) | v ∈ Lj, φ(gj(v)) = 0} holds.

Thus, in the case of both protocols, after applying a derivation step in the
WD0L manner the node keeps the correct words and the corrected words (the
complementary words of the incorrect ones), and in the case of protocol (a) it
sends a copy of every corrected word to each other node, while in the case of
protocol (b) it communicates a copy of every correct word to each other node.
The two protocols realize different communication strategies: In the first case
the nodes inform each other about the correction of the detected errors, while in
the second case the nodes inform each other about the obtained correct words.

Definition 4 Let Γ = (Σ,φ, (g1, {A1}), . . . , (gr, {Ar})), for r ≥ 1, be an
NrWD0L system with protocol (x), x ∈ {a, b}.

The state sequence S(Γ) of Γ , S(Γ) = s(0), s(1), . . . , is defined as follows:
s(0) = ({A1}, . . . , {Ar}) and s(t) =⇒x s(t + 1) for t ≥ 0.

The notion of a road is extended to concern NWD0L systems and their com-
ponents in the natural fashion. For formal details we refer to [7].

3 Satisfiability Problem

It is well known that the satisfiability problem SAT of propositional formulas
is NP-complete, [13,15]. We will consider propositional formulas α in conjunc-
tive (not necessarily 3-conjunctive) normal form. Thus α is a conjunction of
disjunctions whose terms are literals, that is, variables or their negations. The
disjunctions are referred to as clauses of α. We assume that α contains v variables
xi, 1 ≤ i ≤ v, and c clauses. The formula α is satisfiable if there is a truth-value
assignment for the variables (that is, an assignment of T or F) giving α the
value T . When we speak of computions (dealing with α) in linear time, we refer
to functions linear either in v or c.

The Power of Networks of Watson-Crick D0L Systems 111

To illustrate our arguments, we use the propositional formula β from [3]. A
DNA computer was constructed in [3] to solve the satisfiability problem of β.
The formula β, given below, is in 3-conjunctive normal form, and involves 20
variables and 24 clauses.

(∼ x3∨ ∼ x16 ∨ x18) ∧ (x5 ∨ x12∨ ∼ x9)
∧(∼ x13∨ ∼ x2 ∨ x20) ∧ (x12∨ ∼ x9∨ ∼ x5)
∧(x19∨ ∼ x4 ∨ x6) ∧ (x9 ∨ x12∨ ∼ x5)
∧(∼ x1 ∨ x4∨ ∼ x11) ∧ (x13∨ ∼ x2∨ ∼ x19)
∧(x5 ∨ x17 ∨ x9) ∧ (x15 ∨ x9∨ ∼ x17)
∧(∼ x5∨ ∼ x9∨ ∼ x12) ∧ (x6 ∨ x11 ∨ x4)
∧(∼ x15∨ ∼ x17 ∨ x7) ∧ (∼ x6 ∨ x19 ∨ x13)
∧(∼ x12∨ ∼ x9 ∨ x5) ∧ (x12 ∨ x1 ∨ x14)
∧(x20 ∨ x3 ∨ x2) ∧ (x10∨ ∼ x7∨ ∼ x8)
∧(∼ x5 ∨ x9∨ ∼ x12) ∧ (x18∨ ∼ x20 ∨ x3)
∧(∼ x10∨ ∼ x18∨ ∼ x16) ∧ (x1∨ ∼ x11∨ ∼ x14)
∧(x8∨ ∼ x7∨ ∼ x15) ∧ (∼ x8 ∨ x16∨ ∼ x10).

For each variable xi, we introduce two auxiliary letters ti and fi. Intuitively,
ti (resp. fi) indicates that the value T (resp. F) is assigned to xi. The letter ti
(resp. fi) is characteristic for the clause C if the variable xi appears unnegated
(resp. negated) in C. Thus, the letters f3, f16, t18 are characteristic for the first
clause in the formula β above, whereas the letters f8, f10, t16 are characteristic
for the last clause.

Theorem 1 The satisfiability problem can be solved in linear time by standard
NWD0L systems.

Proof. Consider a propositional formula α in conjunctive normal form, with
v variables xi, 1 ≤ i ≤ v, and c clauses Ci, 1 ≤ i ≤ c. We construct a standard
N2v+c+1WD0L system Γ as follows. The nodes of Γ are denoted by

Mi,M
′
i , 1 ≤ i ≤ v, Ni, 1 ≤ i ≤ c, P.

The alphabet consists of the letters in the two alphabets

V1 = {Si | 0 ≤ i ≤ v − 1} ∪ {Ri | 1 ≤ i ≤ c} ∪ {E,G,Gv}
and

V2 = {ti, fi | 1 ≤ i ≤ v},
as well as of their barred versions.

The communication protocol (b) will be followed, that is, correct words will
be communicated. Intuitively, the letters Si are associated to the variables, the
letters Ri to the clauses, and the letters ti, fi to the truth-values. The letter E
is a special ending letter, and the letter G a special garbage letter.

112 Erzsébet Csuhaj-Varjú and Arto Salomaa

We now define the D0L productions for each node. We begin with the letters
of V2. In all nodes Mi,M

′
i , 1 ≤ i ≤ v, as well as in the node P , we have the

productions
tj → tj , fj → fj , 1 ≤ j ≤ v.

In all nodes Ni, 1 ≤ i ≤ c, we have the productions

tj → tjtj , fj → fjfj , tj → λ, fj → λ, 1 ≤ j ≤ v,

except in the case that tj or fj is characteristic for the clause Ci the barred
letters are removed from the former productions, giving rise to the production
tj → tj or fj → fj .

We then define the productions for the remaining letters. Each node Mi (resp.
M ′

i), 1 ≤ i ≤ v − 1, has the production Si−1 → tiSi (resp. Si−1 → fiSi). The
node Mv (resp. M ′

v) has the production Sv−1 → tvR1 (resp. Sv−1 → fvR1).
Each node Ni, 1 ≤ i ≤ c− 1, has the production Ri → Ri+1. The node Nc has
the production Rc → E. The node P has the production E → λ. Each letter x,
barred or nonbarred, whose production has not yet been defined in some node,
has in this node the production x → Gv. This completes the definition of the
standard network Γ .

The formula α is satisfiable exactly in case, after v+c+1 computation steps, a
word w over the alphabet V2 appears in the node P . Each such word w indicates
a truth-value assignment satisfying α. Moreover, because of the communication,
each such word w appears in all nodes in the next steps.

The verification of this fact is rather straightforward. There is only one
“proper” path of computation. In the first v steps a truth-value assignment
is created. (Actually all possible assignments are created!) In the next c steps it
is checked that each of the clauses satisfies the assignment. In the final step the
auxiliary letter is then eliminated. Any deviation from the proper path causes
the letter G to be introduced. This letter can never be eliminated. We use the
production G → Gv instead of the simple G → G to avoid the unnecessary
communication of words leading to nothing. Thus, we have completed the proof
of our theorem. �

Coming back to our example, the required network possesses 65 nodes. The
alphabet V1 has 46 and the alphabet V2 40 letters. The productions for the node
M1, for instance, are

S0 → t1S1, tj → tj , fj → fj, 1 ≤ j ≤ 20,

and x→ G20 for all other letters x. For the node N1 the productions are

R1 → R2, f3 → f3, f16 → f16, t18 → t18, x→ xx,

for other letters x in V2. Furthermore, N1 has the production x → λ, for all
letters x in V2, and the production x→ G20 for all of the remaining letters x.

The Power of Networks of Watson-Crick D0L Systems 113

After 46 computation steps the word

w = f1t2f3f4f5f6t7t8f9t10t11t12f13f14t15t16t17f18f19f20

appears in all nodes. This word indicates the only truth-value assignment satis-
fying the propositional formula β.

The assignment and the word w can be found by the following direct ar-
gument. (The argument uses certain special properties of β. The above proof
or the construction in [3] are completely independent of such properties.) The
conjunction of the clauses involving ∼ x9 is logically equivalent to ∼ x9. This
implies that x9 must assume the value F . Using this fact and the conjunction of
the clauses involving ∼ x5, we infer that x5 must assume the value F . (x9 and
x5 are detected simply by counting the number of occurrences of each variable
in β.) From the 9th clause we now infer that x17 must have the value T . After
this the value of each remaining variable can be uniquely determined from a
particular clause. The values of the variables can be obtained in the following
order (we indicate only the index of the variable):

9, 5, 17, 15, 7, 8, 10, 16, 18, 3, 20, 2, 13, 19, 6, 4, 11, 1, 14, 12.

4 Hamiltonian Path Problem

In this section we show how another well-known NP-complete problem, namely
the Hamiltonian Path Problem (HPP) can be solved in linear time by standard
NWD0L systems. In this problem one asks whether or not a given directed graph
γ = (V,E), where V is the set of vertices or nodes of γ, and E denotes the set of
its edges, contains a Hamiltonian path, that is, a path which starting from a node
Vin and ending at a node Vout visits each node of the graph exactly once. Nodes
Vin and Vout can be chosen arbitrarily. This problem has a distinguished role in
DNA computing, since the famous experiment of Adleman in 1994 demonstrated
the solution of an instance of a Hamiltonian path problem in linear time.

Theorem 2 The Hamiltonian Path Problem can be solved in linear time by
standard NWD0L systems.

Proof. Let γ = (V,E) be a directed graph with n nodes V1, . . . , Vn, where
n ≥ 1, and let us suppose that Vin = V1 and Vout = Vn. We construct a standard
NWD0L2n+1 system Γ such that any word in the language of Γ identifies a
Hamiltonian path in γ in a unique manner. If the language is the empty set,
then there is no Hamiltonian path in γ. Moreover, the computation process of
any word in the language L(Γ) of Γ ends in 2n + 1 steps.

Let us denote the nodes of Γ by M1, . . . ,M2n+1, and let the alphabet Σ
of Γ consist of letters ai, $i, for 1 ≤ i ≤ n, Zi, with 1 ≤ i ≤ n, Xk, with
n + 1 ≤ k ≤ 2n, Z, F, $, as well as of their barred versions.

We follow the communication protocol (b), that is, the copies of the correct
words are communicated.

114 Erzsébet Csuhaj-Varjú and Arto Salomaa

Now we define the productions for the nodes of Γ .
For i with 1 ≤ i ≤ n, the node Mi has the following D0L productions:

aj → aj , for 1 ≤ j ≤ n, Zj → Zj+1 for 1 ≤ j ≤ n − 1, Z → Z1; $k → ai$i, if γ
has a directed edge from Vk to Vi, for 1 ≤ k ≤ n, k �= i; $→ a1$1.

Each node Mi, where n + 1 ≤ i ≤ 2n, is given with the following set of D0L
productions: $n → X̄i, and Zn → λ, for i = n+1; X̄i−1 → X̄i, for n+2 ≤ i ≤ 2n,
aj → aj āj for j �= i − n, where 1 ≤ j ≤ n, āj → λ, for 1 ≤ j ≤ n, aj → aj , for
j = i− n.

Finally, the node M2n+1 has the following productions:
X̄2n → λ, ai → ai, for 1 ≤ i ≤ n, āi → λ, for 1 ≤ i ≤ n.

Furthermore, the above definition is completed by adding the production
B → F, for all such letters B of Σ whose production was not specified above.

Let the axiom of the node M1 be $Z, and let the axiom of the other nodes
be F .

We now explain how Γ simulates the procedure of looking for the Hamil-
tonian paths in γ. Nodes Mi, 1 ≤ i ≤ n, are responsible for simulating the
generation of paths of length n in γ, nodes Mj , n + 1 ≤ j ≤ 2n, are for deciding
whether each node is visited by the path exactly once, while node M2n+1 is for
storing the result, namely the descriptions of the possible Hamiltonian paths.
The computation starts at the node M1, by rewriting the axiom $Z to a1$1Z1.
The strings are sent to the other nodes in Γ. String a1$1Z1 refers to the fact
that the node V1 has been visited, the first computation step has been executed
- Z1 - and the string was forwarded to the node Mk. This string, after arriving
at the node Mk, will be rewritten to a1FZ2 if there is no direct edge in γ from
V1 to Vk, otherwise the string will be rewritten to a1ak$kZ2, and the number of
visited nodes is increased by one (Z2). Meantime, the strings arriving at nodes
Ml, with n + 1 ≤ l ≤ 2n + 1, will be rewritten to a string with an occurrence
of F , and thus, will never represent a Hamiltonian path in γ. Repeating the
previous procedure, at the nodes Mi, for 1 ≤ i ≤ n, after performing the first k
steps, where k ≤ n, we have strings of the form uaial$lZk, where u is a string
consisting of letters from {a1, . . . , an}, representing a path in γ of length k − 2,
and the string will be forwarded to the node Ml. After the nth step, strings of
the form v$nZn, where v is a string of length n over {a1, . . . , an} representing
a path of length n in γ, will be checked at nodes of Mj , n + 1 ≤ j ≤ 2n, to
find out whether or not the paths satisfy the conditions of being Hamiltonian
paths. At the step n + 1, the string v$nZn at the node Mn+1 will be rewritten
to v′X̄n+1, where X̄n+1 refers to that the (n + 1)st step is performed, and v′ is
obtained from v by replacing all letters aj , 1 ≤ j ≤ n, j �= 1, with aj āj , whereas
the possible occurrences of a1 are replaced by themselves. If the string does not
contain a1, then the new string will not be correct, and thus its complement
contains the letter Xn+1. Since letters Xj are rewritten to the trap symbol F ,
these strings will never be rewritten to a string representing a Hamiltonian path
in γ. By the form of their productions, the other nodes will generate strings
with an occurrence of F at the (n+1)st step. Continuing this procedure, during
the next n− 1 steps, in the same way as above, the occurrence of the letter ai,

The Power of Networks of Watson-Crick D0L Systems 115

2 ≤ i ≤ n, is checked at the node Mn+i. Notice that after checking the occur-
rence of the letter ai, the new strings will be forwarded to all nodes of Γ, so the
strings representing all possible paths in γ are checked according to the criteria
of being Hamiltonian. After the (2n)th step, if the node M2n contains a string
vX̄2n, where v = ai1 . . . ain , then this string is forwarded to the node M2n+1 and
is rewritten to v. It will represent a Hamiltonian path in γ, where the string of
indices i1, . . . , in corresponds to the nodes Vi1 , . . . , Vin , visited in this order. �

5 Population Growth in DNA Systems

The alphabet in the systems considered above is generally bigger than the four-
letter DNA alphabet. We now investigate the special case of DNA alphabets.
By a DNA system, [18], we mean a Watson-Crick D0L system whose alphabet
equals the four-letter DNA alphabet. In this section we consider networks based
on DNA systems only. It turns out that quite unexpected phenomena occur in
such simple networks. For instance, the population growth can be very weird, a
function that is not even Z- rational, although the simplicity of the four-letter
nodes might suggest otherwise.

We will show in this section that it is possible to construct standard networks
of DNA systems, where the population growth is not Z-rational. (By the popu-
lation growth function f(n) we mean the total number of words in all nodes at
the nth time instant, n ≥ 0. We refer to [7] for formal details of the definition.)

The construction given below can be carried out for any pair (p, q) of different
primes. We give it explicitly for the pair (2, 5). The construction resembles the
one given in [18].

Theorem 3 There is a network of standard DNA systems, consisting of two
components, whose population growth is not Z-rational. This holds true inde-
pendently of the protocol.

Proof. Consider the network Γ of standard DNA systems, consisting of two
components defined as follows. The first component has the axiom TG and rules

A → A, G → G, T → T 2, C → C5.

The second component has the axiom A and rules

A→ A, G → G, T → T, C → C.

Clearly, the second component does not process its words in any way.
The beginning of the sequence of the first component is

TG, A2C, T 2G5, T4G5, A8C5, T 8C25,

T16G25, A32C25, T 32G125,T64G125, A128C125,

T 128G625, T256G625, T512G625, A1024C625 . . .

116 Erzsébet Csuhaj-Varjú and Arto Salomaa

We have indicated by boldface the words not obtained by a complementarity
transition.

The beginning of the road of the first component is

110110110110011 . . .

Denote by rj , j ≥ 1, the jth bit in the road.
Consider the increasing sequence of numbers, consisting of the positive pow-

ers of 2 and 5:

2, 4, 5, 8, 16, 25, 32, 64, 125, 128, 256, 512, 625, 1024, . . .

For j ≥ 1, denote by mj the jth number in this sequence.
The next two lemmas are rather immediate consequences of the definitions

of the sequences rj and mj .

Lemma 1 The road of the first component begins with 11 and consists of occur-
rences of 11 separated by an occurrence of 0 or an occurrence of 00.

The distribution of the occurrences of 0 and 00 depends on the sequence mj :

Lemma 2 For each j ≥ 1, rj = rj+1 = 0 exactly in case mj = 2mj−1 = 4mj−2.

The next lemma is our most important technical tool.

Lemma 3 The bits rj in the road of the first component do not constitute an
ultimately periodic sequence.

Proof of Lemma 3. Assume the contrary. By Lemma 2 we infer the existence of
two integers a (initial mess) and p (period) such that, for any i ≥ 0, the number
of powers of 2 between 5a+ip and 5a+(i+1)p is constant, say q. Let 2b be the
smallest power of 2 greater than 5a. Thus,

5a < 2b < 2b+1 < . . . < 2b+q−1 < 5a+p < 2b+q

and, for all i ≥ 1,
2b+iq−1 < 5a+ip < 2b+iq.

Denoting α = log 5
log 2 , we obtain

b + iq − 1 < α(a + ip) < b + iq

and further
q +

b− 1
i

< pα +
aα

i
< q +

b

i
.

Considering large enough i, we infer q = pα, which is impossible. This contra-
diction proves Lemma 3.

We now return to the main proof of Theorem 3. We assume that the com-
munication protocol is (b), where corrected words are communicated. The proof
in the other case is a similar application of Lemma 3 and is left to the reader.

The Power of Networks of Watson-Crick D0L Systems 117

Denote the population growth function by f(i), i ≥ 0. Thus, the first few
numbers in the population growth sequence are:

2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, . . .

Assume now that f(i) is Z-rational. Then also the function

g(i) = f(i)− f(i− 1), i ≥ 1,

is Z-rational. But clearly g(i) = 0 exactly in case ri = 0. Consequently, by the
Skolem-Mahler-Lech Theorem (see [19], Lemma 9.10) 0’s occur in the sequence
ri in an ultimately periodic fashion. But this contradicts Lemma 3 and, thus,
Theorem 3 follows. �

References

1. L.M. Adleman, Molecular computation of solutions to combinatorial problems.
Science, 266 (1994), 1021–1024.

2. M. Amos, Gh. Păun, G. Rozenberg and A. Salomaa, DNA-based computing: a
survey. Theoretical Computer Science, 287 (2002), 3–38.

3. S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman, Solu-
tion of a 20-variable 3-SAT problem on a DNA computer. Sciencexpress, 14 March
2002; 10.1126/science.1069528.

4. J. Csima, E. Csuhaj-Varjú and A. Salomaa, Power and size of extended Watson-
Crick L systems. Theoretical Computer Science, 290 (2003), 1665-1678.

5. E. Csuhaj-Varjú, Networks of Language Processors. EATCS Bulletin, 63 (1997),
120–134. Appears also in Gh. Păun, G. Rozenberg, A. Salomaa (eds.), Current
Trends in Theoretical Computer Science, World Scientific, Singapore, 2001, 771–
790.

6. E. Csuhaj-Varjú and A. Salomaa, Networks of parallel language processors. In: New
Trends in Computer Science, Cooperation, Control, Combinatorics (Gh. Păun and
A. Salomaa, eds.), LNCS 1218, Springer-Verlag, Berlin, Heidelberg, New York,
1997, 299–318.

7. E. Csuhaj-Varjú and A. Salomaa, Networks of Watson-Crick D0L systems. TUCS
Report 419, Turku Centre for Computer Science, Turku, 2001. To appear in M.
Ito and T. Imaoka (eds.), Words, Languages, Combinatorics III. Proceedings of
the Third International Colloquium in Kyoto, Japan. World Scientific Publishing
Company, 2003.

8. J. Honkala and A. Salomaa, Watson-Crick D0L systems with regular triggers.
Theoretical Computer Science, 259 (2001), 689–698.

9. W. Kuich and A. Salomaa, Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, Springer Verlag, Berlin, Heidelberg, New York,
Tokyo, 1986.

10. V. Mihalache and A. Salomaa, Language-theoretic aspects of DNA complementar-
ity. Theoretical Computer Science, 250 (2001), 163–178.

11. G. Păun, G. Rozenberg and A. Salomaa, DNA Computing. New Computing
Paradigms. Springer-Verlag, Berlin, Heidelberg, New York, 1998.

12. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic
Press, New York, London, 1980.

118 Erzsébet Csuhaj-Varjú and Arto Salomaa

13. G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, Vol. I-III.
Springer-Verlag, Berlin, Heidelberg, New York, 1997.

14. A. Salomaa, Formal Languages. Academic Press, New York, 1973.
15. A. Salomaa, Computation and Automata. Cambridge University Press, Cambridge,

London, New York, 1985.
16. A. Salomaa, Watson-Crick walks and roads in D0L graphs. Acta Cybernetica, 14

(1999), 179–192.
17. A. Salomaa, Uni-transitional Watson-Crick D0L systems. Theoretical Computer

Science, 281 (2002), 537–553.
18. A. Salomaa, Iterated morphisms with complementarity on the DNA alphabet. In

M. Ito, Gh. Păun and S. Yu (eds.), Words, Semigroups, Transductions, World
Scientific, 2001, 405–420.

19. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series.
Text and Monographs in Computer Science. Springer-Verlag, Berlin, Heidelberg,
New York, 1978.

20. A. Salomaa and P. Sośık, Watson-Crick D0L systems: the power of one transition.
Theoretical Computer Science, 301 (2003), 187–200.

Fixed Point Approach to Commutation of

Languages�

Karel Culik II1, Juhani Karhumäki2, and Petri Salmela2

1 Department of Computer Science
University of South Carolina
Columbia, 29008 S.C., USA

kculik@sc.rr.com
2 Department of Mathematics and
Turku Centre for Computer Science

University of Turku
20014 Turku, FINLAND

karhumak@cs.utu.fi, pesasa@utu.fi

Abstract. We show that the maximal set commuting with a given reg-
ular set – its centralizer – can be defined as the maximal fixed point of
a certain language operator. Unfortunately, however, an infinite number
of iterations might be needed even in the case of finite languages.

1 Introduction

The commutation of two elements in an algebra is among the most natural
operations. In the case of free semigroups, i.e., words, it is easy and completely
understood: two words commute if and only if they are powers of a common
word, see, e.g., [11]. For the monoid of languages, even for finite languages the
situation changes drastically. Many natural problems are poorly understood and
likely to be very difficult. For further details we refer in general to [3], [9] or [6]
and in connection to complexity issues to [10] and [4].

Commutation of languages X and Y means that the equality XY = Y X
holds. It is an equality on sets, however to verify it one typically has to go to
the level of words. More precisely, for each x ∈ X and y ∈ Y one has to find
x′ ∈ X and y′ ∈ Y such that xy = y′x′. In a very simple setting this can lead to
nontrivial considerations. An illustrative (and simple) example is a proof that
for a two-element set X = {x, y} with xy �= yx, the maximal set commuting
with X is X+, see [1].

One can also use the above setting to define a computation. Given languages
X and Y , for a word x ∈ X define the rewriting rule

x⇒C x′ if there exists x′ ∈ X, y, y′ ∈ Y such that xy = y′x′.

Let ⇒∗
C be the transitive and reflexive closure of ⇒C . What can we say about

this relation? Very little seems to be known. Natural unanswered (according to
� Supported by the Academy of Finland under grant 44087

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 119–131, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

120 Karel Culik II, Juhani Karhumäki, and Petri Salmela

our knowledge) questions are: when is the closure of a word x ∈ X , i.e., its orbit,
finite or is it always recursive for given regular languages X and Y ?

We do not claim that the above operation is biologically motived. However,
it looks to us that it resembles some of the natural operation on DNA-sequences,
see [13]: the result is obtained by matching two words and then factorizing the
result differently. Consequently, it provides a further illustration how computa-
tionally complicated are the operations based on matching of words.

Our goal is to consider a particular question on commutation of languages
without any biological or other motivation. More precisely, we want to intro-
duce an algebraic approach, so-called fixed point approach, to study Conway’s
Problem. The problem asks whether or not the maximal language commuting
with a given regular language X is regular as well. The maximal set is called the
centralizer of X . An affirmative answer is known only in very special cases, see,
e.g., [15], [3], [14], [7] and [8]. In general, the problem seems to be very poorly
understood – it is not even known whether the centralizer of a finite language
X is recursive!

We show that the centralizer of any language is the largest fixed point of
a very natural language operator. Consequently, it is obtained as the limit of
a simple recursion. When started from a regular X all the intermediate ap-
proximations are regular, as well. However, as we show by an example, infinite
number of iterations might be needed and hence the Conway’s Problem remains
unanswered.

One consequence of our results is that if Conway’s Problem has an affirmative
answer, even nonconstructively, then actually the membership problem for the
centralizer of a regular language is decidable, i.e., it is recursive.

2 Preliminaries

We shall need only very basic notations of words and languages; for words see [12]
or [2] and for languages [17] or [5].

Mainly to fix the terminology we specify the following. The free semigroup
generated by a finite alphabet A is denoted by A+. Elements of A+ are called
words and subsets of A+ are called languages. These are denoted by lower case
letters x, y, . . . and capital letters X,Y, . . ., respectively. Besides standard opera-
tions on words and languages we especially need the operations of the quotients.
We say that a word v is a left quotient of a word w if there exists a word u such
that w = uv, and we write v = u−1w. Consequently, the operation (u, v)→ u−1v
is a partial mapping. Similarly we define right quotients, and extend both of these
to languages in a standard way: X−1Y = {x−1y |x ∈ X, y ∈ Y }.

We say that two languages X and Y commute if they satisfy the equality
XY = Y X . Given an X ⊆ A+ it is straightforward to see that there exists the
unique maximal set C(X) commuting with X . Indeed, C(X) is the union of all
sets commuting with X . It is also easy to see that C(X) is a subsemigroup of
A+. Moreover, we have simple approximations, see [3]:

Lemma 1. For any X ⊆ A+ we have X+ ⊆ C(X) ⊆ Pref(X+) ∩ Suf(X+).

Fixed Point Approach to Commutation of Languages 121

Here Pref(X+) (resp. Suf(X+)) stands for all nonempty prefixes (resp. suf-
fixes) of X+.

Now we can state:

Conway’s Problem. Is the centralizer of a regular X regular as well?

Although the answer is believed to be affirmative, it is known only in the
very special cases, namely when X is a prefix set, binary or ternary, see [15], [3]
or [7], respectively. This together with the fact that we do not know whether
the centralizer of a finite set is even recursive, can be viewed as an evidence of
amazingly intriguing nature of the problem of commutation of languages.

Example 1. (from [3]) Consider X = {a, ab, ba, bb}. Then, as can be readily seen,
the centralizer C(X) equals to X+\{b} = (X∪{bab, bbb})+. Hence, the centralizer
is finitely generated but doesn’t equal either to X+ or {a, b}+.

Finally, we note that in the above the centralizers were defined with respect
to the semigroup A+. Similar theory can be developed over the free monoid A∗.

3 Fixed Point Approach

As discussed extensively in [14] and [8], there has been a number of different
approaches to solve the Conway’s Problem. Here we introduce one more, namely
so-called fixed point approach. It is mathematically quite elegant, although at
the moment it does not yield into breakthrough results. However, it can be seen
as another evidence of the challenging nature of the problem.

Let X ⊆ A+ be an arbitrary language. We define recursively

X0 = Pref(X+) ∩ Suf(X+), and
Xi+1 = Xi \ [X−1(XXiΔXiX) ∪ (XXiΔXiX)X−1], for i ≥ 0, (1)

where Δ denotes the symmetric difference of languages. Finally we set

Z0 =
⋂
i≥0

Xi. (2)

We shall prove

Theorem 1. Z0 is the centralizer of X, i.e., Z0 = C(X).

Proof. The result follows directly from the following three facts:

(i) Xi+1 ⊆ Xi for all i ≥ 0,
(ii) C(X) ⊆ Xi for all i ≥ 0, and
(iii) Z0X = XZ0.

122 Karel Culik II, Juhani Karhumäki, and Petri Salmela

Indeed, (iii) implies that Z0 ⊆ C(X), while (ii) together with (2) implies that
C(X) ⊆ Z0.

Claims (i)–(iii) are proved as follows. Claim (i) is obvious. Claim (ii) is proved
by induction on i. The case i = 0 is clear, by Lemma 1. Let z ∈ C(X) and assume
that C(X) ⊆ Xi. Assume that z /∈ Xi+1. Then

z ∈ X−1(XXiΔXiX) ∪ (XXiΔXiX)X−1.

Consequently, there exists an x ∈ X such that

xz or zx ∈ (XXiΔXiX).

This, however, is impossible since z ∈ C(X) ⊆ Xi and C(X)X = XC(X). For
example, xz is clearly in XXi, but also in XiX due to the identity xz = z′x′

with z′ ∈ C(X), x′ ∈ X . So z must be in Xi+1, and hence (ii) is proved.
It remains to prove the condition (iii). If Z0X and XZ0 were inequal, then

there would exist a word w ∈ Z0, such that either wX �⊆ XZ0 or Xw �⊆ Z0X .
By symmetry, we may assume the previous case. By the definition of Z0 and (i)
this would mean that begining from some index k we would have wX �⊆ XXi,
when i ≥ k. However, w ∈ Z0 ⊆ Xi for every i ≥ 0, especially for k, and
hence XkX �= XXk. This would mean that w ∈ (XXkΔXkX)X−1 and hence
w /∈ Xk+1, and consequently w /∈ Z0, a contradiction.

Theorem 1 deserves a few remarks.
First we define the language operator ϕ by the formula

ϕ : Y �→ Y \ [X−1(XY ΔY X) ∪ (XY ΔY X)X−1],

where X is a fixed language. Then obviously all languages commuting with X
are fixed points of ϕ, and the centralizer is the maximal one. Second, in the
construction of Theorem 1 it is not important to start from the chosen X0.
Any superset of C(X) would work, in particular A+. Third, as can be seen by
analyzing the proof, in formula (1) we could drop one of the members of the
union. However, the presented symmetric variant looks more natural.

In the next section we give an example showing that for some languages X
an infinite number of iterations are needed in order to get the centralizer. In the
final concluding section we draw some consequenses of this result.

4 An Example

As an example of the case in which the fixed point approach leads to an infinite
iteration we discuss the language X = {a, bb, aba, bab, bbb}. First we prove that
the centralizer of this language is X+. To do this we start by proving the following
two lemmata. We consider the prefix order of A∗, and say that two words are
incomparable if they are so with respect to this order.

Lemma 2. Let X be a rational language including a word v incomparable with
other words in X. If w ∈ C(X), then for some integer n ∈ {0, 1, 2, . . .} there
exist words t ∈ Xn and u ∈ Suf(X) such that w = ut and uXnX∗ ⊆ C(X).

Fixed Point Approach to Commutation of Languages 123

Proof. If w ∈ C(X) and v is an incomparable element in X , then equation
XC(X) = C(X)X implies that vw ∈ C(X)X and therefore vwv−1

1 ∈ C(X) for
some element v1 ∈ X . Repeating the argument n times we obtain

vnw(vn · · · v2v1)−1 ∈ C(X), vi ∈ X,

where t = vn · · · v2v1 and w = ut. Then vnu ∈ C(X) for some integer n ∈
{0, 1, 2, . . .} and word u ∈ Suf(X)∩Pref(w). Since v is incomparable, we conclude
that for every s ∈ Xn

vnus ∈ C(X)Xn = XnC(X),

and hence
us ∈ C(X).

In other words, uXn ⊆ C(X). Since C(X) is a semigroup, we have also the
inclusion uXnX∗ ⊆ C(X).

For every proper suffix ui ∈ Suf(X), including the empty word 1, there
either exists a minimal integer ni, for which uiX

ni ⊆ C(X), or uiX
n �⊆ C(X) for

every integer n ≥ 0. Since Lemma 2 excludes the latter case, we can associate
with every word w ∈ C(X) a word ui ∈ Suf(X) and the minimal ni such that
w ∈ uiX

niX∗.

Lemma 3. If the finite language X contains an incomparable word, it has a
rational centralizer. Moreover, the centralizer is finitely generated.

Proof. If the language X is finite, then the set of proper suffixes of X is also
finite. With the above terminology we can write

C(X) =
⋃
i∈I

uiX
niX∗ = (

⋃
i∈I

uiX
ni)︸ ︷︷ ︸

=G

X∗ = GX∗,

where I is an index set defining suffixes ui above. Here the language G is finite
and X ⊆ G. Indeed if u0 = 1, then n0 = 1, and hence u0X

n0 = 1 ·X = X ⊆ G.
Since C(X) is semigroup and X is included in G, we obtain

C(X) = C(X)+ = (GX∗)+ = (X + G)+ = G+.

Now we can prove that the centralizer of our language X = {a, bb, aba, bab,
bbb} is X+. The word bab is incomparable. The set of proper suffixes of X is
{1, a, b, ab, ba, bb}. We will consider all of these words separately:

u0 = 1 : 1 ·X ⊆ C(X) so that n0 = 1.
u1 = a : a ∈ X ⊆ C(X) so that n1 = 0.
u2 = b : b · an · a /∈ XC(X) = C(X)X and therefore b · an /∈ C(X) for all n ∈ N.

This means that the number n2 does not exist.

124 Karel Culik II, Juhani Karhumäki, and Petri Salmela

u3 = ab : a · ab · (bab)n /∈ Suf(X+) implies aab(bab)n /∈ C(X) so that
aab(bab)n /∈ XC(X) and therefore ab(bab)n /∈ C(X) for all n ∈ N.
Hence the number n3 does not exist.

u4 = ba : ba · an · a /∈ XC(X) and therefore ba · an /∈ C(X) for all n ∈ N,
and hence the number n4 does not exist.

u5 = bb : bb ∈ X ⊆ C(X) so that n5 = 0.

As a conclusion I = {0, 1, 5}, and G =
⋃

i∈I uiX
ni = 1 ·X + a + bb = X . This

gives us the centralizer

C(X) = GX∗ = XX∗ = X+,

in other words we have established:

Fact 1 C({a, bb, aba, bab, bbb}) = {a, bb, aba, bab, bbb}+.

Next we prove that the fixed point approach applied to the language X leads
to an infinite loop of iterations. We prove this by showing that there exist words
in C(X)\Xi for every Xi of the iteration (1). To do this we take a closer look on
the language L = (bab)∗ab(bab)∗. Clearly L ⊆ X0 = Pref(X+) ∩ Suf(X+) and
L ∩X+ = ∅.

By the definition of the fixed point approach, word w ∈ Xi is in Xi+1 if and
only if Xw ⊆ XiX and wX ⊆ XXi. We will check this condition for an arbitrary
word (bab)kab(bab)n ∈ L with k, n ≥ 1. The first condition Xw ⊆ XiX leads to
the cases:

a · (bab)kab(bab)n = (aba)(bb · a)k−1(bab)n+1 ∈ X+X ⊆ XiX,
bb · (bab)kab(bab)n = (bbb)a(bb · a)k−1(bab)n+1 ∈ X+X ⊆ XiX,

aba · (bab)kab(bab)n = a(bab)a(bb · a)k−1(bab)n+1 ∈ X+X ⊆ XiX,
bbb · (bab)kab(bab)n = (bb)2a(bb · a)k−1(bab)n+1 ∈ X+X ⊆ XiX

⎫⎪⎪⎬⎪⎪⎭ (3)

and
bab · (bab)kab(bab)n = (bab)k+1ab(bab)n−1 · bab ∈ XiX.

However, the last one holds if and only if

(bab)k+1ab(bab)n−1 ∈ Xi. (4)

Similarly, the second condition wX ⊆ XXi yields us:

(bab)kab(bab)n · a = bab(bab)k−1(a·bb)naba ∈ XX+ ⊆ XXi,
(bab)kab(bab)n · bb = bab(bab)k−1(a·bb)na · bbb ∈ XX+ ⊆ XXi,

(bab)kab(bab)n · aba = bab(bab)k−1(a·bb)na·a·bab·a ∈ XX+ ⊆ XXi,
(bab)kab(bab)n · bbb = bab(bab)k−1(a·bb)na·a·bb· bb ∈ XX+ ⊆ XXi

⎫⎪⎪⎬⎪⎪⎭ (5)

and
(bab)kab(bab)n · bab = bab · (bab)k−1ab(bab)n+1 ∈ XXi.

Fixed Point Approach to Commutation of Languages 125

Here the last one holds if and only if

(bab)k−1ab(bab)n+1 ∈ Xi. (6)

From (4) and (6) we obtain the equivalence

(bab)kab(bab)n ∈ Xi+1 ⇐⇒ (bab)k+1ab(bab)n−1, (bab)k−1ab(bab)n+1 ∈ Xi (7)

Now, the result follows by induction, when we cover the cases k = 0 or n = 0.
In the case k = 0 and n ≥ 0 we have that ab(bab)n ∈ X0, but ab(bab)n /∈ X1,

since a · ab(bab)n /∈ X0X . The same applies also for (bab)nba by symmetry.

Fig. 1. Language (bab)∗ab(bab)∗ written as a pyramid.

Fig. 2. Deleting words in (bab)∗ab(bab)∗ from languages Xi during the iteration.

In the case n = 0 and k ≥ 1 we first note that X(bab)kab ⊆ X0X , due to the
equations in (3) and the fact that bab·(bab)kab = (bab)kba·bab ∈ X0X . Similarly,
(bab)kabX ⊆ XX0, due to the equations in (5) and the fact (bab)kab · bab =
bab · (bab)k−1ab(bab) ∈ XX0. These together imply that (bab)kab ∈ X1. On
the other hand, since (bab)kba /∈ X1, then bab · (bab)kab /∈ X1X , and hence
(bab)kab /∈ X2.

126 Karel Culik II, Juhani Karhumäki, and Petri Salmela

Over all we obtain the following result: if i = min{k, n + 1}, then

(bab)kab(bab)n ∈ Xi but (bab)kab(bab)n /∈ Xi+1.

The above can be illustrated as follows. If the language (bab)∗ab(bab)∗ is
written in the form of a downwards infinite pyramid as shown in Figure 1, then
Figure 2 shows how the fixed point approach deletes parts of this language during
the iterations. In the first step X0 → X1 only the words in ab(bab)∗ are deleted as
drawn on the leftmost figure. The step X1 → X2 deletes words in (bab)ab(bab)∗

and (bab)∗ab, and so on. On the step Xi → Xi+1 the operation always deletes
the remaining words in(bab)iab(bab)∗ and (bab)∗ab(bab)i−1, but it never manages
to delete the whole language (bab)∗ab(bab)∗. This leads to an infinite chain of
steps as shown in the following

Fact 2 X0 ⊃ X1 ⊃ · · ·Xi ⊃ · · ·C(X).

When computing the approximations Xi the computer and available software
packages are essential. We used Grail+, see [18]. For languages X and X+ their
minimal automata are shown in Figure 3.

Fig. 3. Finite automata recognizing languages X and X+

Let us consider the minimal automata we obtain in the iteration steps of
the procedure, and try to find some common patterns in those. The automaton
recognizing the starting language X0 is given in Figure 4.

Fixed Point Approach to Commutation of Languages 127

The numbers of states, finals states and transitions for a few first steps of the
iteration are given in Table 1. From this table we can see that after a few steps
the growth becomes constant. Every step adds six more states, three of those
being final, and eleven transitions.

Fig. 4. Finite automaton recognizing the language X0

When we draw the automata corresponding to subsequent steps from Xi to
Xi+1, as in Figures 5 and 6, we see a clear pattern in the growth. See that
automata representing languages X5 and X6 are built from two sequence of sets
of three states. In the automaton of X6 both sequences have got an additional
set of three states. So there are totally six new states, including three new final
ones, and eleven new transitions. In every iteration step the automata seem
to use the same pattern to grow. When the number of iteration steps goes to
infinity, the lengths of both sequences go also to infinity. Then the corresponding
states can be merged together and the result will be the automaton recognizing
the language X+. This seems to be a general phenomena in the cases where
an infinite number of iterations are needed. Intuitively that would solve the
Conway’s Problem. However, we do not know how to prove it.

5 Conclusions

Our main theorem has a few consequences. As theoretical ones we state the
following two. These are based on the fact that formula (1) in the recursion is
very simple. Indeed, if X is regular so are all the approximations Xi. Similarly,
if X is recursive so are all these approximations. Of course, this does not imply
that also the limit, that is the centralizer, should be regular or recursive.

128 Karel Culik II, Juhani Karhumäki, and Petri Salmela

final states states transitions

X0 6 8 15
X1 5 9 17
X2 6 13 24
X3 9 19 35
X4 12 25 46
X5 15 31 57
X6 18 37 68
X7 21 43 79
X8 24 49 90
X9 27 55 101
X10 30 61 112
X11 33 67 123
X12 36 73 134
X13 39 79 145
X14 42 85 156
X15 45 91 167
X16 48 97 178
X17 51 103 189
X18 54 109 200
X19 57 115 211

final states states transitions

X20 60 121 222
X21 63 127 233
X22 66 133 244
X23 69 139 255
X24 72 145 266
X25 75 151 277
X26 78 157 288
X27 81 163 299
X28 84 169 310
X29 87 175 321
X30 90 181 332
X31 93 187 343
X32 96 193 354
X33 99 199 365
X34 102 205 376
X35 105 211 387
X36 108 217 398
X37 111 223 409
X38 114 229 420
X39 117 235 431

Table 1. The numbers of states, final states and transitions of automata corre-
sponding to the iteration steps for the language X .

What we can conclude is the following much weaker result, first noticed in [8]:

Theorem 2. If X is recursive, then C(X) is in co-RE, that is its complement
is recursively enumerable.

Proof. As we noticed above, all approximations Xi are recursive, and moreover
effectively findable. Now the result follows from the identity

C(X) =
⋃
i≥0

Xi,

where bar is used for the complementation. Indeed, a method to algorithmically
list all the elements of C(X) is as follows: Enumerate all words w1, w2, w3, . . .
and test for all i and j whether wi ∈ Xj . Whenever a positive answer is obtained
output wi.

For regular languages X we have the following result.

Theorem 3. Let X ∈ A+ be regular. If C(X) is regular, even noneffectively,
then C(X) is recursive.

Proof. We assume that X is regular, and effectively given, while C(X) is regular
but potentially nonconstructively. We have to show how to decide the member-
ship problem for C(X). This is obtained as a combination of two semialgorithms.

Fixed Point Approach to Commutation of Languages 129

Fig. 5. The finite automaton recognizing X5

A semialgorithm for the question “X ∈ C(X)?” is obtained as in the proof
of Theorem 2. A semialgorithm for the complementary question is as follows:
Given x, enumerate all regular languages L1, L2, . . . and test whether or not

(i) LiX = XLi

and
(ii) x ∈ Li.

Whenever the answers to both of the questions is affirmative output the input
x. The correctness of the procedure follows since C(X) is assumed to be regular.
Note also that the tests in (i) and (ii) can be done since Li’s and X are effectively
known regular languages.

Theorem 3 is a bit amusing since it gives a meaningful example of the case
where the regularity implies the recursiveness. Note also that a weaker assump-
tion that C(X) is only context-free would not allow the proof, since the question
in (i) is undecidble for contex-free languages, see [4].

We conclude with more practical comments. Although we have not been
able to use our fixed point approach to answer Conway’s Problem even in some
new special cases, we can use it for concrete examples. Indeed, as shown by
experiments, in most cases the iteration terminates in a finite number of steps.
Typically in these cases the centralizer is of one of the following forms:

130 Karel Culik II, Juhani Karhumäki, and Petri Salmela

Fig. 6. The finite automaton recognizing X6

(i) A+,
(ii) X+, or
(iii) {w ∈ A+ |wX,Xw ⊆ XX+}.

However, in some cases, as shown in Section 4, an infinite number of iterations
are needed – and consequently some ad hoc methods are required to compute
the centralizer.

The four element set of example 1, is an instance where the centralizer is not
of any of the forms (i)–(iii). This, as well as some other such examples, can be
verified by the fixed point approach using a computer, see [16].

References

1. Berstel, J., Karhumäki, J.: Combinatorics on words – A tutorial, Bull. EATCS 79
(2003), 178–229.

2. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In Rozenberg, G., Salomaa,
A. (eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag (1997) 329–438.

3. Choffrut, C., Karhumäki, J., Ollinger, N.: The commutation of finite sets: a chal-
lenging problem, Theoret. Comput. Sci., 273 (1–2) (2002) 69–79.

4. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A., Decision questions concerning
semilinearity, morphisms and commutation of languages, J. Comput. System Sci.
65 (2002) 278–294.

Fixed Point Approach to Commutation of Languages 131

5. Hopcroft, J., Ullman, J., Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley (1979).

6. Karhumäki, J.: Challenges of commutation: an advertisement, in Proc of FCT
2001, LNCS 2138, Springer (2001) 15–23

7. Karhumäki, J., Latteux, M., Petre, I.: The commutation with codes and ternary
sets of words, in Proc. of STACS 2003, LNCS 2607, Springer (2003), 74–84; final
version to appear.

8. Karhumäki, J. and Petre, I.: Conway’s problem for three-word sets, Theoret. Com-
put. Sci., 289/1 (2002) 705–725.

9. Karhumäki, J. and Petre, I., Two problems on commutation of languages, in: G.
Păun, G. Rozenberg and A. Salomaa (eds.), Current Trends in Theoretical Com-
puter Science, World Scientific, to appear.

10. Karhumäki, J., Plandowski, W., Rytter, W.: On the complexity of decidable cases
of the commutation problem of languages, LNCS 2138, Springer (2001) 193–203;
final version to appear.

11. Lothaire, M.: Combinatorics on Words (Addison-Wesley, Reading, MA.), (1983).
12. Lothaire, M.: Algebraic Combinatorics on Words (Cambridge University Press),

(2002).
13. Păun, G., Rozenberg, G. and Salomaa, A., DNA Computing. New Computing

Paradigms, Texts in Theoretical Computer Science. An EATCS series. Springer
(1998)

14. Petre, I.: Commutation Problems on Sets of Words and Formal Power Series, PhD
Thesis, University of Turku (2002)

15. Ratoandromanana, B.: Codes et motifs, RAIRO Inform. Theor., 23(4) (1989) 425–
444.

16. Salmela, P., Rationaalisen kielen sentralisaattorista ja sen määrittämisestä kiin-
topistemetodilla, Master’s theses, University of Turku (2002)

17. Salomaa, A., Formal Languages, Academic Press (1973).
18. Grail+ 3.0 – software package, Department of Computer Science, Univer-

sity of Western Ontario, Canada, http://www.csd.uwo.ca/research/grail/

grail.html.

Remarks on Relativisations and DNA Encodings

Claudio Ferretti and Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca

via Bicocca degli Arcimboldi 8, 20136 Milano, Italy
{ferretti, mauri}@disco.unimib.it

Abstract. Biomolecular computing requires the use of carefully crafted
DNA words. We compare and integrate two known different theoretical
approaches ([2,3]) to the encoding problem for DNA languages: one is
based on a relativization of concepts related to comma free codes, the
other is a generalization to any given mapping θ of the notion of words
appearing as substrings of others. Our first results show which parts of
these two formalisms are in fact equivalent. The remaining remarks sug-
gest how to define, to the benefits of laboratory experiments, properties
of DNA encodings which merge relativization from [2] and the generality
of θ from [3].

1 Introduction

A notion which has always been interesting for the problem of DNA encoding
is that of comma free codes ([1]): in comma free codes, no word will appear as
a substring across the concatenation of two words, i.e., somehow joining them
together. This means that when concatenating many words from a comma free
code, there will be no mistake in looking for borders between adjacent words,
and thus, for instance, no mistake in parsing the message by starting from the
middle of the string.

This property fits nicely with what we want in a test tube. If we perform a
detection experiment with short probes on a long single stranded DNA molecule,
each probe could hybridize independently to any corresponding pattern, each
acting as a small parser working inside the longer string.

Head, in [2], described a formalism where it was proved how even codes which
are not comma free could be used for biocomputing experiments. In fact, they
can be split in sub-codes which are comma free, and whose corresponding sets
of DNA probes can be put separately in the test tube, so to avoid unwanted
hybridizations.

But one difference between strings and DNA molecules is that DNA probes
could also hybridize among them, or the longer molecule could fold and self-
hybridize. For this reason, theoretical models of biomolecular computation and
DNA encoding try to consider how to avoid Watson-Crick reverse complemen-
tarity, which is required by self-hybridization.

In particular, Hussini et al. [3] define a formalism which further generalize
these considerations. They study languages that avoid, in strings resulting from

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 132–138, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Remarks on Relativisations and DNA Encodings 133

the concatenation of codewords, the undesired appearance of substrings which
are mapping of other codewords, according to some generic morphism, or anti-
morphism, θ.

In this paper we will formally present some relationships between the above
mentioned two formalisms. In Section 3 we show that the first one is a relativising
generalization of the second one, for θ being the identity mapping. On the other
hand, in Section 4 we also suggest a way to combine the relativization of [2] with
the generality of θ of [3].

As background references, we can point for some theory of codes to [1], and for
a presentation of DNA computing to [7]. Further results related to the approach
of [3] are presented in [6] and [5], and a software implementing some ideas from
such formalism is discussed in [4].

2 Definitions and Known Results

For a finite alphabet X , X∗ is the free monoid generated by X . Elements of X∗

will be called indifferently strings or words.
Any subset of X∗ is a language. In particular, a subset C of X∗ is a code

if it is uniquely decipherable, that is, for each word w ∈ C∗, there is only one
non-negative integer n and one finite sequence c1, c2, . . . , cn−1, cn of words in
C for which w = c1c2 . . . cn−1cn. Please note that the choice of considering a
code as being always uniquely decipherable is the same as in [3], while in [2] any
language was also considered a code.

A string w in X∗ is a factor of a language L if there are strings x, y ∈ X∗ for
which xwy ∈ L.

Among the definitions from [2], we are interested in those dealing with lan-
guages which avoid some ways of having common patterns in pairs of words.

Definition 1. A language C is called solid iff the following two properties are
satisfied:

1. u and puq in C can hold only if pq is null,
2. pu and uq in C and u non-null can hold only if pq is null.

Moreover, if a language satisfies property 1 above, then it is called solid/1.

Property 1 forbids having a words inside another word, while the second required
property forbids having the suffix of a word overlapping the prefix of another
word.

The following definition introduces the notion of relativization, where the
same properties above are verified only on words appearing in strings of a (po-
tentially) different language.

Definition 2. A language C is called solid relative to a language L iff the
following two properties are satisfied:

1. w = ypuqz in L with u and puq in C can hold only if pq is null,
2. w = ypuqz in L with pu and uq in C and u non-null can hold only if pq is

null.

134 Claudio Ferretti and Giancarlo Mauri

Moreover, if a language satisfies property 1 above, then it is called solid/1
relative to L.

One last definition from [2] considers another relativised property:

Definition 3. A string w in A∗ is a join relative to a language L iff w is a
factor of L and for every u, v in A∗ for which uwv in L, both u and v are also
in L. A word w in a language L is a join in L iff w is a join relative to L∗.

J(L) will denote the set of all joins in the language L.

In [2] it is proved that:

– if a language on alphabet A is solid, then it is solid relative to every language
in A∗,

– if a language is solid relative to a language L, then it is solid relative to every
subset of L,

– if C is a code, then J(C) is solid relative to C∗ (Proposition 4 in [2]).

The definitions from [3] deal with involutions. An involution θ : A → A is a
mapping such that θ2 equals to the identity mapping I: I(x) = θ(θ(x)) = x for
all x ∈ A. The following definitions, presented here with notations made uniform
with those of [2], describe languages which avoid having a word mapped to a
substring of another word, or to a substring of the concatenation of two words.

Definition 4. If θ : A∗ → A∗ is an involution, then a language L ⊆ A∗ is said
to be θ-compliant iff u and xθ(u)y in L can hold only if xy is null.

Moreover, if L ∩ θ(L) = ∅, then L is called strictly θ-compliant.

In [5] it is proved that a language is strictly θ-compliant iff u and xθ(u)y in L
never holds.

Definition 5. If θ : A∗ → A∗ is an involution, then a language L ⊆ A∗ is said
to be θ-free iff u in L with xθ(u)y in L2 can hold only if x or y are null.

Moreover, if L ∩ θ(L) = ∅, then L is called strictly θ-free.

In [3] it is proved that a language is strictly θ-free iff u in L with xθ(u)y in L2

never holds.
In [3] it is also proved that if a language L is θ-free, then both L and θ(L)

are θ-compliant.

3 Relationships Between the Two Formalisms

If we restrict ourselves to the case of θ = I, with I being the identity mapping,
then we can discuss the similarities between the properties of a DNA code as
defined in [2] compared to those defined in [3].

First of all we observe that I-compliance and I-freedom cannot be strict,
since L ∩ I(L) = L (unless we are in the case of L = ∅).

Remarks on Relativisations and DNA Encodings 135

Moreover, I-compliance is equivalent to enjoying the first property required
by solidity, which we called solidity/1. Therefore, if a language L is solid, or L
is solid relative to a language in which all strings in L are factors, then L is also
I-compliant.

Finally, it is obvious that if L is solid/1 then it is solid/1 relative to any
language.

The following simple lemma considers another fact about solidity/1 proper-
ties, and will also be used later. It applies, for instance, to the case of M = L,
or M = L2, or M = L∗.

Lemma 1. A language L is solid/1 iff L is solid/1 relative to a language M in
which all strings in L are factors.

Proof. Solidity/1 is obviously stronger than any relative solidity/1; on the other
hand, relative solidity/1 of M verifies that no word of L is proper substring of
any other.

Proposition 1. A language L is solid relative to L∗ iff L is solid relative to L2.

Proof. It is immediate to verify that solidity relative to L∗ implies solidity rel-
ative to L2, since L2 is a subset of L∗. We prove the other direction by contra-
diction: if L is not solid relative to L∗ then either L falsifies condition 1, and
the same would be relatively to L2, or a word in L2 falsifies relative solidity, and
this itself would be the contradiction, or a word w = ypuqz ∈ Ln+1, with pq non
null and n > 1, would contradict solidity. This last case would falsify solidity
relative to Ln in one of the ways that we will see, and so lead to contradiction
for L2. If w has a parsing in Ln+1according to which either yp has a prefix or qz
has a suffix in L, then we could build from w, by dropping such prefix or suffix,
a word which would falsify solidity in Ln. If no such parsing exists, then pu or
uq falsify condition 1 of relative solidity, by spanning on at least one word of L
in the string w.

Proposition 2. A language L is I-free iff L is solid relative to L∗.

Proof. Proposition 1 allows us to reduce the statement to consider only equiva-
lence with solidity relative to L2. We know that I-freedom implies I-compliance,
which in turns implies solidity/1 and, by Lemma 1, solidity/1 relative to M = L2.
By absurd, if L is I-free but would not enjoy second property required by the
relative solidity, then we would have a string w ∈ L2 such that w = ypuqz with
u non null and pu, uq ∈ L. This would contradict solidity/1 relative to L2, in
case yz, or p or q, would be null, or I-freedom in other cases; for instance, if y
and q are non null, word pu ∈ L would falsify I-freedom.

In the other direction, the solidity relative to L2 implies the I-freedom, oth-
erwise we would have a word st = yuz ∈ L2 such that u ∈ L and both y and z
are non null; u would contradict property 1 of relative solidity, if it is a substring
of s or t, or property 2 otherwise.

136 Claudio Ferretti and Giancarlo Mauri

We could say that these links between the two formalisms come at no surprise,
since both [2] and [3] chose their definitions in order to model the same reactions,
between DNA molecules, which have to be avoided.

To complete the picture, we could define the following language families:

– SOL, which contains all languages which are solid,
– IF , which contains all languages which are I-free,
– RSn and RS∗, which contain all languages L which are solid relative to Ln

and all languages L which are solid relative to L∗, respectively.

We can show the existence of a language E1 which is in RS2 but not in SOL,
and of a language E2 which is in RS1 but not in RS2: E1 = {adb, bda}, E2 =
{ab, c, ba} (E2 was suggested for a similar purpose in [2]).

The above results allow to state that, with n > 2:

SOL ⊂ RS2 = RSn = RS∗ = IF ⊂ RS1.

We observe that this can be considered as an alternative way of proving the
correctness of the two choices made in [2] and [3], which let by definition the
family of comma free codes be in RS∗ and IF , respectively. It appears that both
formalisms extend the notion of comma free codes: the first toward languages
which are not comma free, but which can contain comma free subsets J(C), and
the second toward the more general θ-freedom property.

4 Further Relativization

Relativization allowed in [2] to show how to scale an experiment on DNA mol-
ecules on a code C which is not comma free but that can be split in a number
of sub-codes J(Ck) which are comma free. This concept can be illustrated by
this informal notation: C =

⋃
k J(Ck), where C0 = C,Ci+1 = Ci\J(Ci). In fact,

we could use large codes, even when they are not comma free, by performing
the hybridization step of a DNA experiment as a short series of sub-steps. In
each sub-step we mix in the test tube, for instance, a long single stranded DNA
molecule with short probes which are words of a single Ck.

Here we want to move from comma free codes, i.e., solid w.r.t. Kleene clo-
sure or, equivalently, I-free, to a definition similar to that of J(C) but rel-
ative to θ-freedom, where involution θ is different from I. For instance, we
could be interested in the antimorphic involution τ on the four letter alpha-
bet Δ = {A,G,C, T} representing DNA nucleotides; τ will be defined so to
model the reverse complementarity between DNA words.

We first need to define the complement involution γ : Δ∗ → Δ∗ as mapping
each A to T , T to A, G to C, and C to G. The mirror involution μ : Δ∗ → Δ∗

maps a word u to a word μ(u) = v defined as follows:

u = a1a2 . . . ak, v = ak . . . a2a1, ai ∈ Δ, 1 ≤ i ≤ k.

Remarks on Relativisations and DNA Encodings 137

Now we can define the involution τ = μγ = γμ on Δ∗, modeling the Watson-
Crick mapping between complementary single-stranded DNA molecules.

Results from Section 3, and the fact that J(C) ⊆ C, allow us to restate
Proposition 4 from [2] (quoted in our Section 2) as follows: if C is a code, then
J(C) is I-free. In a similar way, we want a definition of Jτ (C), subset of C, so
that Jτ (C) is τ -free.

The experimental motivation of this goal is that τ -freedom, and not I-
freedom or relative solidity, would protect from the effects of unwanted reverse
complementarity. I-freedom guarantees that if we put a set of probes from J(C)
in the test tube, they will correctly hybridize to the hypothetical longer DNA
molecule, even if this is built from the larger set C. Nonetheless, among words
in J(C) there could still be words which can hybridize with words from the
same set J(C), interfering with the desired reactions. This would be formally
equivalent to say that J(C) is not τ -free.

We conjecture that we could define Jτ (C) as being related to J(C), as follows:

Jτ (C) = J(C)\τ(J(C)).

Such a subset of C would be I-free, since it is a subset of J(C), and would
avoid self hybridization among words of Jτ(C). Further, it would induce a split-
ting in each J(C), which would still allow to operate detection, i.e., matching
between probes and segments on a longer molecule, in a relativised, step by step
way, even if with a greater number of steps. Further theoretical studies on this
issue is being carried on.

5 Final Remarks

In order to make these theoretical results actually useful for laboratory DNA
experiments, more work should be done on example codes.

It would be interesting to generate codes which enjoy the properties defined
in Section 4, and to compare them to codes generated as in Proposition 16 of [3]
or as in Proposition 4 of [5].

On the other hand, algorithms could be studied that would decide whether
a given code enjoys properties defined in Section 4, and whether there is a way
of splitting it into a finite number of Jτ (Ck) sub-codes.

References

1. J. Berstel, D. Perrin. Theory of Codes, Academic Press, 1985.
2. T. Head, “Relativised code concepts and multi-tube DNA dictionaries”, submitted,

2002.
3. S. Hussini, L. Kari, S. Konstantinidis. “Coding properties of DNA languages”. The-

oretical Computer Science, 290, pp.1557–1579, 2003.
4. N. Jonoska, D. Kephart, K. Mahaligam. “Generating DNA code words”, Congres-

sum Numeratium, 156, pp.99-110, 2002.

138 Claudio Ferretti and Giancarlo Mauri

5. N. Jonoska, K. Mahalingam. “Languages of DNA code words”. Preliminary Pro-
ceedings of DNA 9 Conference, pp.58–68, 2003

6. L. Kari, R. Kitto, G. Thierrin. “Codes, involutions and DNA encoding”, Formal and
Natural Computing, Lecture Notes in Computer Science 2300, pp.376–393, 2002.

7. Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing. New Computing Paradigms,
Springer Verlag, 1998.

Splicing Test Tube Systems and Their Relation

to Splicing Membrane Systems

Franziska Freund1, Rudolf Freund2, and Marion Oswald2

1 Gymnasium der Schulbrüder, Strebersdorf
Anton Böck-Gasse 37, A-1215 Wien, Austria

franziska@emcc.at
2 Department of Computer Science

Technical University Wien
Favoritenstrasse 9, A-1040 Wien Austria

{rudi, marion}@emcc.at

Abstract. We consider a variant of test tube systems communicating
by applying splicing rules, yet without allowing operations in the tubes
themselves. These test tube systems communicating by applying splic-
ing rules of some restricted type are shown to be equivalent to a variant
of splicing test tube systems using a corresponding restricted type of
splicing rules. Both variants of test tube systems using splicing rules
are proved to be equivalent to membrane systems with splicing rules as-
signed to membranes, too. In all the systems considered in this paper,
for the application of rules leading from one configuration to the suc-
ceeding configuration we use a sequential model, where only one splicing
rule is applied in one step; moreover, all these systems have universal
computational power.

1 Introduction

Already in 1987, (a specific variant of) the splicing operation was introduced by
Tom Head (see [10]). Since then, (formal variants of) splicing rules have been
used in many models in the area of DNA computing, which rapidly evolved after
Adleman in [1] had described how to solve an instance of the Hamiltonian path
problem (an NP-complete problem) in a laboratory using DNA. The universality
of various models of splicing systems (then also called H systems) was shown in
[8] and [14].

Distributed models using splicing rules theoretically simulating possible lab
implementations were called test tube systems. The universality of test tube
systems with splicing rules first was proved in [2]; optimal results with respect
to the number of tubes showing that two tubes are enough were proved in [7]
(Pixton’s results in [16] show that only regular sets can be generated using only
one tube) . A first overview on the area of DNA computing was given in [15],
another comprehensive overview can be found in [17].

In this paper we introduce a variant of test tube systems communicating by
applying splicing rules to end-marked strings, yet without allowing operations in

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 139–151, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

140 Franziska Freund, Rudolf Freund, and Marion Oswald

the tubes themselves. At each computation step, i.e., at each communication step
from tube i to tube j, only one splicing rule is applied using one axiom (which
we assume to be provided by the communication rule) and one other string
from tube i (which is no axiom); the result of the application of the splicing
rule then is moved to tube j. We suppose that this variant of test tube systems
communicating by splicing may be interesting for lab applications, too. For all
other systems considered in this paper, we shall also use this special variant of
splicing rules where exactly one axiom is involved.

In 1998, Gheorghe Păun introduced membrane systems (see [11]), and since
then the field of membrane systems (soon called P systems) has been growing
rapidly. In the original model, the rules responsible for the evolution of the
systems were placed inside the region surrounded by a membrane and had to be
applied in a maximally parallel way. In most variants of P systems considered so
far, the membrane structure consisted of membranes hierarchically embedded in
the outermost skin membrane, and every membrane enclosed a region possibly
containing other membranes and a finite set of evolution rules. Moreover, in the
regions multisets of objects evolved according to the evolution rules assigned
to the regions, and by applying these evolution rules in a non-deterministic,
maximally parallel way, the system passed from one configuration to another
one, in that way performing a computation.

Sequential variants of membrane systems were introduced in [5]. Various
models of membrane systems were investigated in further papers, e.g., see [3],
[11], [12]; for a comprehensive overview see [13], and recent results and develop-
ments in the area can be looked up in the web at [19].

A combination of both ideas, i.e., using splicing rules in P systems, was
already considered from the beginning in the area of membrane systems, e.g., see
[3]; for other variants, e.g., splicing P systems with immediate communication,
and results the reader is referred to [13]. Non-extended splicing P systems and
splicing P systems with immediate communication with only two membranes
can already generate any recursively enumerable language as is shown in [18].
In [6], sequential P systems with only two membranes as well as splicing rules
and conditions for the objects to move between the two regions (in some sense
corresponding to the filter conditions of test tube systems) were shown to be
universal. In [9] the model of P systems with splicing rules assigned to membranes
was introduced; using strings from inside or outside the membrane, a splicing
rule assigned to the membrane is applied and the resulting string is sent inside
or outside the membrane. As the main results in this paper we show that these
P systems with splicing rules assigned to membranes are equivalent to splicing
test tube systems as well as to test tube systems communicating by splicing,
which are introduced in this paper.

In the following section we first give some preliminary definitions and recall
some definitions for splicing systems and splicing test tube systems; moreover,
we introduce our new variant of test tube systems communicating by applying
splicing rules (not using splicing rules in the test tubes themselves); finally, we
recall the definition of P systems with splicing rules assigned to membranes. In

Splicing Test Tube Systems 141

the third section we show that both variants of test tube systems considered in
this paper are equivalent and therefore have the same computational power. In
the fourth section we show that these variants of test tube systems using splicing
rules and P systems with splicing rules assigned to membranes are equivalent,
too. An outlook to related results and a short summary conclude the paper.

2 Definitions

In this section we define some notions from formal language theory and recall
the definitions of splicing schemes (H-schemes, e.g., see [2], [14]) and splicing test
tube systems (HTTS, e.g., see [2], [7]). Moreover, we define the new variant of
test tube systems with communication by splicing (HTTCS). Finally, we recall
the definition of membrane systems with splicing rules assigned to membranes
as introduced in [9].

2.1 Preliminaries

An alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by V ∗;
the empty string is denoted by λ, and V ∗ \ {λ} is denoted by V +. By | x | we
denote the length of the word x over V . For more notions from the theory of
formal languages, the reader is referred to [4] and [17].

2.2 Splicing Schemes and Splicing Systems

A molecular scheme is a pair σ = (B,P), where B is a set of objects and P is a
set of productions. A production p in P in general is a partial recursive relation
⊆ Bk × Bm for some k,m ≥ 1, where we also demand that for all w ∈ Bk the
range p (w) is finite, and moreover, there exists a recursive procedure listing all
v ∈ Bm with (w, v) ∈ p. For any two sets L and L′ over B, we say that L′ is
computable from L by a production p if and only if for some (w1, ..., wk) ∈ Bk

and (v1, ..., vm) ∈ Bm with (w1, ..., wk, v1, ..., vm) ∈ p we have {w1, ..., wk} ⊆ L
and L′ = L∪{v1, ..., vm} ; we also write L =⇒p L′ and L =⇒σ L′. A computation
in σ is a sequence L0, ..., Ln such that Li ⊆ B, 0 ≤ i ≤ n, n ≥ 0, as well as
Li =⇒σ Li+1, 0 ≤ i < n; in this case we also write L0 =⇒n

σ Ln, and moreover,
we write L0 =⇒∗

σ Ln if L0 =⇒n
σ Ln for some n ≥ 0. A molecular system is a

triple σ = (B,P,A) where (B,P) is a molecular scheme and A is a set of axioms
from B. An extended molecular system is a quadruple σ = (B,BT , P, A), where
(B,P,A) is a molecular system and BT is a set of terminal objects with BT ⊆ B.
The language generated by σ is

L(σ) = {w | A =⇒∗
σ L, w ∈ L ∩BT } .

Throughout this paper we shall consider end-marked strings as objects in a
molecular scheme or system as well as in membrane systems. End-marked strings

142 Franziska Freund, Rudolf Freund, and Marion Oswald

are objects of the form mwn, where m,n ∈M, M a set of markers, and w ∈ W ∗

for an alphabet W with W ∩M = ∅.
A splicing scheme (over end-marked strings) is a pair σ, σ = (MW ∗M,R) ,

where M is a set of markers, W is an alphabet with W ∩M = ∅, and

R ⊆ (M ∪ {λ})W ∗#W ∗ (M ∪ {λ}) $ (M ∪ {λ})W ∗#W ∗ (M ∪ {λ}) ;

#, $ are special symbols not in M ∪W ; R is the set of splicing rules. For x, y, z ∈
MW ∗M and a splicing rule r = u1#u2$u3#u4 in R we define (x, y) =⇒r z if and
only if x = x1u1u2x2, y = y1u3u4y2, and z = x1u1u4y2 for some x1, y1 ∈MW ∗∪
{λ} , x2, y2 ∈ W ∗M ∪ {λ} . By this definition, we obtain the derivation relation
=⇒σ for the splicing scheme σ in the sense of a molecular scheme as defined
above. An extended H-system (or extended splicing system) γ is an extended
molecular system of the form γ = (MW ∗M,MT W ∗

T MT , R,A) , where MT ⊆M
is the set of terminal markers, VT ⊆ V is the set of terminal symbols, and A is
the set of axioms.

2.3 Splicing Test Tube Systems

A splicing test tube system (HTTS for short) with n test tubes is a construct σ,

σ = (MW ∗M,MT W ∗
T MT , A1, ..., An, I1, ..., In, R1, ..., Rn, D)

where

1. M is a set of markers, W is an alphabet with W ∩M = ∅;
2. MT ⊆M is the set of terminal markers and WT ⊆W is the set of terminal

symbols;
3. A1, ..., An are the sets of axioms assigned to the test tubes 1, ..., n, where

Ai ⊆MW ∗M, 1 ≤ i ≤ n; moreover, we define A :=
n⋃

i=1

Ai;

4. I1, ..., In are the sets of initial objects assigned to the test tubes 1, ..., n,

where Ii ⊆ MW ∗M, 1 ≤ i ≤ n; moreover, we define I :=
n⋃

i=1

Ii and claim

A ∩ I = ∅;
5. R1, ..., Rn are the sets of splicing rules over MW ∗M assigned to the test

tubes 1, ..., n, 1 ≤ i ≤ n; moreover, we define R :=
n⋃

i=1

Ri; every splicing rule

in Ri has to contain exactly one axiom from Ai (which, for better readability,
will be underlined in the following) as well as to involve another end-marked
string from MW ∗M \A;

6. D is a (finite) set of communication relations between the test tubes in σ of
the form (i, F, j) , where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and F is a filter of the form
{A}W ∗ {B} with A,B ∈M (for any i, j, there may be any finite number of
such communication relations).

In the interpretation used in this section, a computation step in the system
σ run as follows: In one of the n test tubes, a splicing rule from Ri is applied

Splicing Test Tube Systems 143

to an object in the test tube (which is not an axiom in A) together with an
axiom from Ai. If the resulting object can pass a filter F for some (i, F, j) ∈ D,
then this object may either move from test tube i to test tube j or else remain
in test tube i, otherwise it has to remain in test tube i. The final result of the
computations in σ consists of all terminal objects from MT W ∗

T MT that can be
extracted from any of the n tubes of σ.

We should like to emphasize that for a specific computation we assume all
axioms and all initial objects not to be available in an infinite number of copies,
but only in a number of copies sufficiently large for obtaining the desired result.

2.4 Test Tube Systems Communicating by Splicing

A test tube system communicating by splicing (HTTCS for short) with n test
tubes is a construct σ,

σ = (MW ∗M,MT W ∗
T MT , A, I1, ..., In, C)

where

1. M is a set of markers, W is an alphabet with W ∩M = ∅;
2. MT ⊆M is the set of terminal markers and WT ⊆W is the set of terminal

symbols;
3. A is a (finite) set of axioms, A ⊆MW ∗M ;
4. I1, ..., In are the sets of initial objects assigned to the test tubes 1, ..., n,

where Ii ⊆ MW ∗M, 1 ≤ i ≤ n; moreover, we define I :=
n⋃

i=1

Ii and claim

A ∩ I = ∅;
5. C is a (finite) set of communication rules of the form (i, r, j) , where 1 ≤ i ≤

n, 1 ≤ j ≤ n, and r is a splicing rule over MW ∗M which has to contain
exactly one axiom from A as well as to involve another end-marked string
from MW ∗M \A; moreover, we define R :=

⋃
(i,r,j)∈C

{r} .

In the model defined above, no rules are applied in the test tubes themselves;
an end-marked string in test tube i is only affected when being communicated
to another tube j if the splicing rule r in a communication rule (i, r, j) can be
applied to it; the result of the application of the splicing rule r to the end-marked
string together with the axiom from A which occurs in r is communicated to
tube j. The final result of the computations in σ consists of all terminal objects
from MT W ∗

T MT that can be extracted from any of the n tubes of σ.
We should like to point out that again we avoid (target) conflicts by assum-

ing all initial objects to be available in a sufficiently large number of copies,
and, moreover, we then assume only one copy of an object to be affected by a
communication rule, whereas the other copies remain in the original test tube.
Obviously, we assume the axioms used in the communication rules to be available
in a sufficiently large number.

144 Franziska Freund, Rudolf Freund, and Marion Oswald

Example 1. The HTTCS (see Figure 1)({A,B,Z} {a, b}∗ {A,B,Z} , {A,B} {a, b}∗ {A,B} , C, {AaZ,ZbB} , {AabB} , ∅)
with the communication rules

1. (1, Aa#Z$A#a, 2) (using the axiom AaZ) and

2. (2, b#B$Z#bB, 1) (using the axiom ZbB)

generates the linear (but not regular) language{
Aan+1bnB,AanbnB | n ≥ 1

}
.

� �

�

�
�� �

�

�
�AabB

1 2Aa#Z$A#a b#B$Z#bB

Fig. 1. Example of an HTTCS.

2.5 P Systems with Splicing Rules Assigned to Membranes

A P system with splicing rules assigned to membranes (PSSRAM for short) is a
construct Π ,

Π = (MW ∗M,MT W ∗
T MT , μ, A0, ..., An, I0, ..., In, R1, ..., Rn)

where

1. M is a set of markers, W is an alphabet with W ∩M = ∅;
2. MT ⊆M is the set of terminal markers and WT ⊆W is the set of terminal

symbols;
3. μ is a membrane structure (with the membranes labelled by non-negaitive

integers 0, ..., n in a one-to-one manner);
4. A0, ..., An are the sets of axioms assigned to the membranes 0, ..., n, where

Ai ⊆MW ∗M, 0 ≤ i ≤ n; moreover, we define A :=
n⋃

i=0

Ai;

5. I0, ..., In are the sets of initial objects assigned to the membranes 0, ..., n,

where Ii ⊆ MW ∗M, 0 ≤ i ≤ n; moreover, we define I :=
n⋃

i=0

Ii and claim

A ∩ I = ∅;

Splicing Test Tube Systems 145

6. R1, ..., Rn are the sets of rules assigned to the membranes 1, ..., n which are
of the form

(or1, or2; r; tar)

for a splicing rule r over MW ∗M ; every splicing rule occurring in a rule in Ri

has to contain exactly one axiom from A as well as to involve another end-
marked string from MW ∗M \ A; or1, or2 ∈ {in, out} indicate the origins
of the objects involved in the application of the splicing rule r, whereas
tar ∈ {in, out} indicates the target region the resulting object has to be sent
to, where in points to the region inside the membrane and out points to the
region outside the membrane. Observe that we do not assign rules to the
skin membrane labelled by 0.

A computation in Π starts with the initial configuration with the axioms from
Ak as well as the initial objects from Ik, 1 ≤ k ≤ n, being placed in region k.
We assume all objects occurring in Ak ∪ Ik, 1 ≤ k ≤ n, to be available in an
arbitrary (unbounded) number. A transition from one configuration to another
one is performed by applying a rule from Rk, 1 ≤ k ≤ n. The language generated
by Π is the set of all terminal objects w ∈ MT W ∗

T MT obtained in any of the
membrane regions by some computation in Π.

We should like to emphasize that we do not demand the axioms or initial
objects really to appear in an unbounded number in any computation of Π.
Instead we apply the more relaxed strategy to start with a limited but large
enough number of copies of these objects such that a desired terminal object
can be computed if it is computable by Π when applying the rules sequentially
in a multiset sense; we do not demand things to evolve in a maximally parallel
way. In that way we avoid target conflicts, i.e., the other copies of the strings
involved in the application of a rule (being consumed or generated) just remain
in their regions. This working mode of a P system with splicing rules assigned
to membranes also reflects the sequential way of computations considered in the
models of test tube systems defined above.

3 Splicing Test Tube Systems and Test Tube Systems
Communicating by Splicing Are Equivalent

In this section we show that the splicing test tube systems and the test tube
systems communicating by splicing newly introduced in this paper are equivalent
models for generating end-marked strings.

Theorem 1. For every HTTS we can construct an equivalent HTTCS.

Proof. Let

σ = (MW ∗M,MT W ∗
T MT , A1, ..., An, I1, ..., In, R1, ..., Rn, D)

be an HTTS.

146 Franziska Freund, Rudolf Freund, and Marion Oswald

� �

i jf(i, j, m) = {A}W ∗{B}
Ai Ii

Ri

Aj Ij

Rj

Fig. 2. Elements of HTTS σ.

Then we construct an equivalent HTTCS

σ′ = (M ′W ∗M ′,MT W ∗
T MT , A, I1, ..., In, I ′1, ..., I

′
l , C)

where

1. M ′ = M ∪ {Z} ;

2. A =
(

n⋃
i=1

Ai

)
∪ {XZ,ZX | X ∈M} ;

3. for every filter f (i, j,m) , 1 ≤ m ≤ ni,j , ni,j ≥ 0, of the form {A}W ∗ {B}
between the tubes i and j we introduce a new test tube (i, j,m) in σ′; these
new test tubes altogether are the l additional test tubes we need in σ′;

4. I ′k = ∅, 1 ≤ k ≤ l;
5. the communication rules in C are defined in the following way:

(a)

� �

�

�
�Ii

i r ∈ Ri

Fig. 3. Simulation of r ∈ Ri in σ′.

(b) every splicing rule r in Ri is simulated by the communication rule (i, r, i)
in C (here we use the axioms from Ai), see Figure 3;

�

�

�
�� �

�

�
��

i (i, j, m) j

A#Z$A# #B$Z#B

Fig. 4. Simulation of filter {A}W ∗{B} between test tubes i and j in σ′.

Splicing Test Tube Systems 147

(c) every filter f (i, j,m) , 1 ≤ m ≤ ni,j , ni,j ≥ 0, of the form {A}W ∗ {B}
between the tubes i and j is simulated by the communication rules(
i, A#Z$A#, (i, j,m)

)
and

(
(i, j,m) ,#B$Z#B, j

)
in C (here we use

the additional axioms AZ and ZB), see Figure 4.

The definitions given above completely specify the HTTCS σ′ generating the
same language as the given HTTS σ.

Theorem 2. For every HTTCS we can construct an equivalent HTTS.

Proof. We have to guarantee that in the HTTS every splicing rule is applied
only once when simulating the splicing rule used at a communication step in the
HTTCS (see Figure 5).

�

�
�� �

i jr

Fig. 5. Communication rule in HTTCS.

For this simulation, we have to consider two cases:

1. the splicing rule r in the communication rule (i, r, j) is of the form r =(
Au1#v1B$Cu2#v2

)
; then for every X ∈ M we take two new test tubes

((i, r, j) , X, 1) and ((i, r, j) , X, 2) . In test tube ((i, r, j) , X, 1) , the splicing
rule r̃ =

(
Ãu1#v1B$Cu2#v2

)
is applied using the axiom ãx = Ãu1v1B. The

resulting end-marked string beginning with the marker Ã then can pass the
filter {Ã}W ∗{X} from tube ((i, r, j) , X, 1) to tube ((i, r, j) , X, 2) , where the
splicing rule r′ =

(
Au1#v1B$Ãu1#

)
is applied using the (original) axiom

ax = Au1v1B. After that, the resulting end-marked string can pass the filter
{A}W ∗{X} to test tube j.

2. the splicing rule r in the communication rule (i, r, j) is of the form r =(
u1#v1D$Au2#v2B

)
; then for every X ∈ M we take two new test tubes

((i, r, j) , X, 1) and ((i, r, j) , X, 2) . In test tube ((i, r, j) , X, 1) , the splicing
rule r̃ =

(
u1#v1D$Au2#v2B̃

)
is applied using the axiom ãx = Au2v2B̃.

The resulting end-marked string ending with the marker B̃ then can pass the
filter {X}W ∗{B̃} from tube ((i, r, j) , X, 1) to tube ((i, r, j) , X, 2) , where the
splicing rule r′ =

(
#v2B̃$Au2#v2B

)
is applied using the (original) axiom

ax = Au2v2B. After that, the resulting end-marked string can pass the filter
{X}W ∗{B̃} to test tube j.

From these constructions described above, it is obvious how to obtain a
complete description of the HTTS for a given HTTCS; the remaining details are
left to the reader.

148 Franziska Freund, Rudolf Freund, and Marion Oswald

� � � � � �

i ((i, r, j), X, 1) ((i, r, j), X, 2) j

{C}W ∗{X}
or

{X}W ∗{D}
r̃

ãx

{Ã}W ∗{X}
or

{X}W ∗{B̃}
r′

ax

{A}W ∗{X}
or

{X}W ∗{B}

Fig. 6. Simulation of communication rule (i, r, j) in HTTS.

As we can derive from the results proved in [7], the results proved in this
section show that test tube systems communicating by splicing have universal
computational power; in contrast to splicing test tube systems, where according
to the results proved in [7] already systems with two test tubes are universal,
we cannot bound the number of membranes in the case of test tube systems
communicating by splicing.

4 Test Tube Systems Using Splicing Rules and Membrane
Systems with Splicing Rules Assigned to Membranes
Are Equivalent

In this section we show that when equipped with splicing rules assigned to mem-
branes, (sequential) P systems are equivalent to test tube systems using splicing
rules.

Theorem 3. For every HTTS we can construct an equivalent PSSRAM.

Proof. Let

σ = (M ′W ∗M ′,M ′
TW ∗

T M ′
T , A′

1, ..., A
′
n, I ′1, ..., I

′
n, R′

1, ..., R
′
n, D)

be an HTTS.
Then we construct an equivalent PSSRAM (see Figure 7)

Π = (MW ∗M,MTW ∗
T MT , μ, A0, ..., An+l, I0, ..., In+l, R1, ..., Rn+l)

where

1. M = {Xi | X ∈M ′, 1 ≤ i ≤ n} ∪ {Z} ; MT = {Xi | X ∈M ′
T , 1 ≤ i ≤ n} ;

2. for every test tube i we use the membrane i in Π ; moreover, for every filter
f (i, j,m) ∈ D, 1 ≤ m ≤ ni,j , ni,j ≥ 0, of the form {A}W ∗ {B} between the
tubes i and j we take a membrane (i, j,m) in Π ; these additional membranes
altogether are l membranes within the skin membrane;

3. A0 = ∅, Ai = {CiwDi | CwD ∈ Ai} , 1 ≤ i ≤ n;
A(i,j,m) = {AjZ,ZBj | f (i, j,m) = {A}W ∗ {B} , (i, f (i, j,m) , j) ∈ D} ;

Splicing Test Tube Systems 149

0

I0

i

Ai

(i, j, m)

A(i,j,m)

Fig. 7. PSSRAM simulating HTTS.

4. I0 = {AiwBi | AwB ∈ I ′i, 1 ≤ i ≤ n} ; Ik = ∅, 1 ≤ k ≤ l;
5. Ri =

{(
in, out;Ciu1#v1Di$Aiu2#v2; out

) | (Cu1#u2D$Au2#v2) ∈ R′
i

}∪{(
out, in;u1#v1Bi$Ciu2#v2Di; out

) | (u1#v1B$Cu2#v2D) ∈ R′
i

}
,

1 ≤ i ≤ n;
moreover, for i �= j (which can be assumed without loss of generality) let
f (i, j,m) = {A}W ∗{B} be a filter between tubes i and j; then we take
R(i,j,m) =

{(
in, out;Aj#Z$Ai#; in

)
,
(
in, in; #Bi$Z#Bj ; out

)}
.

The construction elaborated above proves that for every splicing test tube
system we can effectively construct an equivalent membrane system with splicing
rules assigned to membranes.

Theorem 4. For every PSSRAM we can construct an equivalent HTTCS.

Proof. Let

Π = (MW ∗M,MT W ∗
T MT , μ, A0, ..., An, I0, ..., In, R1, ..., Rn)

be a PSSRAM. Without loss of generality, we assume that every axiom needed
in the splicing rules of Ri, 1 ≤ i ≤ n, is available in the corresponding given sets
of axioms Aj , 0 ≤ j ≤ n. Then we can easily construct an equivalent HTTCS

σ = (MW ∗M,MT W ∗
T MT , A, I0, ..., In, C)

where A =
(

n⋃
i=0

Ai

)
and the communication rules in C are defined in the

following way:
Let k be a membrane, 1 ≤ k ≤ n (remember that there are no rules assigned

to the skin membrane, which is labbelled by 0), and let the surrounding mem-
brane be labelled by l, and let (or1, or2; r; tar) be a rule assigned to membrane
k for some splicing rule r. Then (or1, or2; r; tar) can be simulated by a commu-
nication rule (i, r, j) , where j = k for tar = in and j = l for tar = out as well
as

150 Franziska Freund, Rudolf Freund, and Marion Oswald

1. for r being of the form Au1#v1B$u2#v2, i = k for or2 = in and i = l for
or2 = out,

2. for r being of the form u1#v1$Au2#v2B, i = k for or1 = in and i = l for
or1 = out.

The construction elaborated above proves that for every membrane system
with splicing rules assigned to membranes we can effectively construct an equiv-
alent test tube system communicating by splicing.

As the results in this section show, membrane systems with splicing rules
assigned to membranes are eqivalent to the variants of test tube systems using
splicing rules that we considered in the previous section, and therefore they have
universal computational power (also see [9]), too.

5 Summary and Related Results

In this paper we have shown that splicing test tube systems and the new variant
of test tube systems communicating by splicing are equivalent to (sequential)
P systems using splicing rules assigned to membranes. Although using quite
restricted variants of splicing rules on end-marked strings, all the systems con-
sidered in this paper have universal computational power, which results already
follow from results obtained previously.

For splicing test tube systems, the results proved in [7] show that two test
tubes are enough for obtaining universal computational power, which result is
optimal with respect to the number of tubes. For P systems using splicing rules
assigned to membranes, the results proved in [9] (there the environment played
the rôle of the region enclosed by the skin membrane) show that (with respect
to the definitions used in this paper) two membranes are enough, which result
then is optimal with respect to the number of membranes. On the other hand,
the number of test tubes in the new variant of test tube systems communicating
by splicing cannot be bounded.

Acknowledgements

We gratefully acknowledge many interesting and fruitful discussions on splicing
and DNA computing with Tom Head.

References

1. L.M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 226 (1994), 1021–1024.

2. E. Csuhaj-Varjú, L. Kari, Gh. Păun, Test tube distributed systems based on splic-
ing, Computers and Artificial Intelligence, 15, 2 (1996), 211–232.

3. J. Dassow, Gh. Păun, On the power of membrane computing, Journal of Universal
Computer Science 5, 2 (1999), 33–49 (http://www.iicm.edu/jucs).

Splicing Test Tube Systems 151

4. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag (1989).

5. R. Freund, Generalized P-systems, Proceedings of Fundamentals of Computation
Theory Conf. (G. Ciobanu, Gh. Păun, eds.), Lecture Notes in Computer Science
1684, Springer-Verlag, Berlin (1999), 281–292.

6. F. Freund, R. Freund, Molecular computing with generalized homogenous P-
systems, DNA Computing. 6th International Workshop on DNA-Based Computers,
DNA 2000, Leiden, The Netherlands, June 2000, Revised Papers, Lecture Notes
in Computer Science 2054, Springer-Verlag, Berlin (2001), 130–144.

7. F. Freund, R. Freund, Test tube systems: When two tubes are enough, Develop-
ments in Language Theory, Foundations, Applications and Perspectives (G. Rozen-
berg, W. Thomas, eds.), World Scientific Publishing Co., Singapore (2000), 338–
350.

8. R. Freund, L. Kari, Gh. Păun, DNA computing based on splicing: The existence
of universal computers, Theory of Computing Systems, 32 (1999), 69–112.

9. F. Freund, R. Freund, M. Margenstern, M. Oswald, Yu. Rogozhin, S. Verlan, P
systems with cutting/recombination rules or splicing rules assigned to membranes,
Pre-Proceedings of the Workshop on Membrane Computing, WMC-2003 (A. Alha-
zov, C. Mart́ın-Vide, Gh. Păun, eds.), Tarragona, July 17–22 (2003), 241–251.

10. T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737–759.

11. Gh. Păun, Computing with membranes, Journal of Computer and System
Sciences 61, 1 (2000), 108–143 and TUCS Research Report 208 (1998)
(http://www.tucs.fi).

12. Gh. Păun, Computing with Membranes: an Introduction, Bulletin EATCS 67
(1999), 139–152.

13. Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin (2002).
14. Gh. Păun, Regular extended H systems are computationally universal, Journal of

Automata, Languages and Combinatorics, 1, 1 (1996), 27–37.
15. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Berlin (1998).
16. D. Pixton, Splicing in abstract families of languages, Theoretical Computer Sci-

ence 234 (2000), 135–166.
17. G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,

Berlin, Heidelberg (1997).
18. S. Verlan, About splicing P systems with immediate communication and non-

extended splicing P systems, Pre-Proceedings of the Workshop on Membrane Com-
puting, WMC-2003 (A. Alhazov, C. Mart́ın-Vide, Gh. Păun, eds.), Tarragona, July
17–22 (2003), 461–473.

19. The P Systems Web Page: http://psystems.disco.unimib.it.

Digital Information Encoding on DNA

Max H. Garzon1, Kiranchand V. Bobba1, and Bryan P. Hyde2

1 Computer Science, The University of Memphis
Memphis, TN 38152-3240, U.S.A.
{mgarzon, kbobba}@memphis.edu

2 SAIC-Scientific Applications International Corporation
Huntsville, AL 35805, U.S.A.
brian.p.hyde@saic.com

Abstract. Novel approaches to information encoding with DNA are
explored using a new Watson-Crick structure for binary strings more
appropriate to model DNA hybridization. First, a Gibbs energy analy-
sis of codeword sets is obtained by using a template and extant error-
correcting codes. Template-based codes have too low Gibbs energies that
allow cross-hybridization. Second, a new technique is presented to con-
struct arbitrarily large sets of noncrosshybridizing codewords of high
quality by two major criteria. They have a large minimum number of
mismatches between arbitrary pairs of words and alignments; moreover,
their pairwise Gibbs energies of hybridization remain bounded within a
safe region according to a modified nearest-neighbor model that has been
verified in vitro. The technique is scalable to long strands of up to 150-
mers, is in principle implementable in vitro, and may be useful in further
combinatorial analysis of DNA structures. Finally, a novel method to en-
code abiotic information in DNA arrays is defined and some preliminary
experimental results are discussed. These new methods can be regarded
as a different implementation of Tom Head’s idea of writing on DNA
molecules [22], although only through hybridization.

1 Introduction

Virtually every application of DNA computing [23,1,17] requires the use of ap-
propriate sequences to achieve intended hybridizations, reaction products, and
yields. The codeword design problem [4,19,3] requires producing sets of strands
that are likely to bind in desirable hybridizations while minimizing the probabil-
ity of erroneous hybridizations that may induce false positive outcomes. A fairly
extensive literature now exists on various aspects and approaches of the problem
(see [4] for a review). Approaches to this problem can be classified as evolution-
ary [7,15,9] and conventional design [6,19]. Both types of method require the use
of a measure of the quality of the codewords obtained, through either a fitness
function or a quantifiable measure of successful outcomes in test tubes.

Although some algorithms have been proposed for testing the quality of code-
word sets in terms of being free of secondary structure [4,10], very few methods
have been proposed to systematically produce codes of high enough quality to

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 152–166, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Digital Information Encoding on DNA 153

guarantee good performance in test tube protocols. Other than greedy “generate
and filter” methods common in evolutionary algorithms [8], the only systematic
procedure to obtain code sets for DNA computing by analytic methods is the
template method developed in [2]. An application of the method requires the use
of a binary word, so-called template, in combination with error-correcting codes
from information theory [26], and produces codewords set designs with DNA
molecules of size up to 32−mers (more below.)

This paper explores novel methods for encoding information in DNA strands.
The obvious approach is to encode strings into DNA strands. They can be stored
or used so that DNA molecules can self-assemble fault-tolerantly for biomolecular
computation [9,11,19,18]. In Section 2, a binary analog of DNA is introduced as
a framework for discussing encoding problems. Section 3.2 describes a new tech-
nique, analogous to the tensor product techniques used in quantum computing
for error-correcting codes [29], to produce appropriate methods to encode infor-
mation in DNA-like strands and define precisely what “appropriate” means. It is
also shown how these error-preventing codes for binary DNA (BNA, for short)
can be easily translated into codeword sets of comparable quality for DNA-
based computations. Furthemore, two independent evaluations are discussed of
the quality of these codes in ways directly related to their performance in test
tube reactions for computational purposes with DNA. We also compare them to
code sets obtained using the template method.

Direct encoding into DNA strands is not a very efficient method for stor-
age or processing of massive amounts (over terabytes) of abiotic data because
of the enormous implicit cost of DNA synthesis to produce the encoding se-
quences. A more indirect and more efficient approach is described in Section 4.
Assuming the existence of a large basis of noncrosshybridizing DNA molecules,
as obtained above, theoretical and experimental results are presented that allow
a preliminary assesment of the reliability and potential capacity of this method.
These new methods can be regarded as a different implementation of Tom Head’s
idea of aqueous computing for writing on DNA molecules [22,21], although only
hybridization is involved. Section 5 summarizes the results and presents some
preliminary conclusions about the technical feasibility of these methods.

2 Binary Models of DNA

DNA molecules can only process information by intermolecular reactions, usu-
ally hybridization in DNA-based computing. Due to the inherent uncertainty
in biochemical processes, small variations in strand composition will not cause
major changes in hybridization events, with consequent limitations on using
similar molecules to encode different inputs. Input strands must be ”far apart”
from each other in hybridization affinity in order to ensure that only desirable
hybridizations occur. The major difficulty is that the hybridization affinity be-
tween DNA strands is hard to quantify. Ideally, the Gibbs energy released in the
process is the most appropriate criterion, but its exact calculation is difficult,
even for pairwise interactions among small oligos (up to 60−mers), and using

154 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

approximation models [8]. Hence an exhaustive search of strands sets of words
maximally separated in a given coding space is infeasible, even for the small
oligo-nucleotides useful in DNA computing.

To cope with this problem, a much simpler and computationally tractable
model, the h-distance, was introduced in [18]. Here, we show how an abstrac-
tion of this concept to include binary strings can be used to produce code sets
of high enough quality for use in vitro, i.e., how to encode symbolic informa-
tion in biomolecules for robust and fault-tolerant computing. By introducing a
DNA-like structure into binary data, one expects to introduce good properties
of DNA into electronic information processing while retaining good properties
of electronic data storage and processing (such as programmability and reliabil-
ity). In this section it is shown how to associate basic DNA-like properties with
binary strings, and in the remaining sections we show how to use good coding
sets in binary with respect to this structure to obtain good codeword sets for
computing with biomolecules in vitro.

2.1 Binary DNA

Basic features of DNA structure can be brought into data representations tradi-
tionally used in conventional computing as follows. Information is usually repre-
sented in binary strings, butthey are treated them as analogs of DNA strands,
and refer to them as binary oligomers, or simply biners. The pseudo-base (or ab-
stract base) 0 binds with 1, and vice versa, to create a complementary pair 0/1,
in analogy with Watson-Crick bonding of natural nucleic bases. These concepts
can be extended to biners recursively as follows

(xa)R := yRxR, and(xa)wc := awcxwc, (1)

where the superscripts R and wc stand for the reversal operation and the Watson-
Crick complementary operation, respectively. The resulting single and double
strands are referred to as binary DNA, or simply BNA. Hybridization of single
DNA strands is of crucial importance in biomolecular computing and it thus
needs to be defined properly for BNA. The motivation is, of course, the analogous
ensemble processes with DNA strands [30].

2.2 h-Distance

A measure of hybridization likelihood between two DNA strands has been in-
troduced in [18]. A similar concept can be used in the context of BNA. The
h-measure between two biners x, y is given by

|x, y| := min
−n<k<n

H(x, σk(ywc)) , (2)

where σk is the (right-) left-shift by k positions (if k < 0, resp.), ywc is the
Watson-Crick complement of y obtained by reversing y and exchanging 0s and

Digital Information Encoding on DNA 155

1s, and H(∗, ∗) is the ordinary Hamming distance between binary strands. This
h-measure takes the minimum of all Hamming distances obtained by successively
shifting and lining up the reverse complement of y against x. If some shift of one
strand perfectly matches a segment of the other, the measure is reduced by the
length of the matching segment. Thus a small measure indicates that the two
biners are likely to stick to each other one way or another. Measure 0 indicates
perfect complementarity. A large measure indicates that in whatever relative
position x finds itself in the proximity of y, they are far from containing a large
number of complementary base pairs, and are therefore less likely to hybridize,
i.e., they are more likely to avoid an error (unwanted hybridization). Strictly
speaking, the h-measure is not a distance function in the mathematical sense,
because it does not obey the usual properties of ordinary distances (e.g., the
distance between different strands may be 0 and, as a consequence, the trian-
gle inequality fails). One obtains the h-distance, however, by grouping together
complementary biners and passing to the quotient space. These pairs will con-
tinue to be referred to as biners. The distance between two such biners X,Y is
now given by the minimum h-measure between all four possible pairs |x, y|, one
x from X and one y from Y . There is the added advantage that in choosing a
strand for encoding, its Watson-Crick complement is also chosen, which goes will
the the fact that it is usually required for the required hybridization reactions.

One can use the h-distance to quantify the quality of a code set of bin-
ers. An optimal encoding maximizes the minimum h-distance among all pairs
of its biners. For applications in vitro, a given set of reaction conditions is ab-
stracted as a parameter τ ≥ 0 giving a bound on the maximum number of
base pairs that are permitted to hybridize between two biners before an error
(undesirable hybridization) is introduced in the computation. The analogy of
the problem of finding good codes for DNA-based computing and finding good
error-correcting codes in information theory was pointed out in [18,9]. The the-
ory of error-correcting codes based on the ordinary Hamming distance is a well
established field in information theory [26]. A t-error-correcting code [26] is a set
of binary strands with a minimum Hamming distance 2t + 1 between any pair
of codewords. A good encoding set of biners has an analogous property. The
difficulty with biomolecules is that the hybridization affinity, even as abstracted
by the h-distance, is essentially different from the Hamming distance, and so
the plethora of known error-correcting codes [26] doesnt translate immediately
into good DNA code sets. New techniques are required to handle the essentially
different situation, as further evidenced below.

In this framework, the codeword design problem becomes to produce en-
coding sets that permit them to maintain the integrity of information while
enabling only the desirable interactions between appropriate biners. Using these
codes does not really require the usual procedure of encoding and decoding in-
formation with error-correcting codes since there are no errors to correct. In
fact, there is no natural way to enforce the redundancy equations characteris-
tic of error-correcting codes in vitro. This is not the only basic difference with
information theory. All bits in code sets are information bits, so the codes have

156 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

rate 1, and are therefore more efficient for a given encoding length. The result of
the computation only needs to re-interpreted in terms of the assigned mapping
used to transduce the original problem’s input into DNA strands. Therefore,
given the nature of the inspiring biochemistry, analogous codes for hybridization
distance are more appropriately called error-preventing codes, because the min-
imum separation in terms of hybridization distance prevents errors, instead of
enabling error detection and correction once they have occurred.

2.3 Gibbs Energy

Ideally, the Gibbs energy released in the hybridization process between strand
pairs is the most appropriate criterion of quality for a code set for experiments in
vitro. Although hybridization reactions in vitro are governed by well established
rules of local interaction between base pairings, difficulties arise in trying to
extend these rules to even short oligonucleotides (less than 150-mers) in a variety
of conditions [28]. Hence an exhaustive search of strand sets of words maximally
separated in a given coding space is infeasible, even for the small size of oligo-
nucleotides useful in DNA computing.

Computation of the Gibbs energy thus relies on approximations based on
various assumptions about the type of interactions between neighboring bonds.
Various models have been proposed for the range of oligonucleotides used in
DNA-based computing, major among which are the nearest-neighbor model and
the staggered-zipper model [28]. We use an extension of the nearest neighbor
model proposed by [8] that computes optimal alignments between DNA oligonu-
cleotides using a dynamic programming algorithm. There is evidence that this
calculation of the Gibbs energy, while not as computationally efficient as the
h-distance, is a good predictor of actual hybridization in the range of 20- to
60-mers in PCR reactions in vitro [5].

3 Error-Preventing Codes

Codes designs can now be described based on the tensor product operation and
compared with codes obtained using the template method [2]. Both types of
codes are obtained by first finding good biner sets (a template or a seed set)
which is then used to generate a set of BNA strings. These codes are then
transformed into code sets for DNA computation in real test tubes, so the basic
question becomes how they map to codeword sets in DNA and how their quality
(as measured by the parameter τ) maps to the corresponding reaction conditions
and DNA ensemble behavior.

3.1 The Template Method

The template method requires the use of a template n-biner T which is as far
from itself as possible in terms of h-measure, i.e., |T, T | >> 0, and an error-
correcting code C with words of length n. The bits are mapped to DNA words

Digital Information Encoding on DNA 157

by grouping (see below) DNA bases into two groups, the 0-group (say a, t) and
the 1-group (say c, g), corresponding to the bits of T , and then rewriting the
codewords in C so that their bits are interpreted as one (a or c) or the other
(g or t). Codewords are generated in such a way that the distances would be
essentially preserved (in proportion of 1 : 1), as shown in Table 1(b).

The quality of the code set produced naturally depends on the quality of self-
distance of T and the error-correcting capability of C. If a minimum self-distance
is assured, the method can be used to produce codewords with appropriate c/g
content to have nearly uniform melting temperatures. In [2], an exhaustive search
was conducted of templates of length l ≤ 32 and templates with minimum self-
distance about l/3. However, the thermodynamical analysis and lab performance
are still open problems. To produce a point of comparison, the template method
was used, although with a different seed code (32-bit BCH codes [26]). The
pairwise Gibbs energy profiles of the series of template codeword sets obtained
using some templates listed in [2] are shown below in Fig. 2(a).

3.2 Tensor Products

A new iterative technique is now introduced to systematically construct large
code sets with high values for the minimum h-distance τ between codewords. The
technique requires a base code of short biners (good set of short oligos) to seed
the process. It is based on a new operation between strands, called the tensor
product between words from two given codes of s- and t-biners, to produce a
code of s + t-biners. The codewords are produced as follows. Given two biners
x = ab, and y from two coding sets C,D of s- and t-biners, respectively, where
a, b are the corresponding halves of x, new codewords of length s + t are given
by x � y = a′y′b′, where the prime indicates a cyclic permutation of the word
obtained by bringing one or few of the last symbols of each word to the front.
The tensor product of two sets C�D is the set of all such products between pairs
of words x from C and y from D, where the cyclic permutation is performed once
again on the previously used word so that no word from C or D is used more
than once in the concatenation a′y′b′. The product code C�D therefore contains
at least |C||D| codewords. In one application below, the construction is used
without applying cyclic permutations to the factor codewords with comparable,
if lesser, results.

Size/τ Best codes

5/1 10000,10100,11000
6/2 100010.100100,110000
7/2 1000010,1001000,1100000
8/2 11000100,11010000,11100000

BNA DNA base

000,010/111,101 a/t
011,100/001,110 c/g

Table 1. (a) Best seed codes, and (b) mapping to convert BNA to a DNA strand.

158 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

To seed the process, we conducted exhaustive searches of the best codes of
5- and 6-biners possible. The results are shown in Table 1(a). No 3-element sets
of 7- or 8-biners exist with h-distance τ > 2. It is not hard to see that if n,m are
the minimum h-distances between any two codewords in C and D, respectively,
then the minimum distance between codewords in C � D may well be below
n + m. By taking the two factors C = D to be equal to the same seed n-biner
code C from Table 1, we obtain a code D′. The operation is iterated to obtain
codes of 2n-, 4n-, 8n-biners, etc. Because of the cyclic shifts, the new codewords
in D are not necessarily at distance s + s = 2s, double the minimum distance s
between words in the original words. We thus further pruned the biners whose
h-distances to others are lowest and most common, until the minimum distance
between codewords that remain is at least 2s. In about a third of the seeds,
at least one code set survives the procedure and systematically produces codes
of high minimum h-distance between codewords. Since the size of the code set
grows exponentially, we can obtain large code sets of relatively short length by
starting with seeds of small size. Fig 1(a) shows the growth of the minimum
h-distance over in the first few iterations of the product with the seeds shown
in Table 1(a) in various combinations. We will discuss the tube performance of
these codes in the following section, after showing how to use them to produce
codeword sets of DNA strands.

Fig. 1. (a) Minimum h-distance in tensor product BNA sets; and (b) two meth-
ods to convert biners to DNA oligonucleotides.

3.3 From BNA to DNA

Two different methods were used. The first method (grouping) associates to
every one of the eight 3-biners a DNA base a, c, g, or t as shown in Table 1(b).
Note that Watson-Crick complementarity is preserved, so that the hybridization
distances should be roughly preserved (in proportion 3 : 1).

The second method (position) assigns to each position in a biner set a fixed
DNA base a, c, g, or t. The assignment is in principle arbitrary, and in particular

Digital Information Encoding on DNA 159

can be done so that the composition of the strands follows a predetermined
pattern (e.g., 60% c/g’s and 40% a/t’s). All biners are then uniformly mapped to
a DNA codeword by the same assignment. The resulting code thus has minimum
h-distance between DNA codewords no smaller than in the original BNA seed.
Fig. 2(b) shows the quality of the codes obtained by this method, to be discussed
next.

3.4 Evaluation of Code Quality

For biner codes, a first criterion is the distribution of h-distance between code-
words. Fig. 1(a) shows this distribution for the various codes generated by tensor
products. The average minimun pairwise distance is, on the average, about 33%
of the strand length. This is comparable with the minimum distance of l/3 in
template codes.

As mentioned in [2], however, the primary criterion of quality for codeword
sets is performance in the test tube. A reliable predictor of such performance is
the Gibbs energy of hybridization. A computational method to compute the
Gibbs energy valid for short oligonucleotides (up to 60 bps) is given in [8].
Code sets obtained by generate-and-filter methods using this model have been
tested in the tube with good experimental results [8,10]. The same Gibbs energy
calculation was used to evaluate and compare the quality of code sets generated
by the template and tensor product methods. According to this method, the
highest Gibbs energy allowable between two codewords must be, at the very
least, −6 Kcal/mole if they are to remain noncrosshybridizing [8].

Statistics on the Gibbs energy of hybridization are shown in Fig. 2. The tem-
plate codes of very short lengths in Fig. 2(a) remain within a safe region (above
−6 kCal/Mole), but they have too low Gibbs energies that permit crosshybridiza-
tion for longer lengths. On the other hand, although the tensor product operation
initially decreases the Gibbs energy, the Gibbs energies eventually stabilize and
remain bounded within a safe region that does not permit cross hybridization,
both on the average and minimum energies.

Fig. 3 shows a more detailed comparison of the frequency of codewords in
each of the two types of codes with a Gibbs energy prone to cross hybridization
(third bar from top). Over 80% of the pairwise energies are noncrosshybridiz-
ing for template codes (top and middle bars), but they dip below the limit in
a significant proportion. On the other hand, all pairwise energies predict no
crosshybridization among tensor product codewords, which also exhibit more
positive energies. Finally, the number of codewords produced is larger with ten-
sor products, and increases rapidly when the lengths of the codewords reaches
64− and 128−mers (for which no template codes are available.)

4 Encoding Abiotic Information in DNA Spaces

This section explores the broader problem of encoding abiotic information in
DNA for storage and processing. The methods presented in the previous section

160 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

Fig. 2. Gibbs energies of (a = above) template codes; and (b = below) tensor
product codes.

could possibly be used to encode symbolic information (strings) in DNA single
strands. A fundamental problem is that the abiotic nature of the information
would appear to require massive synthesis of DNA strands proportional to the
amount to be encoded. Current methods produce massive amounts of DNA
copies of the same species, but not of too many different species. Here, some
theoretical foundation and experimental results are provided for a new method,
described below. Theis method can be regarded as a new implementation of Tom
Head’s idea of aqueous computing for writing on DNA molecules [22,?], although
in through simpler operations (only hybridization.)

4.1 A Representation Using a Non-crosshybridizing Basis

Let B be a set of DNA molecules (the encoding basis, or “stations” in Head’s
terminology [22], here not necessarily bistable), which is assumed to be finite
and noncrosshybridizying according to some parameter τ (for example, the Gibbs
energy, or the h-distance mentioned above.) For simplicity, it is also assumed that
the length of the strands in B is a fixed integer n, and that B contains no hairpins.
If τ = 0 and the h-distance is the hybridization criterion, a maximal such set
B can be obtained by selectiong one strand from every (non-palindromic) pair
of Watson-Crick complementary strands. If τ = n, a maximal set B consists of
only one strand of length n, to which every other strand will hybridize under

Digital Information Encoding on DNA 161

Fig. 3. Code size in error-preventing DNA Codes. Also shown are the percent-
ages of pairwise Gibbs energies in three regions for each code (crosshybridizing:
third bar from top, and noncrosshybrizing: top two.)

the mildest hybridization condition represented by such large τ . Let N = |B| be
the cardinality of B. Without loss of generality, it will be assumed that strings
to be encoded are written in a four letter alphabet {a, c, g, t}.

Given a string x (ordinarily much larger than n), x is said to be h-dependent
of B is there some concatenation c of elements of B such that x will hybridize to
c under stringency τ , i.e., |c, x| ≤ τ . Shredding x to the corresponding fragments
according to the components of c in B leads to the following slightly weaker but
more manageable definition. The signature of x with respect to B is a vector V
of size N obtained as follows. Shredding x to |X |/n fragments of size n or less,
Vi is the number of fragments f of x that are within threshold τ of strand i in
B, i.e., such that |f, i| < τ/2. The vector V can be visualized as a 1D signature,
or as 2D matrix shown in Fig. 4(a), where the bases strands have been arranged
on as they would be on a 2D DNA-chip, with one basis strand per spot.

Under realistic reaction conditions, the vector V may appear not to be well-
defined, since it is clear that its calculation depends on the concentration of
basis as well the strands x used in an experiment to compute it. To avoid these
difficulties, this situation will be idealized to the case where only the same num-
ber of copies (say, one copy) of each strand is present in the tube, and that the
tube is small enough that all possible hybridizations occur within reasonable
time. This idealization is based on the results of the following experiments. The
experiments were performed in simulation on a virtual test tube that is known
to provide highly reliable predictions of wet tube reactions (see [13] for more
details).

162 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

Six large plasmids of lengths varying between 3K and 4.5Kbps were shredded
to fragments of size 40 or less and thrown into a tube containing a basis B of three
different qualities (values of τ) consisting of 36−mers. The first set Nxh consisted
of a set of non-crosshybridizing 40-mers, the length of the longest fragment in
the shredded plasmids x; the second set Randxh was a randomly chosen set of
40-mers; and the third set, a set Mxh of maximally crosshybrizing 40-mer set
consisting of 18 copies of the same strand and 18 copies of its Watson-Crick
complement. The hybridization reactions were determined by the h-distance for
various thresholds τ between 0% and 50% of the basis strand length n, which
varied between n = 10, 20, 40. Each experiment was repeated 10 times under
identical conditions. The typical signatures of the six plasmids are illustrated
in Fig. 4, averaged pixelwise for one of them, together with the corresponding
standard deviation of the same. Fig. 5(a) shows the signal-to-noise ratio (SNR) in
effect size units, i.e., given by the pixel signals divided by the standard deviation
for the same plasmid, and Fig. 5(b) shows the chipwise SNR comparison for all
plasmids, in the same scale as shown in Fig. 4.

(a) (b) (c)

Fig. 4. Signatures of a plasmid genome in (a) one run (left); (b) average
over 10 runs; and (c) noise (right, as standard deviation), on a set on non-
crosshybridizing probes.

Examination of these results indicates that the signal obtained from the
Mxh set is the weakest of all, producing results indistinguishable from noise,
certainly due to the random wandering of the molecules in the test tube and their
enountering different base strands (probes.) This is in clear contrast with the
signals provided by the other sets, where the noise can be shown to be about 10%
of the entire signal. The random set Randxh shows signals in between, and the
Nxh shows the strongest signal. The conclusion is that, under the assumptions
leading to the definition above, an appropriate base set and a corresponding
hybridization stringency do provide an appropriate definition of the signature of
a given set.

Digital Information Encoding on DNA 163

(a) (b)

Fig. 5. Signal-to-noise ratio (a) pixelwise and (b) chipwise for all 6 plasmids.

4.2 The Dimension of DNA Spaces

Under the conditions of the definition of h-dependence, the signature of a single
base strands is a delta function (a single pixel), while it is perfectly possible
that an h-independent strand from B may have a signal-less signature. Thus
there remain two questions, First, how to ensure the completeness of signatures
for arbitrary strings x (of length n or larger) on a basis B of given n−mers,
i.e., to ensure that the original strand x can be somewhat re-constructed from
its signature V . And second, how to ensure universal representation for every
strand, at least of length n. These problems are similar to, although distinct, of
T. Head’s Common Algoritmic Problem (CAP) [22], where a subest of largest
cardinality is called for that fails to contain every one of the subsets in a given
a familiy of forbidden subsets of DNA space of n−mers. Here, every strand
i ∈ B and a given τ determine a subset of strands Si that hybridize i under
stringency τ . We now want the smallest B that maximizes the “intersection”
with every subset Sx in order to provide the strongest signal to represent an
input strand x. (An instance of CAP with the complementary sets only asks for
the smallest cardinality subset that just “hits”, with a nontrivial intersection,
all the permissible sets, i.e., the complements of the forbidden subsets.)

It is clear that completeness is ensured by choosing a maximal set of h-
independent strands for which every strand of length n provides a nonempty
signature. Such a set exists assuming that the first problem is solved. The h-
dimension of a set of n−mer strands is defined as a complete basis for the
space. The computation of the dimension of the full set of n−mer is thus tightly
connected to its structure in terms of hybridization and it appears to be a difficult
problem.

The first problem is more difficult to formulate. It is clear that if one insists
in being able to recover the composition of strand x from its signature V (x),
the threshold must be set to τ = 0 and the solution becomes very simple, if ex-
ceedingly large (exponential in the base strand length.) However, if one is more
interested in the possibility of storing and processing information in terms of
DNA chip signatures, the question arises whether the signature is good enough
a representation to process x from the point of view of higher-level semantic re-
lationships. Evidence in [14] shows that there is a real possibility that signatures

164 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

for relatively short bases are complete for simple discriminating tasks that may
suffice for many applications.

5 Summary and Conclusions

A new approach (tensor product) has been introduced for the systematic gen-
eration of sets of codewords to encode information in DNA strands for compu-
tational protocols so that undesirable crosshybridizations are prevented. This is
a hybrid method that combines analytic techniques with a combinatorial fitness
function (h-distance [18]) based on an abstract model of complementarity in
binary strings. A new way to represent digital information has also been intro-
duced using such sets of noncrosshybrizing codewords (possibly in solution, or
affixed to a DNA-chip) and some properties of these representations have been
explored.

An analysis of the energetics of codeword sets obtained by this method show
that their thermodynamic properties are good enough for acceptable perfor-
mance in the test tube, as determined the Gibbs energy model of Deaton et al.
[8]. These results also confirm that the h-distance is not only a computationally
tractable model, but also a reliable model for codeword design and analysis. The
final judge of the quality of these code sets is, of course, the performance in the
test tube. Preliminary evidence in vitro [5] shows that these codes are likely to
perform well in wet tubes.

A related measure of quality is what can be termed the coverage of the code,
i.e., how well spread the code is over the entire DNA space to provide represen-
tation for every strand. This measure of quality is clearly inversely related to
the error-preventing quality of the code. it is also directly related to the capacity
of DNA of a given length to encode information, which is given by a quantity
that could be termed dimension of the space of DNA strands of length n, al-
though properties analogous to the concept of dimension in euclidean spaces are
yet to be assessed. Finally, determining how close tensor product codes come to
optimal size is also a question worthy of further study.

Acknowledgements

Much of the work presented here has been done in close collaboration with the
molecular computing consortium that includes Russell Deaton and Jin Wu (The
U. of Arkansas), Junghuei Chen and David Wood (The U. Delaware). Support
from the National Science Foundation grant QuBic/EIA-0130385 is gratefully
acknowledged.

References

1. L. Adleman (1994), Molecular computation of solutions of combinatorial problems.
Science 266, 1021-1024.

Digital Information Encoding on DNA 165

2. M. Arita, S. Kobayashi (2002), DNA Sequence Design Using Templates. New Gen-
eration Computing 20:3, 263-277. See also [20], 205-214.

3. E. Baum (1995), Building an Associative Memory Vastly larger than the Brain.
Science 268, 583-585.

4. B. Brenneman, A. Condon (2001), Sequence Design for Biomolecular Computation.
In press. Available at
http://www.cs.ubc.edu/∼condon/papers/wordsurvey.ps.

5. H. Bi, J. Chen, R. Deaton, M. Garzon, H. Rubin, D. Wood (2003). A PCR-based
Protocol for In Vitro Selection of Non-Crosshybridizing Oligonucleotides. In [20],
196-204. J. of Natural Computing, in press.

6. A. Condon, G. Rozenberg, eds. (2000), Proc. 6th Int. Workshop on DNA-Based
Computers DNA 2000 (Revised Papers), Leiden, The Netherlands. Lecture Notes
in Computer Science LNCS 2054, Springer-Verlag.

7. R.J. Deaton, J.Chen, H. Bi, M. Garzon, H. Rubin, D.H. Wood (2002), A PCR-
based protocol for In Vitro Selection of Non-crosshybridizing Oligonucleotides. In:
[20], 105-114.

8. R.J. Deaton, J. Chen, H. Bi, J.A. Rose (2002b), A Software Tool for Generating
Non-crosshybridizing Libraries of DNA Oligonucleotides. In: [20], 211-220.

9. R. Deaton, M. Garzon, R.E. Murphy, J.A. Rose, D.R. Franceschetti, S.E. Stevens,
Jr. (1998), The Reliability and Efficiency of a DNA Computation. Phys. Rev. Lett.
80, 417.

10. U. Feldkamp, H. Ruhe, W, Banzhaf (2003), Sofware Tools for DNA Sequence
Design. J. Genetic Programming and Evolvable Machines 4, 153-171.

11. A.G. Frutos, A. Condon, R. Corn (1997), Demonstration of a Word Design Strategy
for DNA Computing on Surface. Nucleic Acids Research 25, 4748-4757.

12. M. Garzon, ed. (2003), Biomolecular Machines and Artificial Evolution. Special
Issue of the Journal of Genetic Programming and Evolvable Machines 4:2, Kluwer
Academic Publishers.

13. M. Garzon, D. Blain, K. Bobba, A. Neel, M. West. (2003), Self-Assembly of DNA-
like structures In-Silico. In: [12], 185-200.

14. M. Garzon, A. Neel, K. Bobba (2003), Efficiency and Reliability of Semantic Re-
trieval in DNA-based Memories. In: J. Reif and J. Chen (eds), Proc. DNA9-2003,
Int. Workshop on DNA-based Computers. Springer-Verlag Lecture Notes in Com-
puter Science, in press.

15. M. Garzon, C. Oehmen (2001b), Biomolecular Computing in Virtual Test Tubes.
In: [24], 117-128.

16. M. Garzon, R.J. Deaton (2000), Biomolecular Computing: A Definition. Kunstliche
Intelligenz 1/00 (2000), 63-72.

17. M. Garzon, R.J. Deaton (1999), Biomolecular Computing and Programming. IEEE
Trans. on Evolutionary Comp. 3:2, 36-50.

18. M. Garzon, P.I. Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, S.E.
Stevens, Jr. (1997), A New Metric for DNA Computing. In: [25], pp. 472-478.

19. M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, E. Stevens
Jr. (1997), On the Encoding Problem for DNA Computing. Poster at The Third
DIMACS Workshop on DNA-based Computing, U of Pennsylvania. Preliminary
Proceedings, 230-237.

20. M. Hagiya, A. Ohuchi, eds. (2002), Proc. 8th Int. Meeting on DNA-Based Com-
puters. Springer-Verlag Lecture Notes in Computer Science LNCS 2568. Springer-
Verlag.

21. T. Head, M. Yamamura, S. Gal (2001), Relativized code concepts and multi-tube
DNA dictionaries, in press.

166 Max H. Garzon, Kiranchand V. Bobba, and Bryan P. Hyde

22. T. Head, M. Yamamura, S. Gal (1999), Aqueous Computing: Writing on Molecules.
Proceedings of the Congress on Evolutionary Computing (CEC’99).

23. T. Head (1986), Formal Language Thery and DNA; An Analysis of the Generative
Capacity of Specific Recombinant Behaviors. Bull. of Mathematical Biology 49:6,
737-759.

24. N. Jonoska, N. Seeman, eds. (2001), Proc. 7th Int. Workshop on DNA-Based Com-
puters DNA 2000, Tampa, Florida. Lecture Notes in Computer Science LNCS 2340,
Springer-Verlag, 2002.

25. J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, R.L. Riolo, eds.
(1997). Proc. 2nd Annual Genetic Programming Conference. Morgan Kaufmann,
San Mateo, California.

26. J. Roman (1995), The Theory of Error-Correcting Codes. Springer-Verlag, Berlin.
27. H. Rubin. D. Wood, eds. (1997), Third DIMACS Workshop on DNA-Based Com-

puters, The University of Pennsylvania, 1997. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, Providence, RI: American Mathematical
Society 48 (1999).

28. J. SantaLucia, Jr., H.T. Allawi, P.A. Seneviratne (1990), Improved Nearest Neigh-
bor Paramemeters for Predicting Duplex Stability. Biochemistry 35, 3555-3562.

29. P.W. Shor (1996), Fault-Tolerant Quantum Computation. Proc. 37th FOCS, 56-65.
30. J.G. Wetmur (1997), Physical Chemistry of Nucleic Acid Hybridization. In: [27],

1-23.

DNA-based Cryptography

Ashish Gehani, Thomas LaBean, and John Reif

Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129, USA

{geha,thl,reif}@cs.duke.edu

Abstract. Recent research has considered DNA as a medium for ultra-
scale computation and for ultra-compact information storage. One po-
tential key application is DNA-based, molecular cryptography systems.
We present some procedures for DNA-based cryptography based on one-
time-pads that are in principle unbreakable. Practical applications of
cryptographic systems based on one-time-pads are limited in conven-
tional electronic media by the size of the one-time-pad; however DNA
provides a much more compact storage medium, and an extremely small
amount of DNA suffices even for huge one-time-pads. We detail proce-
dures for two DNA one-time-pad encryption schemes: (i) a substitution
method using libraries of distinct pads, each of which defines a specific,
randomly generated, pair-wise mapping; and (ii) an XOR scheme uti-
lizing molecular computation and indexed, random key strings. These
methods can be applied either for the encryption of natural DNA or for
artificial DNA encoding binary data. In the latter case, we also present
a novel use of chip-based DNA micro-array technology for 2D data in-
put and output. Finally, we examine a class of DNA steganography sys-
tems, which secretly tag the input DNA and then hide it within collec-
tions of other DNA. We consider potential limitations of these stegano-
graphic techniques, proving that in theory the message hidden with such
a method can be recovered by an adversary. We also discuss various
modified DNA steganography methods which appear to have improved
security.

1 Introduction

1.1 Biomolecular Computation

Recombinant DNA techniques have been developed for a wide class of operations
on DNA and RNA strands. There has recently arisen a new area of research
known as DNA computing, which makes use of recombinant DNA techniques
for doing computation, surveyed in [37]. Recombinant DNA operations were
shown to be theoretically sufficient for universal computation [19]. Biomolecular
computing (BMC) methods have been proposed to solve difficult combinatorial
search problems such as the Hamiltonian path problem [1], using the vast paral-
lelism available to do the combinatorial search among a large number of possible
solutions represented by DNA strands. For example, [5] and [41] propose BMC

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 167–188, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

168 Ashish Gehani, Thomas LaBean, and John Reif

methods for breaking the Data Encryption Standard (DES). While these meth-
ods for solving hard combinatorial search problems may succeed for fixed sized
problems, they are ultimately limited by their volume requirements, which may
grow exponentially with input size. However, BMC has many exciting further
applications beyond pure combinatorial search. For example, DNA and RNA are
appealing media for data storage due to the very large amounts of data that can
be stored in compact volume. They vastly exceed the storage capacities of con-
ventional electronic, magnetic, optical media. A gram of DNA contains about
1021 DNA bases, or about 108 tera-bytes. Hence, a few grams of DNA may
have the potential of storing all the data stored in the world. Engineered DNA
might be useful as a database medium for storing at least two broad classes of
data: (i) processed, biological sequences, and (ii) conventional data from binary,
electronic sources. Baum [3] has discussed methods for fast associative searches
within DNA databases using hybridization. Other BMC techniques [38] might
perform more sophisticated database operations on DNA data such as database
join operations and various massively parallel operations on the DNA data.

1.2 Cryptography

Data security and cryptography are critical aspects of conventional computing
and may also be important to possible DNA database applications. Here we
provide basic terminology used in cryptography [42]. The goal is to transmit
a message between a sender and receiver such that an eavesdropper is unable
to understand it. Plaintext refers to a sequence of characters drawn from a
finite alphabet, such as that of a natural language. Encryption is the process of
scrambling the plaintext using a known algorithm and a secret key. The output
is a sequence of characters known as the ciphertext. Decryption is the reverse
process, which transforms the encrypted message back to the original form using
a key. The goal of encryption is to prevent decryption by an adversary who does
not know the secret key. An unbreakable cryptosystem is one for which successful
cryptanalysis is not possible. Such a system is the one-time-pad cipher. It gets its
name from the fact that the sender and receiver each possess identical notepads
filled with random data. Each piece of data is used once to encrypt a message
by the sender and to decrypt it by the receiver, after which it is destroyed.

1.3 Our Results

This paper investigates a variety of biomolecular methods for encrypting and
decrypting data that is stored as DNA. In Section 2, we present a class of DNA
cryptography techniques that are in principle unbreakable. We propose the se-
cret assembly of a library of one-time-pads in the form of DNA strands, followed
by a number of methods to use such one-time-pads to encrypt large numbers
of short message sequences. The use of such encryption with conventional elec-
tronic media is limited by the large amount of one-time-pad data which must
be created and transmitted securely. Since DNA can store a significant amount
of information in a limited physical volume, the use of DNA could mitigate this

DNA-based Cryptography 169

concern. In Section 3, we present an interesting concrete example of a DNA
cryptosystem in which a two-dimensional image input is encrypted as a solution
of DNA strands. We detail how these strands are then decrypted using fluores-
cent DNA-on-a-chip technology. Section 4 discusses steganographic techniques
in which the DNA encoding of the plaintext is hidden among other unrelated
strands rather than actually being encrypted. We analyze a recently published
genomic steganographic technique [45], where DNA plaintext strands were ap-
pended with secret keys and then hidden among many other irrelevant strands.
While the described system is appealing for its simplicity, our entropy based
analysis allows extraction of the message without knowledge of the secret key.
We then propose improvements that increase the security of DNA steganography.

2 DNA Cryptosystems Using Random One-Time-Pads

One-time-pad encryption uses a codebook of random data to convert plaintext to
ciphertext. Since the codebook serves as the key, if it were predictable (i.e., not
random), then an adversary could guess the algorithm that generates the code-
book, allowing decryption of the message. No piece of data from the codebook
should ever be used more than once. If it was, then it would leak information
about the probability distribution of the plaintext, increasing the efficiency of an
attempt to guess the message. These two principles, true randomness and single
use of pads, dictate certain features of the DNA sequences and of sequence li-
braries, which will be discussed further below. This class of cryptosystems using
a secret random one-time-pad are the only cryptosystems known to be absolutely
unbreakable [42].

We will first assemble a large one-time-pad in the form of a DNA strand,
which is randomly assembled from short oligonucleotide sequences, then isolated
and cloned. These one-time-pads will be assumed to be constructed in secret,
and we further assume that specific one-time-pads are shared in advance by
both the sender and receiver of the secret message. This assumption requires
initial communication of the one-time-pad between sender and receiver, which
is facilitated by the compact nature of DNA.

We propose two methods whereby a large number of short message sequences
can be encrypted: (i) the use of substitution, where we encrypt each message
sequence using an associatively matched piece from the DNA pad; or (ii) the use
of bit-wise XOR computation using a biomolecular computing technique. The
decryption is done by similar methods.

It is imperative that the DNA ciphertext is not contaminated with any of the
plaintext. In order for this to be effected, the languages used to represent each
should be mutually exclusive. The simplest way to create mutually exclusive
languages is to use disjoint plain and ciphertext alphabets. This would facilitate
the physical separation of plaintext strands from the ciphertext using a set of
complementary probes. If the ciphertext remains contaminated with residual
plaintext strands, further purification steps can be utilized, such as the use of
the DNA-SIEVE described in Section 4.4.

170 Ashish Gehani, Thomas LaBean, and John Reif

2.1 DNA Cryptosystem Using Substitution

A substitution one-time-pad system uses a plaintext binary message and a table
defining a random mapping to ciphertext. The input strand is of length n and
is partitioned into plaintext words of fixed length. The table maps all possible
plaintext strings of a fixed length to corresponding ciphertext strings, such that
there is a unique reverse mapping.

Encryption occurs by substituting each plaintext DNA word with a corre-
sponding DNA cipher word. The mapping is implemented using a long DNA
pad that consisting of many segments, each of which specifies a single plaintext
word to cipher word mapping. The plaintext word acts as a hybridization site
for the binding of a primer, which is then elongated. This results in the forma-
tion of a plaintext-ciphertext word-pair. Further, cleavage of the word-pairs and
removal of the plaintext portion must occur. A potential application is detailed
in Section 3.

An ideal one-time-pad library would contain a huge number of pads and
each would provide a perfectly unique, random mapping from plaintext words to
cipher words. Our construction procedure approaches these goals. The structure
of an example pad is given in Figure 1.

5' 3'

One-Time Pad
Repeating Unit

STOP STOP STOPC P C P C Pi ii-1i-1 i+1 i+1

~P i

... *

Fig. 1. One-time-pad Codebook DNA Sequences

The repeating unit is made up of: (i) one sequence word, Ci , from the set of
cipher or codebook-matching words; (ii) one sequence word, Pi , from the set of
plaintext words; and (iii) a polymerase “stopper” sequence. We note that each
Pi includes a unique subsequence, which prevents frequency analysis attacks by
mapping multiple instances of the same message plaintext to different ciphertext
words. Further, this prefix could optionally be used to encode the position of the
word in the message.

Each sequence pair i, uniquely associates a plaintext word with a cipher
word. Oligo with sequence Pi , corresponding to the Watson-Crick complement of
plaintext word Pi , can be used as polymerase primer and be extended by specific
attachment of the complement of cipher word Ci. The stopper sequence prohibits
extension of the growing DNA strand beyond the boundary of the paired cipher
word. A library of unique codebook strands is constructed using this theme.
Each individual strand from this codebook library specifies a particular, unique
set of word pairings.

DNA-based Cryptography 171

The one-time-pad consists of a DNA strand of length n containing d =
n

L1+L2+L3
copies of the repeating pattern: a cipher word of length L2, a plaintext

word of length L1, and stopper sequence of length L3. We note that word length
grows logarithmically in the total pad length; specifically L1 = c1 log2 n, L2 =
c2 log2 n, and L3 = c3, for fixed integer constants c1, c2, c3 > 1. Each repeat
unit specifies a single mapping pair, and no codebook word or plaintext word
will be used more than once on any pad. Therefore, given a cipher word Ci we
are assured that it maps to only a single plaintext word Pi and vice versa. The
stopper sequence acts as “punctuation” between repeat units so that DNA poly-
merase will not be able to continue copying down the template (pad) strand.
Stopper sequences consist of a run of identical nucleotides which act to halt
strand copying by DNA polymerase given a lack of complementary nucleotide
triphosphate in the test tube. For example, the sequence TTTT will act as a
stop point if the polymerization mixture lacks its base-pairing complement, A.
Stopper sequences of this variety have been prototyped previously [18]. Given
this structure, we can anneal primers and extend with polymerase in order to
generate a set of oligonucleotides corresponding to the plaintext/cipher lexical
pairings.

The experimental feasibility depends upon the following factors: (i) the size of
the lexicon, which is the number of plaintext-ciphertext word-pairs, (ii) the size
of each word, (iii) the number of DNA one-time-pads that can be constructed in
a synthesis cycle, and (iv) the length of each message that is to be encrypted. If
the lexicon used consisted of words of the English language, its size would be in
the range of 10,000 to 25,000 word-pairs. If for experimental reasons, a smaller
lexicon is required, then the words used could represent a more basic set such as
ASCII characters, resulting in a lexicon size of 128. The implicit tradeoff is that
this would increase message length. We estimate that in a single cloning proce-
dure, we can produce 106 to 108 different one-time-pad DNA sequences. Choice
of word encodings must guarantee an acceptable Hamming distance between
sequences such that the fidelity of annealing is maximized. When generating
sequences that will represent words, the space of all possibilities is much larger
than the set that is actually needed for the implementation of the words in the
lexicon. We also note that if the lexicon is to be split among multiple DNA
one-time-pads, then care should be taken during pad construction to prevent a
single word from being mapped to multiple targets.

If long-PCR with high fidelity enzymes introduces errors and the data in
question is from an electronic source, we can pre-process it using suitable error-
correction coding. If instead we are dealing with a wet database, the DNA one-
time-pad’s size can be restricted. This is done by splitting the single long one-
time-pad into multiple shorter one-time-pads. In this case each cipher word would
be modified to include a subsequence prefix that would denote which shorter
one-time-pad should be used for its decryption. This increases the difficulty of
cloning the entire set of pads.

The entire construction process can be repeated to prepare greater numbers
of unique pads. Construction of the libraries of codebook pads can be approached

172 Ashish Gehani, Thomas LaBean, and John Reif

using segmental assembly procedures used successfully in previous gene library
construction projects [25,24] and DNA word encoding methods used in DNA
computation [10,11,40,13,14,32]. One methodology is chemical synthesis of a
diverse segment set followed by random assembly of pads in solution. An issue
to consider with this methodology is the difficulty of achieving full coverage
while avoiding possible conflicts due to repetition of plaintext or cipher words.
We can set the constants c1 and c2 large enough so that the probability of getting
repeated words on a pad of length n is acceptably small.

Another methodology would be to use a commercially available DNA chip
[12,35,8,6,44]. See [31] for previous use of DNA chips for I/O. The DNA chip has
an array of immobilized DNA strands, so that multiple copies of a single sequence
are grouped together in a microscopic pixel. The microscopic arrays of the DNA
chip are optically addressable, and there is known technology for growing distinct
DNA sequences at each optically addressable site of the array. Light-directed
synthesis allows the chemistry of DNA synthesis to be conducted in parallel at
thousands of locations, i.e., it is a combinatorial synthesis. Therefore, the number
of sequences prepared far exceeds the number of chemical reactions required. For
preparation of oligonucleotides of length L, the 4L sequences are synthesized in
4L chemical reactions. For example, the ∼ 65, 000 sequences of length 8 require
32 synthesis cycles, and the 1.67 × 107 sequences of length 12 require only 48
cycles. Each pixel location on the chip comprises 10 microns square, so the
complete array of 12-mer sequences could be contained within a ∼ 4 cm square.

2.2 DNA XOR One-Time-Pad Cryptosystem

The Vernam cipher [21] uses a sequence, S, of R uniformly distributed random
bits known as a one-time-pad. A copy of S is stored at both the sender’s and
receiver’s locations. L is the number of bits of S that have not yet been used
for encrypting a message. Initially L = R. XOR operates on two binary inputs,
yielding 0 if they are the same and 1 otherwise. When a plaintext binary message
M which is n < L bits long needs to be sent, each bit Mi is XOR’ed with the bit
Ki = SR−L+i to produce the encrypted bit Ci = Mi ⊕Ki for i = 1, . . . , n. The
n bits of S that have been consumed are then destroyed at the source and the
encrypted sequence C = (C1, C2, . . . , Cn) is dispatched to the destination. At
the destination the identical process is repeated - that is the sequence C is used
in the place of M , performing bitwise XOR with bits from S, destroying the bits
of S after they are consumed. The self-inverse property of binary XOR results in
the initial message being reproduced since Ci⊕Ki = Mi and Mi⊕Ki⊕Ki = Mi.

To implement this algorithm with DNA, we need methods to (i) encode a
plaintext message, (ii) create a DNA one-time-pad and (iii) effect bitwise XOR
in DNA. Several methods exist to effect binary addition and XOR with DNA. In
1996, [16] prototyped single bit addition. Subsequent proposals [34,17] allowed
for chaining outputs with inputs, and parallel operations. [22] experimentally
demonstrated a logically reversible conditional XOR that required O(n) recom-
binant DNA operations to act on n bit data. [26] described a specific DNA tiling
implementation of XOR and addition, based on previous work on self-assembly

DNA-based Cryptography 173

of DNA tilings [47,46,48,49,50,36]. An example of cumulative XOR using self-
assembled DNA tilings has recently been published [30].

DNA tiles are multi-strand complexes containing two or more double helical
domains such that individual oligonucleotide chains might base-pair in one helix
then cross-over and base-pair in another helix. Complexes involving crossovers
(strand exchange points) create tiles which are multivalent and can have quite
high thermal stability. Many helix arrangements and strand topologies are pos-
sible and several have been experimentally tested [28,27]. Tiles with specific
uncomplemented sticky ends at the corners were constructed, with the purpose
of effecting self-assembly.

A binary input string can be encoded using a single tile for each bit. The tiles
are designed such that they assemble linearly to represent the binary string. The
use of special connector tiles allow two such linear tile assemblies representing
two binary input strings respectively, to come together and create a closed frame-
work within which specially designed output tiles can fit. This process allows for
unmediated parallel binary addition or XOR. As a result of the special design
of these tiles, at the end of the process, there exists a single strand that runs
through the entire assembly which will contain the two inputs and the output
[27,26]. By using this property, we are able to effect the Vernam cipher in DNA.

Fig. 2. TAO triple-helix tile

In particular, we use TAO triple-helix tiles (see Figure 2). The tile is formed
by the complementary hybridization of four oligonucleotide strands (shown as
different line types with arrowheads on their 3′ ends). The three double-helical
domains are shown with horizontal helix axes where the upper and lower helices
end with bare strand ends and the central helix is capped at both ends with
hairpins. Paired vertical lines represent crossover points where two strands ex-
change between two helices. Uncomplemented sticky ends can be appended to
the four corners of the tile and encode neighbour rules for assembly of larger
structures including computational complexes. For more details see [27,30].

174 Ashish Gehani, Thomas LaBean, and John Reif

We outline below how the bit-wise XOR operation may be done (see Fig-
ure 3). For each bit Mi of the message, we construct a sequence ai that will rep-
resent the bit in a longer input sequence. By using suitable linking sequences, we
can assemble the message M ’s n bits into the sequence a1a2 . . . an, which serves
as the scaffold strand for one binary input to the XOR. The further portion
of the scaffold strand a′

1a
′
2 . . . a′

n is created based on random inputs and serves
as the one-time-pad. It is assumed that many scaffolds of the form a′

1a
′
2 . . . a′

n

have been initially created, cloned using PCR [2,39] or an appropriate technique,
and then separated and stored at both the source and destination points in ad-
vance. When encryption needs to occur at the source, the particular scaffold
used is noted and communicated using a prefix index tag that both sender and
destination know corresponds to a particular scaffold.

By introducing the scaffold for the message, the scaffold for the one-time-
pad, connector tiles and the various sequences needed to complete the tiles, the
input portion of the structure shown in Figure 3 forms. We call this the input
assembly. This process of creating input scaffolds and assembling tiles on the
scaffold has been carried out successfully [26]. Each pair of tiles (corresponding
to a pair of binary inputs) in the input assembly creates a slot for the binding of a
single output tile. When output tiles are introduced, they bind into appropriate
binding slots by the matching of sticky ends.

Finally, adding ligase enzyme results in a continuous reporter strand R that
runs through the entire assembly. If bi = ai ⊕ a′

i, for i = 1, . . . , n, then the
reporter R = a1a2 . . . an.a′

1a
′
2 . . . a′

n.b1b2 . . . bn. The reporter strand is shown as
a dotted line in Figure 3. This strand may be extracted by first melting apart
the hydrogen bonding between strands and then purifying by polyacrylamide
gel electrophoresis. It contains the input message, the encryption key, and the
ciphertext all linearly concatenated. The ciphertext can be excised using a re-
striction endonuclease if a cleavage site is encoded between the a0 and b1 tiles.
Alternatively the reporter strand could incorporate a nick at that point by using
an unphosphorylated oligo between those tiles. The ciphertext could then be gel
purified since its length would be half that of the remaining sequence. This may
then be stored in a compact form and sent to a destination.

Since XOR is its own inverse, the decryption of a Vernam cipher is effected
by applying the identical process as encryption with the same key. Specifically,
the b1b2 . . . bn is used as one input scaffold, the other is chosen from the stored
a′
1a

′
2 . . . a′

n according to the index indicating which sequence was used as the
encryption key. The sequences for tile reconstitution, the connector tiles, and
ligase are added. After self-assembly, the reporter strand is excised, purified, cut
at the marker and the plain text is extracted.

We need to guard against loss of synchronization between the message and
the key, which would occur when a bit is spuriously introduced or deleted from
either sequence. Some fault tolerance is provided by the use of several nucleotides
to represent each bit in the the tiles’ construction. This reduces the probabiliity
of such errors.

DNA-based Cryptography 175

Fig. 3. XOR computation by the use of DNA tiles

3 Encrypting Images with DNA Chips and DNA
One-Time-Pads

3.1 Overview of Method

In this section we outline a system capable of encryption and decryption of input
and output data in the form of 2D images recorded using microscopic arrays
of DNA on a chip. The system we describe here consists of: a data set to be
encrypted, a chip bearing immobilized DNA strands, and a library of one-time-
pads encoded on long DNA strands as described in Section 2.1. The data set for
encryption in this specific example is a 2-dimensional image, but variations on
the method may be useful for encoding and encrypting other forms of data or
types of information. The DNA chip contains an addressable array of nucleotide
sequences immobilized such that multiple copies of a single sequence are grouped
together in a microscopic pixel. Such DNA chips are currently commercially
available and chemical methods for construction of custom variants are well
developed. Further chip details will be given below.

Fig. 4. DNA Chip Input/Output: Panel A: Message, Panel B: Encrypted Mes-
sage, Panel C: Decrypted Message

176 Ashish Gehani, Thomas LaBean, and John Reif

Figure 4 gives a coarse grained outline of the I/O method. Fluorescently la-
beled, word-pair DNA strands are prepared from a substitution pad codebook
as described in Section 2.1. These are annealed to their sequence complements
at unique sites (pixels) on the DNA chip. The message information (Panel A) is
transferred to a photo mask with transparent (white) and opaque (black) regions.
Following a light-flash of the mask-protected chip, the annealed oligonucleotides
beneath the transparent regions are cleaved at a photo-labile position. Their 5′

sections dissociate from the annealed 3′ section and are collected in solution.
This test tube of fluorescently labeled strands is the encrypted message. An-
nealed oligos beneath the opaque regions are unaffected by the light-flash and
can be subsequently washed off the chip and discarded. If the encrypted message
oligos are reannealed onto a different DNA chip, they would anneal to different
locations and the message information would be unreadable (Panel B). Note that
if one used a chip identical to the encoding chip, and if the sequence lexicons
for 5′ segment (cipher word) and 3′ segment (plaintext word) are disjoint, no
binding would occur and the chip in Panel B would be completely black. De-
crypting is accomplished by using the fluorescently labeled oligos as primers in
asymmetric PCR with the same one-time codebook which was used to prepare
the initial word-pair oligos. When the word-pair PCR product is bound to the
same DNA chip, the decrypted message is revealed (Panel C).

Fig. 5. Components and Organization of the DNA Chip

The annealed DNA in Figure 5 corresponds to the word-pair strands pre-
pared from a random substitution pad as described in Section 2.1 above. Immo-
bile DNA strands are located on the glass substrate of the chip in a sequence
addressable grid according to currently used techniques. Ciphertext-plaintext
word-pair strands anneal to the immobile ones. The annealed strand contains a
fluorescent label on its 5′ end (denoted with an asterisk in the figure). This is
followed by the complement of a plaintext word (uncomplemented section) and

DNA-based Cryptography 177

the complement of a cipher word (complemented section). Located between the
two words is a photo-cleavable base analog (white box in the figure) capable of
cleaving the backbone of the oligonucleotide.

Figure 6 gives step by step procedures for encryption and decryption. For
encryption, we start with a DNA chip displaying the sequences drawn from the
cipher lexicon. In step one, the fluorescently labeled word-pair strands prepared
from a one-time-pad are annealed to the chip at the pixel bearing the complement
to their 3′ end. In the next step, the mask (heavy black bar) protects some pixels
from a light-flash. At unprotected regions, the DNA backbone is cleaved at a
site between the plaintext and cipher words. In the final step, the 5′ segments,
still labeled with fluorophore at their 5′ ends, are collected and transmitted as
the encrypted message.

* * * * * * * * * *

MMAASSKK

* * * * *

* *
*

* *

Mask and flash.

Collect soluble labeled DNA.

Anneal labeled DNA.

Encryption Scheme

 DNA chip

Encoded message DNA

*
* *

*
*

Anneal onto DNA chip.

Extend with DNA polymerase.
Isolate word pair strands.

Decryption Scheme

* * * * *

* *

* * Encoded message DNA

Decoded message for
fluorescent read-out

*

** *

Anneal onto codebook DNA.

Fig. 6. Step by step procedures for encryption and decryption

A message can be decrypted only by using the one-time-pad and DNA chip
identical to those used in the encryption process. First, the word-pair strands
must be reconstructed by appending the proper cipher word onto each plain-
text word. This is accomplished by primer extension or asymmetric PCR using
transmitted strands as primer and one-time-pad as template. The strands bind
to their specific locations on the pad and are appended with their proper ci-
pher partner. Note that in the decrypting process the fluorescent label is still

178 Ashish Gehani, Thomas LaBean, and John Reif

required, but the photo-labile base is unnecessary and not present. The final step
of decryption involves binding the reformed word-pair strands to the DNA chip
and reading the message by fluorescent microscopy.

3.2 Additional Technical Considerations

Some details concerning the configuration of the DNA chip should be mentioned.
In the current incarnation of the method, reverse synthesis of oligos directly on
the chip or “spot attachment” would be required. Chemical reagents for reverse
synthesis are commercially available although not as widely used as those for
3’-to-5’ methods. Spot attachment of oligos onto the chip results in decreased
pixel density and increased work. However, recent chip improvements, including
etching with hydrophobic gridlines, may alleviate this drawback.

One potential photo-cleavable base analog is 7−nitroindole nucleoside. It has
previously been shown to produce a chemical lesion in the effected DNA strand
which causes backbone cleavage. Use of 7−nitroindole nucleoside for strand cleav-
age has been shown to produce useable 5′ and 3′ ends [23]. Production of ’clean’
3′ ends is critical for decrypting the message, since the cipher strands must hy-
bridize to the one-time-pad and act as primers for the polymerase mediated
strand elongation (PCR). Primers and templates containing the 7−nitroindole
nucleoside have been shown to function properly in PCR and other enzymatic
reactions.

4 DNA Steganography Analysis

Steganography using DNA is appealling due to its simplicity. One method pro-
posed involves taking “plaintext” input DNA strands, tagging each with “secret
key” strands, and then hiding them among random “distracter” strands. The
plaintext is retrieved by hybridization with the complement of the secret key
strands. It has been postulated that in the absence of knowledge of the secret
key, it would be necessary to examine all the strands including the distracters to
retrieve the plaintext. Based on the likely difference in entropy of the distracters
and the plaintext, we argue that the message can be retrieved without the key.

4.1 Relevant Data Compression Result

The compression ratio is the quotient of the length of the compressed data
divided by the length of the source data. For example, many images may be
losslessly compressed to a 1/4 of their original size; English text and computer
programs have compression ratios of about 1/3; most DNA has a compression
ratio between 1/2 and 1/1.2 [15,29]. Protein coding sequences make efficient use
of amino acid coding and have larger compression ratios [33,20]. The Shannon
information theoretic entropy rate is denoted by HS ≤ 1. It is defined to be
the rate that the entropy increases per symbol, for a sequence of length n with
n → ∞ [9]. It provides a measure of the asymptotic rate at which a source

DNA-based Cryptography 179

can be compressed without loss of information. Random sequences can not be
compressed and therefore have an entropy rate of 1.

Lossless data compression with an algorithm such as Lempel-Ziv [51], is the-
oretically asymptotically optimal. For sequences whose length n is large, the
compression ratio approaches the entropy rate of the source. In particular, it
is of the form (1 + ε(n))HS , where ε(n) → 0 for n → ∞. Algorithms such
as Lempel-Ziv build an indexed dictionary of all subsequences parsed that can
not be constructed as a catenation of current dictionary entries. Compression is
performed by sequentially parsing the input text, finding maximal length sub-
sequences already present in the dictionary, and outputting their index number
instead. When a subsequence is not found in the dictionary, it is added to it (in-
cluding the case of single symbols). Algorithms can achieve better compression
by making assumptions about the distribution of the data [4]. It is possible to
use a dictionary of bounded size, consisting of the most frequent subsequences.
Experimentation on a wide variety of text sources shows that this method can
be used to achieve compression within a small percentage of the ideal [43]. In
particular, the compression ratio is of the form (1 + ε)HS , for a small constant
ε > 0 typically of at most 1/10 if the source length is large.

Lemma 1. The expected length of a parsed word is between L
1+ε and L, where

L = logb n
HS

.

Proof. Assume the source data has an alphabet of size b. An alphabet of the
same size can be used for the compressed data. The dictionary can be limited to
a constant size. We can choose an algorithm that achieves a compression ratio
within 1 + ε of the asymptotic optimal, for a small ε > 0. Therefore, for large n,
we can expect the compression ratio to approach (1 + ε)HS .

Each parsed word is represented by an index into the dictionary, and so its size
would be logb n if the source had no redundancy. By the choice of compression
algorithm, the length of the compressed data is between HS and HS(1+ε) times
the length of the original data. From these two facts, it follows that the expected
length of a code word will be between logb n

(1+ε)HS
and logb n

HS
.

Lemma 2. A parsed word has length ≤ L
p with probability ≥ 1− p.

Proof. The probability of a parsed word having length > L
p is < p, for all p ∈

(0, 1), by the Markov inequality. The lemma follows from this.

Lemma 3. A parsed word has length ≥ c′L with probability ≥ 1 − p, if p >

1− 1
c(1+ε) and c′ = c− c− 1

1+ε

p > 0.

Proof. The maximum length of a parsed word has an upper bound in practice.
We assume that this is cL for a small constant c > 1. We use Δ to denote
the difference between the maximum possible and the actual length of a parsed
word, and Δ̄ to denote the difference’s expected value. Applying Lemma 1,

180 Ashish Gehani, Thomas LaBean, and John Reif

0 < Δ̄ < cL− L
1+ε (= (c− 1

1+ε)L). The probability that Δ > Δ̄
p (=

(c− 1
1+ε)L

p), is
< p, by the Markov inequality. Therefore, with probability < p, a parsed word
has length < cL − Δ̄

p = c′L, where c′ = c − c− 1
1+ε

p . We choose p > 1 − 1
c(1+ε)

so that 0 < c′ ≤ c, since parsed words must have positive length that does not
exceed the maximum postulated.

Lemma 4. A parsed word has length between c′L and L
p with probability ≥

(1− p)2, if p > 1− 1
c(1+ε) and c′ > HS.

Proof. This follows from Lemmas 2 and 3.

4.2 Analysis Assumptions

We assume all the following. The alphabet in question is that of DNA and
therefore has size 4. The probability distribution of the “plaintext” DNA source
S is known - for example, that it is generated by a stationary ergodic process. The
“distracter” DNA strands have a random uniform distribution over the 4 DNA
bases. Both “plaintext” and “distracter” DNA strands have the same length since
they may otherwise be distinguished by length. A Lempel-Ziv algorithm variant
that meets the criteria of Lemma 4 is known. p is fixed just above 1 − 1

c(1+ε) .

f(n) ≈ g(n) if f(n)
g(n) → 1 and (1− 1

n)n ≈ 1
e , for large n.

4.3 Constructing a Dictionary

Let L = HS log4 n. D is the set of d most frequently occurring words of the
source, where d is the size of the dictionary. D′ is the subset of D that consists
of words that meet the following two criteria. The first is that the word’s length
must be between c′L and L

p . The second is that the word’s frequency in the
source S must be > 1

n′ , where n′ = (1− p)2 n
L .

Lemma 5. The probability that a word w in D′ is a parsed word of the “plain-
text” DNA sequence is > 1− 1

e .

Proof. Let X be a “plaintext” DNA sequence of length n. Consider D′′, the
subset of D containing words of length between c′L and L

p . D′′ contains at least
(1 − p)2 of the parsed words of X by Lemma 4. D′ is the subset of D′′ which
consists of only words that have frequency > 1

n′ . Consider a word v parsed from
X . The probability that a word w from D′ is not v is < 1− 1

n′ by construction.
X has an expected number n

L parsed words. By Lemma 1, there are an expected
number (1 − p)2 n

L words with length in the range between c′L and L
p . The

probability that w is none of these words is therefore < (1 − 1
n′)(1−p)2 n

L ≈ 1
e .

Thus, a word w in D′ is some parsed word of X with probability > 1− 1
e .

DNA-based Cryptography 181

4.4 DNA-SIEVE: Plaintext Extraction Without the Key

Strand separation operates on a test tube of DNA, using recombinant DNA
technology to split the contents into two tubes, T and T ′ with separation error
rates σ−, σ+ : 0 < σ−, σ+ < 1. The goal is to transfer all the strands that contain
the subsequence w into the tube T ′, leaving all the rest in tube T . A fraction
< σ− of the strands without subsequence w enter T ′. A fraction > 1 − σ+ of
the strands containing w are left in T . We assume that ρ = σ−

(1−σ+)(1− 1
e)

, 0 <

ρ < 1. Modest expectations for separation technology yield 0 < σ+ < 0.2 and
0 < σ+ < 0.05. Using σ− = σ+ = 0.2 suffices to obtain ρ in the desired range.

DNA-SIEVE is to be used to extract the “plaintext” DNA strands from
the mix in which there are many “distracters”. It begins with a tube T . The
separate operation is iteratively applied. In each round, a previously unused
word w from the set D′ is chosen. All strands that contain it are retained by
using hybridization with the complement of w. We use r(T) to denote the ratio
of the distracters to the plaintext, and F (T) to denote the tube from which the
strands with subsequence w were removed.

4.5 DNA-SIEVE Analysis

The success of DNA-SIEVE rests on the fact that a word in D′ is likely to occur
in plaintext X with probability 1− 1

e , while it is expected to occur in a random
text R with probability close to 0.

Lemma 6. The probability that a word in D′ is a subsequence of R is ≈ n4−c′L =
1

n
c′

HS
−1

.

Proof. Let R denote a random “distracter” sequence of length n over the al-
phabet of the 4 DNA bases. Since all sequences are equiprobable, one of length

c′L = c′ log4 n
HS

is likely to occur with probability 4−c′L = 4log4 n
−c′
HS = 1

n
c′

HS

. Since

it can occur at any of ≈ n locations in R, the probability of it occurring in R is
n4−c′L = 1

n
c′

HS
−1

. By assumption in Lemma 4, c′ > HS , so c′
HS
− 1 > 0.

Lemma 7. If DNA-SIEVE operates on tube T and results in tube F (T), then at
the most ≈ σ− of the distracters in T are in F (T), while at least ≈ (1−σ+)(1− 1

e)
of the plaintext strands of T are in F (T).

Proof. The probability that a distracter strand in T is present in F (T) is limited
by σ−+n4−c′L, the sum of the error and the theoretical chance. By assumption,
the error rate is < σ−. By the Lemma 6 the chance is < 1

n
c′

HS
−1

. Since n is large,

this is ≈ 0. Therefore at most σ− of the distracters in T reach F (T). Similarly,
by Lemma 5, at least 1− 1

e of the plaintext strands in T are expected to be in
F (T). By assumption, at most σ+ of the strands that should reach F (T) are left
behind due to separation error. Therefore, ≈ (1 − σ+)(1 − 1

e) of the plaintext
strands actually reach F (T).

182 Ashish Gehani, Thomas LaBean, and John Reif

Lemma 8. The probability distribution of the distracter strands returns to the
original one after an expected number of 2L

p iterations of DNA-SIEVE.

Proof. Each iteration of DNA-SIEVE uses a word w from D′ that has not been
previously used. Assume w is a prefix or suffix of another word w′ in D′. Once
DNA-SIEVE has been using w, the probability distribution of the distracters
complementary to w′ will be altered. The distribution of the rest will remain
unaffected. There are ≤ 2L

p words that can overlap with a given word from D′.
Therefore, a particular separation affects ≤ 2L

p other iterations. If w is chosen
randomly from D′, then after an expected number of 2L

p iterations, all the strands
will be equally effected and hence the probability distribution of the distracters
will be the same as before the sequence of iterations. Such a number of iterations
is termed “independent”.

Theorem 1. To reduce the ratio of distracter to plaintext strands by a factor r,
it suffices to apply DNA-SIEVE an expected number of O(log n) log r times.

Proof. Denote the ratio of the distracter strands to the plaintext strands in test
tube T with r′. Now consider a tube F (T) that results from applying DNA-
SIEVE t times till this ratio has been reduced by a factor r. Denote the ratio
for tube F (T) by r′′. By Lemma 8, after an expected number of 2L

p iterations,
a test tube G(T) is produced with the same distribution of distracters as in T .
Applying Lemma 7, we expect that after every set of 2L

p iterations, the ratio will

change by at least ρ = σ−

(1−σ+)(1− 1
e)

. We expect a decrease in the concentration

after t iterations by a factor of ρ
t

2L
p . To attain a decrease of r′′

r′ , we need t =
2L
p log r′′

r′ log ρ. Since L = O(log n) and ρ = O(1), t = O(log n) log r.

4.6 DNA-SIEVE Implementation Considerations

The theoretical analysis of DNA-SIEVE was used to justify the expected geoe-
metric decrease in the conentration of the distracter strands. It also provides
two further insights. The number of “plaintext” DNA strands may decrease by
a factor of (1 − σ+)(1 − 1/e) after each iteration. It is therefore prudent to in-
crease the absolute number of copies periodically (by ligating all the strands
with primer sequences, PCR cycling, and then digesting the primers that were
added). The number of iterations that can be performed is limited to n′ due to
the fact that a distinct word from D′ must be used each time. This limits the
procedure to operation on a population where the number of distracter strands
is < 4n′

.

4.7 Empirical Analysis

We performed an empirical analysis of DNA-SIEVE. We assumed that the test
tube would start with 108 distracter strands and 103 message strands. The first

DNA-based Cryptography 183

Fig. 7. Simulation of DNA-SIEVE : Distracters have a sharper drop-off in con-
centration

parameter varied was the number of “indpendent” iterations of DNA-SIEVE -
from 1 to 10. The second parameter varied was the separation error rate - from
0.01 to 0.25 in multiples of 0.01. Here we do not assume a difference in the error
rate for false positives and false negatives that occur during the separation. In
each case, the number of distracters and message strands remaining was com-
puted. The results are plotted in Figure 7. From this we can see that 5 to 10
iterations of DNA-SIEVE suffice to reduce the distracter population’s size to
below that of the message strands when the separation error is < 0.18. The
table illustrates the number of distracters and message strands left after 3, 6
and 9 iterations with varying separation error rates. If the error rate is reason-
able, it can be seen from the table that there remain enough message strands
for the plaintext to be found. If the separation error rate is high, the number
of strands used must be increased to allow enough iterations of DNA-SIEVE to
occur before the message strands are all lost.

184 Ashish Gehani, Thomas LaBean, and John Reif

Separation Error 0.05 0.1 0.15 0.2 0.25
Iterations

3 Distracters 12500 100000 337500 800000 1562500
Messages 217 184 155 129 107

6 Distracters 2 100 1139 6400 24414
Messages 47 34 24 17 11

9 Distracters 0 0 4 51 381
Messages 10 6 4 2 1

4.8 Improving DNA Steganography

We can improve a DNA steganography system by reducing the difference be-
tween the plaintext and distracter strands. This can be done by making the
distracters similar to the plaintext by creating them using random assembly of
elements from the dictionary D. Alternatively, DNA-SIEVE can be employed
on a set of random distracters to shape the population into one whose distri-
bution matches that of the plaintext. We note, however, that if the relative
entropy [9] between the plaintext and the distracter strand populations is large
enough, DNA-SIEVE can be employed as previously described. An attacker can
use a larger dictionary, which provides a better model of the plaintext source,
to increase the relative entropy re-enabling the use of DNA-SIEVE. If the M
plaintext strands are tagged with a sequence that allows them to be extracted,
then they may be recognized by the high frequency of the tag sequence in the
population. To guard against this, N sets of M strands each can be mixed in.
This results in a system that uses V = O(MN) volume. To prevent a brute
force attack, N must be large, potentially detracting from the practicality of
using using the DNA steganographic system.

The other approach to reduce the distinguishability of the plaintext from the
distracters is to make the former mimic the latter. By compressing the plaintext
with a lossless algorithm, such as Lempel-Ziv [51], the relative entropy of the
message and the distracter populations can be reduced. If the plaintext is derived
from an electronic source, it can be compressed in a preprocessing step. If the
source is natural DNA, it can be recoded using a substitution method similar to
the one described in Section 2. However, the security of such a recoding remains
unknown. In the case of natural DNA, for equivalent effort, DNA cryptography
offers a more secure alternative to DNA steganography.

5 Conclusion

This paper presented an initial investigation into the use of DNA-based infor-
mation security. We discussed two classes of methods: (i) DNA cyptography
methods based on DNA one-time-pads, and (ii) DNA steganography methods.
Our DNA substitution and XOR methods are based on one-time-pads, which are
in principle unbreakable. We described our implementation of DNA cyptography
with 2D input/output. We showed that a class of DNA steganography methods

DNA-based Cryptography 185

offer limited security and can be broken with a reasonable assumption about the
entropy of the plaintext messages. We considered modified DNA steganographic
systems with improved security. Steganographic techniques rest on the assump-
tion that the adversary is unaware of the existence of the data. When this does
not hold, DNA cryptography must be relied upon.

Acknowledgments

Work supported by Grants NSF/DARPA CCR-9725021, CCR-96-33567, NSF
IRI-9619647, ARO contract DAAH-04-96-1-0448, and ONR contractN00014-99-
1-0406. A preliminary version appears in DIMACS DNA Based Computers V,
American Mathematical Society, 2000.

References

1. L.M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 266 (1994), 1021–1024.

2. W.M. Barnes, PCR amplification of up to 35-kb DNA with high fidelity and high
yield from bacteriophage templates, Proc. Natl. Acad. Sci., 91 (1994), 2216–2220.

3. E.B. Baum, Building an associative memory vastly larger than the brain, Science,
268 (1995), 583–585.

4. T. Bell, I.H. Witten, and J.G. Cleary, Modeling for Text Compression, ACM
Computing Surveys, 21, 4 (1989), 557–592.

5. D. Boneh, C. Dunworth, and R.J. Lipton, Breaking DES Using a Molecular
Computer, DNA Based Computers (E.B. Baum and R.J. Lipton, eds.), Amer-
ican Mathematical Society, 1996, DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science.

6. A.P. Blanchard, R.J. Kaiser, and L E. Hood, High-density oligonucleotide arrays,
Biosens. Bioelec., 11 (1996), 687–690.

7. D. Boneh, C. Dunworth, R.J. Lipton, and J. Sgall, Making DNA computers error
resistant, DNA based computer II (Editors: L. Landwaber, E. Baum) DIMACS
series in Discrete Math. and Theoretical Comp. Sci. 44 (1999).

8. M. Chee, R. Yang, E. Hubbell, A. Berno, X.C. Huang, D. Stern, J. Winkler,
D.J. Lockhart, M.S. Morris, S.P.A. Fodor, Accessing genetic information with
high-density DNA arrays, Science, 274 (1996), 610–614.

9. Th.M. Cover and J.A. Thomas, Elements of Information Theory, New York, NY,
USA, John Wiley & Sons, 1991.

10. R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, and S.E. Stevens, Jr.,
Good Encodings for DNA-based Solutions to Combinatorial Problems, DNA
based computer II (Editors: L. Landwaber, E. Baum) DIMACS series in Dis-
crete Math. and Theoretical Comp. Sci. 44 (1999). Proceedings of the Second
Annual Meeting on DNA Based Computers, 1996, American Mathematical Soci-
ety, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
1052–1798.

11. R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, and S.E.Stevens, Jr.,
Reliability and efficiency of a DNA-based computation, Phys. Rev.Lett., 80 (1998),
417–420.

186 Ashish Gehani, Thomas LaBean, and John Reif

12. S. Fodor, J.L. Read, M.C. Pirrung, L. Stryer, A. Tsai Lu, and D. Solas, Light-
directed spatially addressable parallel chemical synthesis, Science, 251 (1991),
767–773.

13. A.G. Frutos, A.J. Thiel, A.E. Condon, L.M. Smith, and R.M. Corn, DNA Com-
puting at Surfaces: 4 Base Mismatch Word Design, DNA based computer III
(Editors: H. Rubin, D. Wood) DIMACS series in Discrete Math. and Theoretical
Comp. Sci. vol 48 (1999) 238.

14. J.M. Gray, T.G. Frutos, A. Michael Berman, A.E. Condon, M.G. Lagally, L.M.
Smith, and R.M. Corn, Reducing Errors in DNA Computing by Appropriate
Word Design, November, 1996.

15. S. Grumbach and F. Tahi, A new challenge for compression algorithms: genetic
sequences, Inf. Proc. and Management, 30, 6 (1994), 875–886.

16. F. Guarnieri, M. Fliss, and C. Bancroft, Making DNA Add, Science, 273 (1996),
220–223.

17. V. Gupta, S. Parthasarathy, and M.J. Zaki, Arithmetic and Logic Operations
with DNA, DNA based computer III (Editors: H. Rubin, D. Wood) DIMACS
series in Discrete Math. and Theoretical Comp. Sci. vol 48 (1999) 212–220.

18. M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, and S. Yokoyama, Towards Paral-
lel Evaluation and Learning of Boolean μ-Formulas with Molecules, DNA based
computer III (Editors: H. Rubin, D. Wood) DIMACS series in Discrete Math.
and Theoretical Comp. Sci. vol 48 (1999) 105–114.

19. T. Head, Splicing schemes and DNA, Lindenmayer Systems; Impact on Theoret-
ical computer science and developmental biology (G. Rozenberg and A. Salomaa,
eds.), Springer Verlag, Berlin, 1992, 371–383.

20. S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein
blocks, Proc. Natl. Acad. Sci., 89 (1992), 10915–10919.

21. D. Kahn, The Codebreakers, Macmillan, NY, 1967.
22. J.P. Klein, T.H. Leete, and H. Rubin, A biomolecular implementation of logical

reversible computation with minimal energy dissipation, Proceedings 4th DIMACS
Workshop on DNA Based Computers, University of Pennysylvania, Philadelphia,
1998 (L. Kari, H. Rubin, and D.H. Wood, eds.), 15–23.

23. M. Kotera, A.G. Bourdat, E. Defrancq, and J. Lhomme, A highly efficient syn-
thesis of oligodeoxyribonucleotides containing the 2’-deoxyribonolactone lesion,
J. Am. Chem. Soc., 120 (1998), 11810–11811.

24. T.H. LaBean and T.R. Butt, Methods and materials for producing gene libraries,
U.S. Patent Number 5,656,467, 1997.

25. T. LaBean and S.A. Kauffman, Design of synthetic gene libraries encoding random
sequence proteins with desired ensemble characteristics, Protein Science, 2 (1993),
1249–1254.

26. T.H. LaBean, E. Winfree, and J.H. Reif, Experimental Progress in Computation
by Self-Assembly of DNA Tilings, DNA Based Computers V, 1999.

27. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, H.J. Reif, and N C.
Seeman, The construction, analysis, ligation and self-assembly of DNA triple
crossover complexes, J. Am. Chem. Soc., 122 (2000), 1848–1860.

28. X. Li, X. Yang, J. Qi, and N.C. Seeman, Antiparallel DNA double crossover
molecules as components for nanoconstruction, J. Amer. Chem. Soc., 118 (1996),
6131–6140.

29. Loewenstern and Yianilos, Significantly Lower Entropy Estimates for Natural
DNA Sequences, DCC: Data Compression Conference, IEEE Computer Society
TCC, (1997), 151–161.

DNA-based Cryptography 187

30. C. Mao, T.H. LaBean, J.H. Reif, and N C. Seeman, Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules, Nature, 407 (2000),
493–496.

31. A.P. Mills Jr., B. Yurke, and P.M. Platzman, Article for analog vector algebra
computation, Proceedings 4th DIMACS Workshop on DNA Based Computers,
University of Pennysylvania, Philadelphia, 1998 (L. Kari, H. Rubin, and D.H.
Wood, eds.), 175–180.

32. K.U. Mir, A Restricted Genetic Alphabet for DNA Computing, Proceedings of the
Second Annual Meeting on DNA Based Computers, Princeton University, 1996,
in DNA based computer II (Editors: L. Landwaber, E. Baum) DIMACS series in
Discrete Math. and Theoretical Comp. Sci. 44 (1999).

33. C.G. Nevill-Manning and I.H. Witten, Protein is Incompressible, IEEE Data
Compression Conference, IEEE Computer Society TCC, 1999, 257–266.

34. M. Orlian, F. Guarnieri, and C. Bancroft, Parallel Primer Extension Horizontal
Chain Reactions as a Paradigm of Parallel DNA-Based Computation, DNA based
computer III (Editors: H. Rubin, D. Wood) DIMACS series in Discrete Math. and
Theoretical Comp. Sci. vol 48 (1999) 142–158.

35. A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S. P. Fodor,
Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc.
Natl Acad. Sci. USA, 91 (1994), 5022–5026.

36. J.H. Reif, Local Parallel Biomolecular Computing, DNA based computer III (Ed-
itors: H. Rubin, D. Wood) DIMACS series in Discrete Math. and Theoretical
Comp. Sci. vol 48 (1999) 243–264.

37. J.H. Reif, Paradigms for Biomolecular Computation, Unconventional Models of
Computation (C.S. Calude, J. Casti, and M.J. Dinneen, eds.), Springer, 1998.

38. J.H. Reif, Parallel Molecular Computation: Models and Simulations, Algorith-
mica, Special Issue on Computational Biology, 1998.

39. S.S. Roberts, Turbocharged PCR, Jour. of N.I.H. Research, 6 (1994), 46–82.
40. J.A. Rose, R. Deaton, M. Garzon, R.C. Murphy, D.R. Franceschetti, and S.E.

Stevens Jr., The effect of uniform melting temperatures on the efficiency of DNA
computing, DNA based computer III (Editors: H. Rubin, D. Wood) DIMACS
series in Discrete Math. and Theoretical Comp. Sci. vol 48 (1999) 35–42.

41. S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Goodman, P.W.K.
Rothemund, and L.M. Adleman, A Sticker Based Architecture for DNA Com-
putation, DNA based computer II (Editors: L. Landwaber, E. Baum) DIMACS
series in Discrete Math. and Theoretical Comp. Sci. 44 (1999) 1-29.

42. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,
John Wiley & Sons, Inc., 1996.

43. J.A. Storer, Data Compression: Methods and Theory, Computer Science Press,
1988.

44. A. Suyama, DNA chips - Integrated Chemical Circuits for DNA Diagnosis and
DNA computers, 1998.

45. C.T. Taylor, V. Risca, and C. Bancroft, Hiding messages in DNA microdots,
Nature, 399 (1999), 533–534.

46. E. Winfree, On the Computational Power of DNA Annealing and Ligation, DNA
Based Computers (E.B. Baum and R.J. Lipton, eds.), American Mathematical
Society, DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 1995, 187–198.

47. E. Winfree, Complexity of Restricted and Unrestricted Models of Molecular Com-
putation, DNA Based Computers (E.B. Baum and R.J. Lipton, eds.), American

188 Ashish Gehani, Thomas LaBean, and John Reif

Mathematical Society, 27, DIMACS: Series in Discrete Mathematics and Theo-
retical Computer Science, 1995, 187–198.

48. E. Winfree, Simulations of Computing by Self-Assembly, Proceedings of the Fourth
DIMACS Meeting on DNA Based Computing, 1998, 213–242.

49. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman, Design and Self-Assembly
of Two Dimensional DNA Crystals, Nature, 394 (1998), 539–544.

50. E. Winfree, X. Yang, and N.C. Seeman, Universal Computation via Self-assembly
of DNA: Some Theory and Experiments, DNA based computer II (Editors: L.
Landwaber, E. Baum) DIMACS series in Discrete Math. and Theoretical Comp.
Sci. 44 (1999) 191–214.

51. J. Ziv and A. Lempel, A universal algorithm for sequential data compression,
IEEE Trans. Inf. Theory, IT-23 (1977), 337–343.

Splicing to the Limit

Elizabeth Goode1 and Dennis Pixton2

1 Mathematics Department, Towson University
Towson, MD 21252, USA

egoode@towson.edu
2 Department of Mathematical Sciences, Binghamton University

Binghamton, NY 13902-6000, USA
dennis@math.binghamton.edu

Abstract. We consider the result of a wet splicing procedure after the
reaction has run to its completion, or limit, and we try to describe
the molecules that will be present at this final stage. In language theo-
retic terms the splicing procedure is modeled as an H system, and the
molecules that we want to consider correspond to a subset of the splicing
language which we call the limit language. We give a number of examples,
including one based on differential equations, and we propose a definition
for the limit language. With this definition we prove that a language is
regular if and only if it is the limit language of a reflexive and symmetric
splicing system.

1 Introduction

Tom Head [5] invented the notion of a splicing system in 1987 in an attempt to
model certain biochemical reactions involving cutting and reconnecting strands
of double-sided DNA. Since then there have been many developments and exten-
sions of the basic theory, but some of the basic questions have remained unan-
swered. For example, there is still no simple characterization of the languages
defined by splicing systems.

The language defined by a splicing system is called the splicing language,
and this corresponds to the set of molecular types that are created during the
evolution of the system. In discussions several years ago Tom proposed analyzing
the outcome of a splicing system in a way that is closer to what is actually
observed in the laboratory. The idea is that certain molecules which appear
during the biochemical reactions are transient in the sense that they are used
up by the time the splicing experiment has “run to completion.” The molecules
that are left at this stage can be termed the limit molecules of the system, and
the corresponding formal language defined by the splicing system is called the
limit language.

The first major problem is to properly define this limit language. One pos-
sibility is to try to use differential equations to model the set of molecules, and
then to define the limit language in terms of the solutions. Although it is reason-
ably clear how to set up such equations, solving them is another matter, since

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 189–201, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

190 Elizabeth Goode and Dennis Pixton

the system of differential equations is non-linear and, in non-trivial cases, has
infinitely many variables.

Another possibility is to try to avoid quantitative issues and to analyze the
splicing process qualitatively, in the context of formal languages, but guided by
our understanding of the actual behavior of the biochemical systems.

In this paper we present a number of examples from the second viewpoint,
illustrating some of the features that we expect in a limit language. We also give
some of the details of a simple example from the differential equations viewpoint,
to illustrate the general approach.

We then propose a definition of limit language in the formal language setting.
It is not clear that our definition covers all phenomena of limit behavior, but
it is sufficient for the range of examples we present, and leads to some interest-
ing questions. It is well known that splicing languages (based on finite splicing
systems) are regular, and it is natural to ask whether the same is true for limit
languages. We do not know the answer in general, but in the special case of a
reflexive splicing system we can give a satisfying answer: The limit language is
regular; and, moreover, every regular language occurs as a limit language.

We present this paper not as a definitive statement, but as a first step toward
understanding the limit notion.

2 Motivation

We review briefly the basic definitions; for more details see [4]. A splicing rule
is a quadruple r = (u1, v1; u2, v2) of strings, and it may be used to splice strings
x1u1v1y1 and x2u2v2y2 to produce x1u1v2y2. A splicing scheme or H scheme is
a pair σ = (A,R) where A is the alphabet and R is a finite set of rules over A.
A splicing system or H system is a pair (σ, I) where σ is a splicing scheme and
I ⊂ A∗ is a finite set, the initial language. The splicing language defined by such
a splicing system is the smallest language L that contains I and is closed under
splicing using rules of σ. Usually L is written as σ∗(I).

Associated to a rule r = (u1, v1; u2, v2) are three other rules: its symmetric
twin r̄ = (u2, v2; u1, v1) and its reflexive restrictions ṙ = (u1, v1; u1, v1) and
r̈ = (u2, v2; u2, v2). A splicing scheme σ is called symmetric if it contains the
symmetric twins of its rules, and it is called reflexive if it contains the reflexive
restrictions of its rules.

We consider I as modeling an initial set of DNA molecule types, with σ mod-
eling a test-tube environment in which several restriction enzymes and ligases act
simultaneously. In this case the language L models the set of all molecule types
which appear at any stage in this reaction. In this interpretation we can see that,
in fact, representatives of all molecule types in L appear very quickly (although
perhaps in very small concentrations) after the beginning of the reactions.

Here we want to consider a somewhat different scenario: We ask not for the set
of all molecules that are created in this reaction, but for the set of molecules that
will be present after the system has “reached equilibrium”. In other words, we
expect that some of the molecular types will be used up in constructing different

Splicing to the Limit 191

molecular types, so they will eventually disappear from the solution. We call the
subset L∞ of L corresponding to the remaining “final-state” molecules the limit
set of the splicing system. In this section we consider several examples of such
limit sets, without giving a formal definition.

Example 1. Initial language I = { ab, cd }, rule r = (a, b; c, d), together with its
symmetric and reflexive versions. Then the splicing language is L = {ab, cd, ad,
cb} but the limit language is L∞ = {ad, cb}.
Discussion. One of the first wet-lab experiments validating the splicing model
was described in [7]. This example is just the symbolic version of that experiment.
The molecules ab and cd are spliced by rules r and r̄ to produce ad and bc; they
are also spliced to themselves by rules ṙ and r̈ to regenerate themselves. The
words ad and bc are “inert” in the sense that they do not participate in any
further splicings, and any inert words will obviously appear in the limit language.
However, initial stocks of the initial strings ab and cd will eventually be used
up (if they are present in equal numbers), so they will not appear in the limit
language, and the limit language should be just { ad, cb }. We call the words that
eventually disappear “transient”. Of course, if there are more molecules of ab
than of cd present at the start then we should expect that there will also be
molecules of ab left in the final state of the reaction.

Our definition of limit language will ignore this possibility of unbalanced
numbers of molecules available for various reactions. Put simply, we will define
the limit language to be the words that are predicted to appear if some amount
of each initial molecule is present, and sufficient time has passed for the reaction
to reach its equilibrium state, regardless of the balance of the reactants in a
particular experimental run of the reaction. In the example above, one particular
run of the reaction may yield molecules of ab at equilibrium, while another run
may not yield molecules of ab at equilibrium, but rather molecules of cd. Both
reactions, however, are predicted to yield molecules of ad and bc, and hence these
molecules constitute the limit language.

Limit languages would be easy to analyze if they consisted only of inert
strings. The following example involves just a slight modification to the previous
example and provides a limit language without inert words.

Example 2. Initial language I = { ab, cd }, rules r1 = (a, b; c, d) and r2 =
(a, d; c, b), together with their symmetric twins and reflexive restrictions. Then
there are no inert words and the splicing language and limit language are the
same, L = L∞ = { ab, cd, ad, cb }.
Discussion. The molecules ab and cd are spliced by rules r1 and its symmetric
twin as in Example 1 producing ad and cb. These products in turn can be
spliced using r2 and its symmetric twin to produce ab and cd. As in Example 1
each molecule can regenerate itself using one of the reflexive rules. None of the
strings are inert, nor do any of them disappear. Thus each molecule in L∞ is
considered to be in a reactive “steady-state” at equilibrium. Their distribution

192 Elizabeth Goode and Dennis Pixton

can be calculated using differential equations that model the chemical reactions
for the restriction enzymes, ligase, and initial molecules involved.

The next example demonstrates the possibility of an infinite number of re-
active steady state molecules at equilibrium.

Example 3. Initial language I = { aa, aaa }, rule r = (a, a; a, a). Then there are
no inert words and the splicing language and the limit language are the same,
L = L∞ = aa+.

Discussion. It is easy to see that L = aa+. Moreover, each string ak in L is the
result of splicing two other strings of L; in fact, there are infinitely many pairs
of strings in L which can be spliced to regenerate ak. In effect, all copies of the
symbol a are shuffled between the various molecular types ak in L. We consider
each word ak of L to be in the limit language. This interpretation is buttressed
by the example in Section 3, which calculates the limiting concentrations of the
molecules in a very similar system and finds that all limiting concentrations are
positive.

Our definition of limit language will avoid the detailed calculation of limiting
distribution; in cases like this we will be content to note that any molecule ak

will be present in the limit.

The following illustrates a very different phenomenon: Molecules disappear
by growing too big.

Example 4. Initial language I = { abc }, splicing rule r = (b, c; a, b). Then the
splicing language is L = ab+c but the limit language is empty.

Discussion. The calculation of the splicing language is straightforward; note
that splicing abkc and abjc produces abk+jc. Hence abc is not the result of any
splicing operation although it is used in constructing other molecules. Therefore
all molecules of type abc will eventually be used up, so abc cannot appear in
the limit language. But now, once all molecules of type abc have disappeared,
then there is no way to recreate ab2c and ab3c by splicing the remaining strings
abkc, k ≥ 2. Hence all molecules of types ab2c or ab3c will eventually be used
up, so they cannot appear in the limit language. The remainder of L is analyzed
similarly, using induction.

The H scheme in Example 4 is neither reflexive nor symmetric, so it is hard to
justify this example as a model of an actual chemical process. In fact, the next
example shows that this phenomenon, in which molecules disappear by “con-
verging to infinitely long molecules”, can also happen in reflexive and symmetric
H systems. However, we shall see later (Corollary 1) that in the reflexive case
the limit language is not empty unless the initial language is empty.

Example 5. Initial language I = { abc }, splicing rule r = (b, c; a, b) together
with its symmetric twin and its reflexive restrictions. Then the splicing language
is L = ab∗c and the limit language is ac.

Splicing to the Limit 193

Discussion. The calculation of the splicing language follows as in Example 4,
and all molecules of type abkc for k > 0 will again eventually disappear under
splicing using r. The symmetric splice using r̄ generates the single inert string
ac, which will eventually increase in quantity until it consumes virtually all of
the a and c pieces. Thus this system involves an infinite set of transient strings
and a finite limit language consisting of a single inert string.

This system could run as a dynamic wet lab experiment, and one would
expect to be able to detect by gel electrophoresis an increasingly dark band
indicating the presence of more and more ac over time. Over the same time
frame we predict the strings of the type abkc would get very long, and this would
eventually cause these molecules to remain at the top of the gel. In theory, at
the final state of the reaction, there would be one very long such molecule that
consumed all of the b pieces. We might expect the dynamics of the system to
make it increasingly difficult for molecules of abkc to be formed as k gets very
large. A wet splicing experiment designed to demonstrate the actual dynamics
of such a system would be a logical step to test the accuracy of this model of
limit languages.

It is essential for the dynamic models that are introduced in Section 3
that we use a more detailed version of splicing. The action of splicing two
molecules represented as w1 = x1u1v1y1 and w2 = x2u2v2y2 using the splic-
ing rule (u1, v1; u2, v2) to produce z = x1u1v2y2 is actually a three step process.
A restriction enzyme first acts on w1, cutting it between u1 and v1. The resulting
fragments have “sticky ends” corresponding to the newly cut ends, in the sense
that a number of the bonds between base pairs at the cut site are broken, so part
of the cut end on one side is actually single stranded, with the complementary
bases on the other fragment. Similarly the molecule w2 is cut between u2 and
v3, generating two fragments with sticky ends. Finally, if the fragments corre-
sponding to x1u1 and v2y2 meet in the presence of a ligase, they will join at the
sticky ends to form z. It is clear that any dynamic analysis of the situation must
account for the various fragments, keeping track of sticky ends.

There are two primary techniques for this: cut-and-paste systems as defined
by Pixton [8], and cutting/recombination systems as defined by Freund and his
coworkers [2]. The two approaches are essentially equivalent and, in this context,
differ only in how they handle the “sticky ends”.

We shall use cut-and-paste. In this formulation there are special symbols
called “end markers” which appear at the ends of all strings in the system
and are designed to encode the sticky ends, as well as the ends of “complete”
molecules. The cutting and pasting rules are themselves encoded as strings with
end markers. A cutting rule αzβ encodes the cutting action xzy =⇒ xα + βy,
while a pasting rule αwβ corresponds to the pasting action xα + βy =⇒ xwy.
Thus a splicing rule (u1, v1; u2, v2) can be represented by cutting rules α1u1v1β1

and α2u2v2β2 and a pasting rule α1u1v2β2. In this case α1 encodes the sticky
end on the left half after cutting between u1 and v1 and β2 corresponds to the
sticky end on the right half after cutting between u2 and v2, so the pasting rule

194 Elizabeth Goode and Dennis Pixton

reconstitutes u1v2 when the sticky ends α1 and β2 are reattached. For details
see [8].

Example 6. This is a cut-and-paste version of Example 5. The set of endmarkers
is {α, β1, β2, γ, δ }, the set of cutting rules is C = {αabβ1, β2bcγ } and the set of
pasting rules is P = C ∪ { β2bbβ1, αacγ }, and the initial set is { δabcδ }. Then
the full splicing language is L = δab∗cδ + δα + γδ + δab∗β2 + β1b

∗cγ + β1b
∗β2,

and the limit language is L∞ = { δacδ }.

Discussion. δacδ is inert and is created from δα and γδ by pasting. Thus the
strings δα and γδ will be eventually used up. These strings are obtained by
cutting operations on the strings in δab+cδ + δab∗β2 + β1b

∗cγ, so these in turn
are transient. The remaining strings are in β1b

∗β2, and these are never cut but
grow in length under pasting using the rule xβ2 + β1y =⇒ xbby. Hence these
strings disappear in the same fashion as in Example 4.

One possibility that we have not yet discussed is that a DNA fragment may
produce a circular string by self pasting, if both of its ends are sticky and there
is an appropriate pasting rule. We use ˆw to indicate the circular version of the
string w.

Example 7. If we permit circular splicing in Example 6, then the limit language
is L∞ = { δacδ } ∪ { b̂k: k ≥ 2

}
.

Discussion. The only strings that can circularize are in β1b
+β2, and if we self

paste β1b
jβ2 using the pasting rule β2bbβ1, then we obtain b̂j+2. These circular

strings cannot be cut, so they are inert.

Our final examples illustrate somewhat more complex dynamics.

Example 8. Initial language I = { abb, cdd } and splicing rules r1 = (ab, b; a, b),
r2 = (c, d; a, b), r3 = (ad, d; a, d), together with their symmetric and reflexive
counterparts. The splicing language is L = ab+ + ad+ + cb+ + cdd and the limit
language is L∞ = ad+ + cb+.

Discussion. Rule r1 is used to “pump” ab+ from abb while rule r̄1 produces ab
from two copies of abb. Rules r2 and r̄2 splice copies of cdd and abk to produce
cbk and add. Rule r3 generates add+ from add, while r̄3 generates ad from
two copies of add. The transient words cdd and abk are used up to produce
add and cb+, and the inert words cb+ are limit words. However all words of
ad+ are continually recreated from other words in ad+ using rules r3, r̄3 and
their reflexive counterparts (in the same manner as in Example 3), so these are
also limit words. Thus, in this example there are infinitely many inert strings,
infinitely many steady-state strings, and infinitely many transient strings.

It is not hard to extend this example to have several “levels” of transient
behavior.

Splicing to the Limit 195

Example 9. The splicing rules are

r1 = (a, b; c, d), r2 = (a, d; f, b), r3 = (a, e; a, e), r4 = (a, f ; a, f)

together with their symmetric twins and reflexive restrictions, and the initial
language I consists of

w1 = cd, w2 = ad, w3 = afd, w4 = afbae, w5 = cbae, w6 = abae

Then the splicing language L is the same as I, but the limit language is {w3, w4,
w5, w6}.
Discussion. We shall use a notation that will be made more precise later: For w
and z in L we write w → z to mean that a splicing operation involving w produces
z. It is easy to check that there is a cycle w2 → w3 → w4 → w5 → w6 → w2 so
all these words would seem to be “steady-state” words. On the other hand, w1

can be generated only by splicing w1 and w1 using r̈1 = (c, d; c, d), but w1 also
participates in splicing operations that lead to the w2–w6 cycle. For example,
w6 and w1 splice using r1 to produce w2, so w1 → w2.

Clearly then w1 will be eventually used up, and so it should not be part of
the limit language. We let L1 = L \ {w1 }, and reconsider the limit possibilities.
There are only two ways to produce w2 by splicing: from w2 and w2 using
ṙ1 = (a, b; a, b) or from w6 and w1 using r1. Since w1 is not available in L1

we see that the w2–w6 cycle is broken. In fact, since w2 is used in the splicing
w2 → w3, it must eventually disappear, so it is not part of the limit language.
The remaining words do not form a cycle but they are connected as follows:
w3 → w4 → w3 using r4 and w4 → w5 → w6 → w4 using r3. Thus these words
appear to be limit words; and, since the splicings in these cycles do not involve
w2, they remain limit words after w2 is removed.

With somewhat more work we can construct a splicing language in which
the words wk are replaced by infinite sublanguages Wk, but demonstrating the
same phenomenon: The disappearance of a set of transients like W1 can change
the apparent limit behavior of the remaining strings.

3 Dynamics

We present here a dynamical model based on a very simple cut-and-paste system.
The molecules all have the form F j for j > 0, where F is a fixed fragment of
DNA. We suppose that our system contains a restriction enzyme which cuts
between two copies of F and a ligase which joins any two molecules at their
ends. That is, the simplified cut-and-paste rules are just (F i, F j) ⇐⇒ F i+j .
For simplicity we do not allow circular molecules.

The dynamics of our model will be parameterized by two rates, α and β. We
interpret α as the probability that a given ordered pair A,B of molecules will
paste to yield AB in a unit of time, and we interpret β as the probability that a
cut operation will occur at a given site on a given molecule A in a unit of time.

196 Elizabeth Goode and Dennis Pixton

Let Sk = Sk(t) be the set of molecules of type F k at time t, let Nk = Nk(t)
be the number of such molecules (or the concentration – i.e., the number per
unit volume), and let N = N(t) =

∑∞
j=0 Nk be the total number of molecules.

Consider the following four contributions to the rate of change of Nk in a small
time interval of length Δt:

First, a certain number will be pasted to other molecules. A single molecule
A of type F k can be pasted to any other molecule B in two ways (yielding either
AB or BA), so the probability of pasting A and B is 2αΔt. Since there are N−1
other molecules the probability that A will be pasted to some other molecule is
2α(N −1)Δt, and, since this operation removes A from Sk, the expected change
in Nk due to pastings with other molecules is −2α(N − 1)NkΔt. Since N is
very large we shall approximate this as −2αNNk. Note that this may seem to
overestimate the decrease due to pastings when both A and B are in Sk, since
both A and B will be considered as candidates for pasting; but this is correct,
since if two elements of Sk are pasted, then Nk decreases by 2, not by 1.

Of course, pasting operations involving smaller molecules may produce new
elements of Sk. For molecules in Si and Sj where i+j = k the same reasoning as
above produces αNiNjΔt new molecules in Sk. There is no factor of 2 here since
the molecule from Si is considered to be pasted on the left of the one from Sj .
Also, if i = j, then we actually have α(Ni − 1)NiΔt because a molecule cannot
paste to itself, and we approximate this as αN2

i Δt. This is not as easy to justify
as above, since Ni is not necessarily large; however, this approximation seems to
be harmless. The total corresponding change in Nk is α

∑
i+j=k NiNjΔt.

Third, a certain number of the molecules in Sk will be cut. Each molecule in
Sk has k − 1 cutting sites, so there are (k − 1)Nk cutting sites on the molecules
of Sk, so we expect Nk to change by −β(k − 1)NkΔt.

Finally, new molecules appear in Sk as a result of cutting operations on
longer molecules, and, since Δt is a very small time interval, we do not consider
multiple cuts on the same molecule. If A is a molecule in Sm, then there are
m − 1 different cutting sites on A, and the result of cutting at the jth site is
two fragments, one in Sj and the other in Sm−j. Hence, if m > k, exactly two
molecules in Sk can be generated from A by cutting, and the total expected
change in Nk due to cutting molecules in Sm is 2βNmΔt. Summing these gives
a total expected change in Nk of 2β

∑
m>k NmΔt.

So we have the following basic system of equations:

N ′
k = −2αNNk − β(k − 1)Nk + α

∑
i+j=k

NiNj + 2β
∑
m>k

Nm. (1)

Define M =
∑

k kNk. If μ is the mass of a single molecule in S1, then Mμ
represents the total mass of DNA, so M should be a constant. We verify this
from (1) as a consistency check:

We will ignore all convergence questions. We have M ′ =
∑

k kN ′
k. Plugging

in (1), we have four sums to consider, as follows:

Splicing to the Limit 197

−2α
∑

k

kNNk = −2αMN,

α
∑

k

∑
i+j=k

kNiNj = α
∑
i,j

(i + j)NiNj = 2αMN,

−β
∑

k

k(k − 1)Nk = −β
∑
m

m(m− 1)Nm,

2β
∑

k

∑
m>k

kNm = β
∑
m

(
2
∑
k<m

k

)
Nm = β

∑
m

m(m− 1)Nm.

Adding these gives M ′ = 0.
Summing the equations (1) to get an equation for N yields four sums, which

we treat similarly:

−2α
∑

k

NNk = −2αN2,

α
∑

k

∑
i+j=k

NiNj = α
∑
i,j

NiNj = αN2,

−β
∑

k

(k − 1)Nk = −β(M −N),

2β
∑

k

∑
m>k

Nm = 2β
∑
m

(∑
k<m

1

)
Nm = 2β(M −N).

Hence
N ′ = −αN2 − βN + βM. (2)

Equations of this form are solved explicitly in elementary differential equation
texts; in this case the solution is

N = N̄ +
γCe−γt

α(1 − Ce−γt)
, (3)

where γ =
√

β2 + 4αβM , N̄ is the positive solution of

− αN̄2 − βN̄ + βM = 0, (4)

and C is determined by the initial conditions. From the solution (3) and a
consideration of the direction field for the differential equation (2) it is clear
that if N(0) > 0, then N(t) is defined for all t ≥ 0 and N → N̄ as t→∞.

We want to find the limiting values of the quantities Nk. First we have a
simple result in differential equations.

Lemma 1. Suppose a and b are continuous functions on [t0,∞) and a(t) →
ā > 0 and b(t) → b̄ as t → ∞. Then any solution of Y ′ = −aY + b satisfies
limt→∞ Y (t) = b̄/ā.

198 Elizabeth Goode and Dennis Pixton

We omit the proof of the lemma, which uses standard comparison techniques
for solutions of ordinary differential equations.

Now we replace
∑

m>k Nm with N −∑k−1
i=1 Ni −Nk in (1) and rearrange to

get

N ′
k = −2αNNk − β(k − 1)Nk + α

∑
i+j=k

NiNj + 2β

(
N −

k−1∑
i=1

Ni −Nk

)

= −(2αN + β(k + 1))Nk + α
∑

i+j=k

NiNj + 2β

(
N −

k−1∑
i=1

Ni

)
= −akNk + bk.

The point of this rearrangement is that the coefficients ak and bk only depend on
the functions Nj for j < k and on the known function N . Hence, if we solve the
equations in sequence, then the coefficients ak and bk can be treated as known
functions of t.

It is convenient to write our results in terms of the asymptotic average molec-
ular size W̄ = M/N̄ ; using (4) we have βW̄ = αN̄ + β. Clearly the coefficient
ak has the limit āk = 2αN̄ + β(k + 1). We can find the limit N̄k of Nk from
Lemma 1 once we know the limit b̄k of bk. Using a routine but messy induction
(which we omit) we show that b̄k = ākN̄k, where

N̄k = lim
t→∞ Nk(t) =

N̄

W̄

(
W̄ − 1

W̄

)k−1

.

4 Definitions

We suppose we have a finite H scheme σ and an initial language I, defining
the splicing language L = σ∗(I). Given two words w, z in L we write w →L z
to mean that there is some word w′ in L (possibly the same as w or z) so
that either w,w′ or w′, w splices, using a rule of σ, to produce z. Then →L is
a binary relation on L. As usual we define the transitive closure →+

L and the
reflexive transitive closure →∗

L of →L. Precisely, w →+
L z means there is some

finite sequence w0, w1, . . . , wn of words of L so that n ≥ 1, w0 = w, wn = z, and
wk →L wk+1 for 0 ≤ k < n, and w →∗

L z means w →+
L z or w = z.

We say a word w ∈ L is a first-order limit of L iff for any z in L for which
w →+

L z we have z →∗
L w. A word which is not a first-order limit is called

transient in L; in other words, w is transient in L iff there is a word z in L so
that w →+

L z but z →∗
L w is false. This notion of transience is meant to model

the following: The splicing operations w →+
L z contributes some of the material

of the molecule w to the molecule z, and this material is never reassembled in a
molecule of type w; hence the material of w will eventually be used up.

We now define L1 to be the set of first-order limit words of L, and we continue
recursively to define the set Lk of kth-order limits of L to be the set of first order
limits of Lk−1. That is, we obtain Lk from Lk−1 by deleting the words that are
transient in Lk−1.

Splicing to the Limit 199

Finally we define the limit language as

L∞ =
∞⋂

k=1

Lk.

The limit languages described informally in the examples in Section 2 all
satisfy this definition. Example 9 shows the difference between limits of order 1
and order 2.

We will often use the following interpretation of the relation→L: We consider
a directed graph GL in which the vertices are the words of L, so that there is
an edge from w to z if and only if w →L z. We call this the splicing graph of L,
although it is not determined just by L but by the pair (L, σ).

In this interpretation we can describe the limit language as follows: We start
by determining the strongly connected components of GL; these are the maximal
subgraphs C of the graph so that, for any vertices w, z of C, we have w →∗

L z.
Such a component is called a terminal component if there is no edge w →L z
with w in C and z not in C. The first order limit language L1 consists of the
vertices which lie in the terminal components, and the transient words in L are
the vertices of the non-terminal components.

We then define a subgraph G1
L of GL whose vertices are the vertices of the

terminal components, so that there is an edge from w to z if and only if there is
a splicing operation (w,w′) =⇒ z or (w′, w) =⇒ z using a rule of σ in which w′

is in L1. Then, of course, L∞ is the set of vertices of the intersection G∞
L of the

chain of subgraphs constructed recursively by this process.

5 Regularity

We continue with the terminology of Section 4. It is well-known that the splicing
language L is regular ([1], [9]), and it is natural to ask whether the limit language
L∞ is regular. We do not know the answer in general. However, we can give a
satisfactory answer in the important special case of a reflexive splicing system.
In Head’s original formulation of splicing [5] both symmetry and reflexivity were
understood, and there are good biochemical reasons to require that any H system
that purports to model actual chemical reactions must be both symmetric and
reflexive.

Theorem 1. Suppose σ is a finite reflexive H scheme and I is a finite initial
language. Then the limit language L∞ is regular.

Proof. First, let S be the collection of all sites of rules in σ. That is, the string
s is in S if and only if there is a rule (u1, v1; u2, v2) in σ with either s = u1v1

or s = u2v2. For each s ∈ S we let Ls = L ∩ A∗sA∗; that is, Ls consists of the
words of L which contain s as a factor. We shall refer to a set of the form Ls as
a site class. We also define LI = L \A∗SA∗. This is the set of inert words of L;
that is, the set of words which do not contain any sites.

200 Elizabeth Goode and Dennis Pixton

Suppose x, y ∈ Ls. By reflexivity we may find a rule r = (u, v; u, v) of σ so
that s = uv. Write x = x1uvx2 and y = y1uvy2. Then splicing x and y using r
produces z = x1uvy2, and splicing y and z using r produces y1uvy2, or y. Hence
we have x →L z →L y, and z is in Ls. We conclude that the subgraph of GL

with the elements of Ls as vertices forms a strongly connected subgraph of the
vertices of GL, and so it lies in one strongly connected component of GL.

We conclude that each strongly connected component of GL is either a sin-
gleton {w } with w ∈ LI or a union of a collection of site classes. The first type
of component is clearly terminal. Thus the set L1 of first-order limit words is
the union of LI and some collection of site classes. Moreover, any site class Ls

which appears in L1 is still a strongly connected subset of the vertex set of G1
L.

Hence we can use induction to extend this decomposition to see that each Lk is
the union of LI and a collection of site classes.

Since the sets Lk+1 ⊂ Lk and there are only finitely many site classes we
see that the sequence Lk is eventually constant, so L∞ = Lk for all sufficiently
large k. Hence L∞ is the union of LI and a collection of site classes. This is a
finite union of sets, each of which is regular (using the regularity of L), so L∞
is regular.

Corollary 1. If σ is a finite reflexive H scheme and I is not empty, then L∞
is not empty.

Proof. This is clear from the proof, since there are a finite number of strongly
connected components (aside from the inert words) at each stage, and so there
are terminal components at each stage; and the recursive construction stops after
finitely many steps.

It has been a difficult problem to determine the class of splicing languages as
a subclass of the regular class, even if we restrict attention to reflexive splicing
schemes; see [3]. Hence the following is rather unexpected.

Theorem 2. Given any regular language K there is a finite reflexive and sym-
metric splicing scheme σ and a finite initial language I so that the limit language
L∞ is K.

Proof. This is an easy consequence of a theorem of Head [6], which provides a
finite reflexive and symmetric splicing scheme σ0 and a finite initial language I
so that σ∗

0(I) = cK, where c is some symbol not in the alphabet of K. In fact,
every rule of σ0 has the form (cu, 1; cv, 1) for strings u and v.

Our only modification involves adding the rules r0 = (c, 1; 1, c), r̄0 =
(1, c; c, 1), ṙ0 = (c, 1; c, 1) and r̈0 = (1, c; 1, c) to σ0 to define σ. This changes the
splicing language to L = c∗K. To see this, note that if j and k are positive, then
cjw and ckz splice, using any of the new rules to produce cmz, where, depending
on the rule used, m ranges over the integers from 0 to j + k.

Now all words of L\K have the form ckw with k > 0, and these are transient
since any such word splices with itself using r̄0 to produce the inert word w ∈ K.
Hence the limit language is just K, the set of inert words.

Splicing to the Limit 201

6 Conclusion

We wrote this paper to introduce the notion of the limit language. This notion
can be supported by qualitative reasoning, as in the examples in Section 2.
However, the splicing operation is not a realistic model of the actual chemical
reactions; for this we need something like cut and paste operations to model
the separate chemical actions of restriction enzymes and ligases. Thus Examples
6 and 7 give a better account of the molecules involved during the chemical
reactions than Example 5.

We believe that a complete understanding of the limit language must wait
until a suitable dynamical model has been developed and supported by exper-
iment. It is not hard to formulate a generalization of the example in Section 3
to apply to arbitrary cut-and-paste systems, but it is much more difficult to
solve such a generalization. We would hope eventually to derive regularity of the
splicing language from the dynamical system, and then to define and analyze
the limit language directly from the dynamical system.

Our preliminary definition of the limit language in Section 4 is simply an
attempt to circumvent the considerable difficulties of the dynamical systems
approach and see what we might expect for the structure of the limit language.
We cannot yet prove that this definition coincides with the natural definition
based on dynamical systems, but we believe that it will, probably with minor
restrictions on the splicing scheme.

References

1. K. Culik II and T. Harju, Splicing Semigroups of Dominoes and DNA. Discrete
Applied Mathematics, 31 (1991), 261–277.

2. R. Freund, E. Csuhaj-Varjú, and F. Wachtler, Test Tube Systems with
Cutting/Recombination Operations. Pacific Symposium on Biocomputing, 1997
(http://WWW-SMI.Stanford.EDU/people/altman/psb97/index.html).

3. E. Goode and D. Pixton, Recognizing Splicing Languages: Syntactic Monoids and
Simultaneous Pumping. Submitted 2003.

4. T. Head, Gh. Păun, and D. Pixton, Generative Mechanisms Suggested by DNA
Recombination. In Handbook of Formal Languages (G. Rozenberg and A. Salomaa,
Eds.), Springer, Berlin, 1997, chapter 7 in vol. 2, 295–360.

5. T. Head, Formal Language Theory and DNA: an Analysis of the Generative Capac-
ity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology, 49 (1987),
737–759 (http://math.binghamton.edu/tom/index.html).

6. T. Head, Splicing Languages Generated with One Sided Context. In Computing
with Bio-Molecules. Theory and Experiments (Gh. Păun, Ed.), Springer, Singapore,
(1998), 158–181.

7. E. Laun and K.J. Reddy, Wet Splicing Systems. Proceedings of the 3rd DIMACS
Workshop on DNA Based Computers, held at the University of Pennsylvania, June
23–25, 1997 (D.H. Wood, Ed.), 115–126.

8. D. Pixton, Splicing in Abstract Families of Languages. Theoretical Computer Sci-
ence, 234 (2000), 135–166.

9. D. Pixton, Regularity of Splicing Languages. Discrete Applied Mathematics, 69
(1996), 101–124.

Formal Properties of Gene Assembly:

Equivalence Problem for Overlap Graphs

Tero Harju1, Ion Petre2, and Grzegorz Rozenberg3

1 Department of Mathematics, University of Turku
FIN-20014 Turku, Finland

harju@utu.fi
2 Department of Computer Science, Åbo Akademi University

FIN-20520 Turku, Finland
ipetre@abo.fi

3 Leiden Institute for Advanced Computer Science, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

and
Department of Computer Science, University of Colorado, Boulder

Co 80309-0347, USA
rozenber@liacs.nl

Abstract. Gene assembly in ciliates is a life process fascinating from
both the biological and the computational points of view. Several formal
models of this process have been formulated and investigated, among
them a model based on (legal) strings and a model based on (overlap)
graphs. The latter is more abstract because the translation of legal strings
into overlap graphs is not injective. In this paper we consider and solve
the overlap equivalence problem for realistic strings: when do two differ-
ent realistic legal strings translate into the same overlap graph? Realistic
legal strings are legal strings that “really” correspond to genes generated
during the gene assembly process.

1 Introduction

Ciliates (ciliated protozoa) is a group of single-celled eukaryotic organisms. It
is an ancient group - about two billion years old, which is very diverse - some
8000 different species are currently known. A unique feature of ciliates is nu-
clear dualism - they have two kinds of functionally different nuclei in the same
cell, a micronucleus and a macronucleus (and each of them is present in multi-
ple copies), see, e.g., [15] for basic information on ciliates. The macronucleus is
the “standard household nucleus” that provides RNA transcripts for producing
proteins, while the micronucleus is a dormant nucleus that gets activated only
during sexual reproduction. At some stage of sexual reproduction the genome
of a micronucleus gets transformed into the genome of a macronucleus in the
process called gene assembly. The process of gene assembly is fascinating from
both the biological (see, e.g., [14], [15], [16], and [18]) and from the computa-
tional (see, e.g., [4], [8], [10], [12], [13], [17]) points of view. A number of formal

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 202–212, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Formal Properties of Gene Assembly 203

models of gene assembly were studied, including both the intermolecular models
(see, e.g., [12], [13]) and the intramolecular models (see, e.g., [4] – [11], [17]).
This paper continues research on intramolecular models. We consider here for-
mal representations of genes generated during the process of gene assembly in
two such models: one based on (legal) strings (see, e.g., [8]) and one based on
(overlap) graphs (see, e.g., [4]). The latter model is more abstract than the for-
mer because the translation of legal strings into overlap graphs is not injective.
This fact leads naturally to the following overlap equivalence problem for legal
strings: when do two different legal strings yield the same overlap graph?

In this paper we consider the overlap equivalence problem and solve it for
realistic legal strings (i.e., those legal strings that “really” correspond to genes
generated during the process of gene assembly, see, e.g., [4]).

2 Preliminaries

For positive integers k and n, we denote by [k, n] = {k, k +1, . . . , n} the interval
of integers between k and n.

Let Σ = {a1, a2, . . . } be an alphabet. The set of all (finite) strings over Σ is
denoted by Σ∗ - it includes the empty string, denoted by Λ. For strings u, v ∈ Σ∗,
we say that v is a substring of u, if u = w1vw2 for some w1, w2 ∈ Σ∗. Also, v is
a conjugate of u, if u = w1w2 and v = w2w1 for some strings w1 and w2.

For an alphabet Σ, let Σ = {a | a ∈ Σ} be a signed copy of Σ (disjoint from
Σ). Then the total alphabet Σ ∪ Σ is called a signed alphabet. The set of all
strings over Σ ∪Σ is denoted by Σ�, that is,

Σ� = (Σ ∪Σ)∗ .

A string v ∈ Σ� is called a signed string over Σ. We adopt the convention that
a = a for each a ∈ Σ.

Let v ∈ Σ� be a signed string over Σ. We say that a letter a ∈ Σ∪Σ occurs in
v, if either a or a is a substring of v. Let dom(v) = {a | a ∈ Σ and a occurs in v}
be the domain of v. Thus the domain of a signed string consists of the unsigned
letters that occur in it.

Example 1. Let Σ = {a, b}, and thus Σ = {a, b}. The letters a and b occur in
the signed string v = abaa, although b is not a substring of v (its signed copy b
of b is a substring of v). Also, dom(v) = {a, b}. �

The signing a �→ a can be extended to longer strings as follows. For a
nonempty signed string u = a1a2 . . . an ∈ Σ�, where ai ∈ Σ ∪ Σ for each i,
the inversion u of u is defined by

u = anan−1 . . . a1 ∈ Σ� .

Also, let uR = anan−1 . . . a1 and uC = a1a2 . . . an be the reversal and the
complement of u, respectively. It is then clear that u = (uR)C = (uC)R.

204 Tero Harju, Ion Petre, and Grzegorz Rozenberg

Let Σ and Γ be two alphabets. A function ϕ : Σ∗ → Γ ∗ is a morphism, if
ϕ(uv) = ϕ(u)ϕ(v) for all strings u, v ∈ Σ∗. A morphism ϕ : Σ� → Γ� between
signed strings is required to satisfy ϕ(u) = ϕ(u) for all u, v ∈ Σ�. Note that,
for a morphism ϕ, the images ϕ(a) of the letters a ∈ Σ determine ϕ, i.e., if
the images of the letters a ∈ Σ are given, then the image of a string over Σ is
determined.

Example 2. Let Σ = {a, b} and Γ = {0, 1, 2}, and let ϕ : Σ� → Γ� be the
morphism defined by ϕ(a) = 0 and ϕ(b) = 2. Then for u = abb, we have
ϕ(u) = 022 and ϕ(u) = ϕ(bba) = 220 = ϕ(u). �

Signed strings u ∈ Σ� and v ∈ Γ� are isomorphic, if there exists an injective
morphism ϕ : Σ� → Γ� such that ϕ(Σ) ⊆ Γ and ϕ(u) = v. Hence two strings
are isomorphic if each of the strings can be obtained from the other by renaming
letters.

A signed string v = a1a2 . . . an is a signed permutation of another signed
string u = b1b2 . . . bn, if there exists a permutation i1, i2, . . . , in of [1, n] such
that aj ∈ {bij , bij} for each j ∈ [1, n].

Example 3. Let u = a a b c b ∈ {a, b, c}�. Then u is a signed permutation of
a c a b b, as well as of a b a b c (and many other signed strings). Also, u is isomor-
phic to the signed string v = a a c b c. The isomorphism ϕ in question is defined
by: ϕ(a) = a, ϕ(c) = b, and ϕ(b) = c. Hence also ϕ(a) = a, ϕ(c) = b, and
ϕ(b) = c. �

3 MDS Arrangements and Legal Strings

The structural information about the micronuclear or an intermediate precur-
sor of a macronuclear gene can be given by the sequence of MDSs forming the
gene. The whole assembly process can be then thought of as a process of as-
sembling MDSs through splicing, to obtain the MDSs in the orthodox order
M1,M2, . . . ,Mκ. Thus one can represent a macronuclear gene, as well as its
micronuclear or an intermediate precursor, by its sequence of MDSs only.

Example 4. The actin I gene of Sterkiella nova has the following MDS/IES mi-
cronuclear structure:

M3I1M4I2M6I3M5I4M7I5M9I6M2I7M1I8M8 (1)

(see Fig. 1(a)). The ‘micronuclear pattern’ is obtained by removing the IESs Ii.
For our purposes, the so obtained string

α = M3M4M6M5M7M9M2M1M8

has the same information as the structure given in the representation (1).
The macronuclear version of this gene is given in Fig. 1(b). There the IESs

have been excised and the MDSs have been spliced (by overlapping of their ends)
in the orthodox order M1,M2, . . . ,M9. �

Formal Properties of Gene Assembly 205

(a)

(b)

M1 M2 M3 M4 M5 M6 M7 M9

M8

M3 M4 M6 M5 M7 M9 M2 M1 M8

I1 I2 I3 I4 I5 I6 I7 I8

Fig. 1. (a) The micronuclear version of the actin I gene in Sterkiella nova. (b)
The macronuclear version of the actin I gene of Sterkiella nova. The vertical
lines describe the positions where the MDSs have been spliced together (by
overlapping of their ends)

For each κ ≥ 1, let
Θκ = {Mi | 1 ≤ i ≤ κ}

be an alphabet representing elementary MDSs, i.e., each Mi denotes an MDSs
that is present in the micronucleus. The signed strings in Θ�

κ are MDS arrange-
ments (of size κ). An MDS arrangement α ∈ Θ∗

κ is orthodox, if it is of the form
M1M2 . . .Mκ. Note that an orthodox MDS arrangement does not contain any
inversions of MDSs, and the MDSs are in their orthodox order. A signed permu-
tation of an orthodox MDS arrangement α is a realistic MDS arrangement.

A nonempty signed string v ∈ Σ� is a legal string over Δ if every letter
a ∈ dom(v) occurs exactly twice in v. (Recall that an occurrence of a letter can
be signed.)

A letter a is positive in a legal string v, if both a and a are substrings of v,
otherwise, a is negative in v.

Let Δ = {2, 3, . . .} be a designated alphabet of pointers.

Example 5. Let v = 2 4 3 25 3 4 5 be a legal string over Δ. Pointers 2 and 5 are
positive in u, while 3 and 4 are negative in v. On the other hand, the string
w = 2 4 3 25 3 5 is not legal, since 4 has only one occurrence in w. �

We shall now represent the MDS arrangements by legal strings over the
pointer alphabet Δ. In this way legal strings become a formalism for describ-
ing the sequences of pointers present in the micronuclear and the intermediate
molecules.

Let �κ : Θ�
κ → Δ� be the morphism defined by:

�κ(M1) = 2, �κ(Mκ) = κ, �κ(Mi) = i i + 1 for 2 < i < κ ,

and �κ(M i) = �κ(Mi) for 1 ≤ i ≤ κ.
We say then that a legal string u is realistic if there exists a realistic MDS

arrangement α such that u = �κ(α).

206 Tero Harju, Ion Petre, and Grzegorz Rozenberg

Example 6. Consider the micronuclear MDS arrangement of the actin I gene of
Sterkiella nova: α = M3M4M6M5M7M9M2M1M8. We have

�9(α) = 34 45 67 56 78 9 3 2 2 89 .

Since α is a realistic MDS arrangement, �9(α) is a realistic legal string. �

The following example shows that there exist legal strings that are not real-
istic.

Example 7. The string u = 2 3 4 3 2 4 is legal, but it is not realistic, since it has no
‘realistic parsing’. Indeed, suppose that there exists a realistic MDS arrangement
α such that u = �4(α). Clearly, α must end with the MDS M4, since �4(M) �= 24
for all MDSs M . Similarly, since �4(M) �= 32 for all MDSs M , α must end with
M2M4. Now, however, u = 2 3 4 3 �4(M2M4) gives a contradiction, since 3 and
43 are not images of any MDSs M . �

4 Overlap Graphs of Legal Strings

Let u = a1a2 . . . an ∈ Σ� be a legal string over Σ, where ai ∈ Σ ∪Σ for each i.
Let for each letter a ∈ dom(u), i and j with 1 ≤ i < j ≤ n be indices such that
ai, aj ∈ {a, a}. Then the substring

u(a) = aiai+1 . . . aj

is the a-interval of u. Two different letters a, b ∈ Σ are said to overlap in u,
if the a-interval and the b-interval of u overlap: if u(a) = ai1 . . . aj1 and u(b) =
ai2 . . . aj2 , then either i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1.

Example 8. Let u = 2 4 3 5 3 26 5 7 4 6 7 be a string of pointers. The 2-interval of
u is the substring u(2) = 2 4 3 5 3 2, which contains only one occurrence of pointer
4 and pointer 5, but either two or no occurrences of 3, 6 and 7. Hence pointer 2
overlaps with 4 and 5, but not with 3, 6 and 7. �

For a finite set V , let

E(V) = {{x, y} | x, y ∈ V, x �= y}
be the set of all unordered pairs of different elements of V . A graph is a pair
(V,E), where V is a finite set of vertices and E ⊆ E(V) is a set of edges. A
signed graph γ = (V,E, σ) consists of a graph (V,E) together with a labelling
σ : V → {−,+} of the vertices. Vertices labelled by + are positive, and those
labelled by − are negative. We use x+ and x− to indicate that σ(x) = + and
σ(x) = −, respectively.

We shall use signed graphs to represent the structure of overlaps of pointers
occurring in a legal string as follows.

For a pointer p ∈ Δ, let p = {p, p}. Let v ∈ Δ� be a legal string of pointers,
and let

Pv = {p | p occurs in v} .

Formal Properties of Gene Assembly 207

Then the overlap graph of v is the signed graph γv = (Pv, E, σ) such that

σ(p) =

{
+ , if p ∈ Δ is positive in v ,

− , if p ∈ Δ is negative in v ,

and

{p,q} ∈ E ⇐⇒ p and q overlap in v .

Example 9. Consider the legal string v = 3 4 52 3 2 4 5 ∈ Δ�. Then its overlap
graph is given in Fig. 2. Indeed, pointers 2, 3 and 5 are positive in v (and hence
the vertices 2, 3 and 5 have sign + in the overlap graph γv), while pointer 4 is
negative in v (and the vertex 4 has sign − in γv). The intervals of the pointers
in v are

v(2) = 2 32, v(3) = 3 4 52 3 ,

v(4) = 4 52 3 2 4, v(5) = 5 2 32 4 5 ,

The overlappings of these intervals yield the edges of the overlap graph. �

������ �
�

�
��

�
�

�
�����

���

2+ 3+

4−

5+

Fig. 2. The overlap graph of the signed string v = 3 4 52 3 2 4 5. An edge is
present between the signed vertices p and q if and only if p and q overlap in v

Remark 1. Overlap graphs of unsigned legal strings are also known as circle
graphs (see [1,2,3]) . These graphs have a geometric interpretation as chord dia-
grams, where a chord diagram (C, V) consists of a circle C in the plane together
with a set V of chords. A graph γ = (V,E) is a circle graph, if there exists a
chord diagram (C, V) such that {x, y} ∈ E for different x and y if and only if
the chords x and y intersect each other. �

208 Tero Harju, Ion Petre, and Grzegorz Rozenberg

5 The Overlap Equivalence Problem

The mapping w �→ γw of legal strings to overlap graphs is not injective. Indeed,
for each legal string w = w1w2, we have

γw1w2 = γw2w1 and γw = γc(w) ,

where c is any morphism that selects one element c(p) from p = {p, p} for each
p (and then obviously c(p) = c(p)). In particular, all conjugates of a legal string
w have the same overlap graph. Also, the reversal wR and the complementation
wC of a legal string w define the same overlap graph as w does.

Example 10. The following eight legal strings of pointers (in Δ�) have the same
overlap graph: 2323, 3232, 2323, 3232, 2323, 3232, 2323, 3232. �

Example 11. All string representations of an overlap graph γ need not be ob-
tained from a fixed representation string w by using the operations of conjuga-
tion, inversion and reversing (and by considering isomorphic strings equal). For
instance, the strings v1 = 23342554 and v2 = 35242453 define the same overlap
graph (see Fig. 3), while v1 is not isomorphic to any signed string obtained from
v2 by the above operations. However, we will demonstrate that if strings u and
v are realistic, then γu = γv implies that u and v can be obtained from each
other by using the operations of conjugation, inversion and reversing. �

���
��� ���

���

4− 5−

2− 3−

Fig. 3. The common overlap graph of legal strings v1 = 23342554 and v2 =
35242453. The signed string v1 and v2 are not obtainable from each other by the
operations of conjugation, reversal and complementation

Examples 10 and 11 lead naturally to the overlap equivalence problem for
realistic legal strings: when do two realistic legal strings u and v have the same
overlap graph, i.e., when γu = γv? To solve this problem, we begin by charac-
terizing legal substrings of realistic legal strings.

For a signed string v ∈ Δ�, let

vmin = min(dom(v)) and vmax = max(dom(v)) .

Thus, dom(v) ⊆ [vmin, vmax].

Formal Properties of Gene Assembly 209

Example 12. The string v = 48 3 4 83 is legal. We have dom(v) = {3, 4, 8}, and
hence vmin = 3 and vmax = 8. �

Lemma 1. Let u be a realistic legal string with dom(u) = [2, κ], and let v be a
legal substring of u. Then either dom(v) = [p, q] or dom(v) = [2, κ] \ [p, q], for
some p and q with p ≤ q.

Proof. Let u = u1vu2 - without loss of generality we can assume that u1 and u2

are not both empty strings.
(a) Assume that there exists a pointer p with vmin < p < vmax such that

p /∈ dom(v) and p − 1 ∈ dom(v). Then p > 2. Let w = (p − 1)p (= �κ(Mp−1)).
Since u contains w or w, it follows that either

u = u11p (p− 1)v1u2, where v = (p− 1)v1, or
u = u1v1(p− 1)pu21, where v = v1(p− 1).

(b) Similarly, if there exists q with vmin < q < vmax such that q /∈ dom(v)
and q + 1 ∈ dom(v), then either

u = u12q(q + 1)v2u2, where v = (q + 1)v2, or

u = u1v2 (q + 1)qu22, where v = v2(q + 1).

The following three cases can hold now and each of them yields the conclusion
from the statement of the lemma.

1. There are no pointers p as in (a). In this case, dom(v) = [q + 1, κ], where
q > 2 is a unique pointer for which (b) holds.

2. There are no pointers q as in (b). In this case, dom(v) = [2, p − 1], where
p ≤ κ is a unique pointer for which (a) holds.

3. There exists a pointer p as in (a) and a pointer q as in (b). By the above, p
is unique for (a) and q is unique for (b). Hence either dom(v) = [q+1, p−1],
if p− 1 ≥ q + 1 or dom(v) = [2, p− 1] ∪ [q + 1, κ], if p− 1 < q + 1.

�

Example 13. Let
u = 76 7 8 2 98 3 2 9 3 4 54 5 6 .

Then u is realistic, since u = �9(M6M7M1M8M2M9M3M4M5). The string u
has the following legal substrings (in addition to u and Λ): v1 = 4 54 5 with
dom(v1) = [4, 5], v2 = 8 2 98 3 2 9 3 with dom(v) = [2, 3] ∪ [8, 9], and v3 =
8 2 98 3 2 9 3 4 5 4 5 with dom(v3) = [2, 5] ∪ [8, 9]. �

The following result provides more details of the structure of legal substrings
of realistic legal strings.

210 Tero Harju, Ion Petre, and Grzegorz Rozenberg

Lemma 2. Let u be a realistic string with dom(u) = [2, κ], and let v be a legal
substring of u.

(i) If 2 /∈ dom(v), then either v = vminv
′ or v = v′vmin.

(ii) If κ /∈ dom(v), then either v = vmaxv
′ or v = v′vmax.

(iii) If 2, κ ∈ dom(v), then dom(v) = [2, p] ∪ [q, κ] and either v = qv′p or
v = pv′q.

Proof. Assume that v �= u, and suppose first that 2 /∈ dom(v), and let p = vmin.
By Lemma 1, dom(v) = [p, q] for some pointer q with p ≤ q ≤ κ. Now since
p − 1 /∈ dom(v) and either (p − 1)p or p(p− 1) is a substring of u, it must be
that either v begins or v ends with an occurrence of p. But this is possible only
when v = pv′ or v = v′p, as required.

The claim for the case κ /∈ dom(v) is similar to the above case.
If 2, κ ∈ dom(v), then dom(v) = [2, p] ∪ [q, κ] for some p and q with p < q

by Lemma 1. Since either p(p + 1) or p(p− 1) is a substring of u, either v = v1p
or v = pv1. Similarly, either v = qv2 or v = v2q, and so the last claim from the
statement of the lemma holds. �

The following theorem gives a characterization for those pairs of realistic
legal strings that yield the same overlap graph.

Recall that for a string v = p1p2 . . . pn ∈ Δ�, the reversal of v is defined
by vR = pnpn−1 . . . p1, and the complementation by vC = p1p2 . . . pn. For two
signed strings u, v ∈ Δ�, let u ≈ v if u is obtained from a conjugate of v by a
composition of the operations of reversal and complementation. Thus, u ≈ v if
and only if there exist strings v1 and v2 such that v = v1v2 and u is one of the
strings v2v1, (v2v1)R, (v2v1)C , or ((v2v1)R)C .

Theorem 1. Let u and v be two realistic legal strings such that dom(u) =
[2, κ] = dom(v). Then γu = γv if and only if u ≈ v.

Proof. Assume that γu = γv. We prove the theorem by induction on κ. If κ = 2,
then clearly u ≈ v. Suppose then that the claim holds for strings over [2, κ− 1].

Since we now consider strings up to equivalence with respect to conjugation,
reversal and complementation, we can assume without loss of generality that
both u and v end with �κ(Mk−1) = (κ− 1)κ. Now

u = u1 κ′ u2(κ− 1)κ and v = v1 κ′ v2(κ− 1)κ , (2)

where κ′ = κ or κ′ = κ. The strings u′ = u1u2(κ− 1) and v′ = v1v2(κ− 1), that
are obtained from u and v by erasing the occurrences of κ, are realistic, and since
γu′ = γv′ , we have u′ ≈ v′ by the induction hypothesis. Since the sign of the
last occurrence of (κ− 1) is the same in u′ and v′, complementation is not used
in the above equivalence u′ ≈ v′. Therefore either u′ is a conjugate of v′ or of
(v′)R. Moreover, the last occurrences (κ− 1) in u′ and in v′ both correspond to
the end marker, which implies that u′ = v′. If u2 = v2 then also u = v, and the
claim holds. Suppose then that u �= v. Now, u2 �= v2, and either u2 is a suffix of
v2 or v2 is a suffix of u2. By symmetry, we can assume that the first alternative

Formal Properties of Gene Assembly 211

holds: v2 = wu2, and then also u1 = v1w. Since γu = γv, the substring w must
be a legal string (if only one occurrence of a pointer p is in w, then κ would
overlap with p either in u or v, but not in both). Now

u = v1w κ′ u2(κ− 1)κ and v = v1 κ′ wu2(κ− 1)κ .

By the form of the substrings wκ′ in u and κ′w in v in the above, w must be
an image �κ(α) = w for some α ∈ Θ�

κ−2. By Lemma 1, dom(w) = [p, q] for some
pointers p ≤ q, and by Lemma 2(ii), either w = w′q or w = qw′ for a substring
w′. Moreover, as shown in the proof of Lemma 2, in the former case w(q + 1)
is a substring of both u and v and in the latter case, (q + 1)w is a substring of
both u and v. It then follows that q = κ − 1, and so �κ(Mκ−1) occurs twice in
u and v - this is impossible since u and v are realistic. �

Acknowledgements. Research supported partly by the MolCoNet project,
IST-2001-32008. T. Harju gratefully acknowledges the support of the Academy
of Finland under project 39802. G. Rozenberg gratefully acknowledges partial
support by NSF grant 0121422.

References

1. Bouchet, A., Circle graphs. Combinatorica 7 (1987), 243–254.
2. Bouchet, A., Circle graph obstructions. J. Combin. Theory Ser. B 60 (1994), 107–

144.
3. de Fraysseix, H., A characterization of circle graphs. European J. Combin. 5 (1984),

223–238.
4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Formal

systems for gene assembly in ciliates. Theoret. Comput. Sci. 292 (2003), 199–219.
5. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the mi-

cronuclear gene patterns in ciliates. Theory of Computation and Systems 35 (2002),
501–519.

6. Ehrenfeucht, A., Harju, T., and Rozenberg, G., Gene assembly through cyclic graph
decomposition. Theoretic Comput. Syst. 281 (2002), 325–349.

7. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and
simple operations for gene assembly in ciliates. In Words, Sequences, Languages:
Where Computer Science, Biology and Linguistics Meet, V. Mitrana, C. Martin-
Vide (eds.), Kluwer Academic Publishers, Dortrecht/Boston, 329–342, 2001.

8. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph
reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12
(2001), 113–134.

9. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Circularity and
other invariants of gene assembly in cliates. In Words, Semigroups, and Transduc-
tions, M. Ito, Gh. Păun, S. Yu (eds.), World Scientific, Singapore, 81–97, 2001.

10. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects
of gene (un)scrambling in ciliates. In Evolution as Computation, L. Landweber,
E. Winfree (eds.), 45–86, Springer-Verlag, Berlin, Heidelberg, 2001.

11. Harju, T. and Rozenberg, G., Computational processes in living cells: gene assem-
bly in ciliates. Lecure Notes in Comput. Sci., to appear.

212 Tero Harju, Ion Petre, and Grzegorz Rozenberg

12. Landweber, L. F., and Kari, L., The evolution of cellular computing: nature’s
solution to a computational problem. In Proceedings of the 4th DIMACS Meeting
on DNA Based Computers, Philadelphia, PA, 3–15 (1998).

13. Landweber, L. F., and Kari, L., Universal molecular computation in ciliates.
In Evolution as Computation, L. Landweber, E. Winfree (eds.), Springer-Verlag,
Berlin, Heidelberg, 2002.

14. Prescott, D. M., The unusual organization and processing of genomic DNA in
Hypotrichous ciliates. Trends in Genet. 8 (1992), 439–445.

15. Prescott, D. M., The DNA of ciliated protozoa. Microbiol Rev. 58(2) (1994), 233–
267.

16. Prescott, D. M., Genome gymnastics: unique modes of DNA evolution and pro-
cessing in ciliates. Nat Rev Genet. 1(3) (2000), 191–198.

17. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations for
DNA processing in hypotrichous ciliates. European Journal of Protistology 37
(2001), 241–260.

18. Prescott, D. M., and Rozenberg, G., How ciliates manipulate their own DNA – A
splendid example of natural computing. Natural Computing 1 (2002), 165–183.

n-Insertion on Languages

Masami Ito and Ryo Sugiura

Faculty of Science, Kyoto Sangyo University
Kyoto 603, Japan

ito@ksuvx0.kyoto-su.ac.jp

Abstract. In this paper, we define the n-insertion A�[n]B of a language
A into a language B and provide some properties of n-insertions. For
instance, the n-insertion of a regular language into a regular language
is regular but the n-insertion of a context-free language into a context-
free language is not always context-free. However, it can be shown that
the n-insertion of a regular (context-free) language into a context-free
(regular) language is context-free. We also consider the decomposition of
regular languages under n-insertion.

1 Introduction

Insertion and deletion operations are well-known in DNA computing – see, e.g.,
[5] and [6]. In this paper we investigate a generalized insertion operation, namely
the shuffled insertion of (substrings of) a string in another string.

Formally, we deal with the following operation.
Let u, v ∈ X∗ and let n be a positive integer. Then the n-insertion of u into v,

i.e., u�[n]v, is defined as {v1u1v2u2 · · · vnunvn+1 | u = u1u2 · · ·un, u1, u2, . . . , un

∈ X∗, v = v1v2 · · · vnvn+1, v1, v2, . . . , vn, vn+1 ∈ X∗}. For languages A,B ⊆ X∗,
the n-insertion A�[n] B of A into B is defined as

⋃
u∈A,v∈B u�[n] v. The shuffle

product A �B of A and B is defined as
⋃

n≥1 A �[n] B.
In Section 2, we provide some properties of n-insertions. For instance, the

n-insertion of a regular language into a regular language is regular but the n-
insertion of a context-free language into a context-free language is not always
context-free. However, it can be shown that the n-insertion of a regular (context-
free) language into a context-free (regular) language is context-free. In Section
3, we prove that, for a given regular language L ⊆ X∗ and a positive integr
n, it is decidable whether L = A �[n] B for some nontrivial regular languages
A,B ⊆ X∗. Here a language C ⊆ X∗ is said to be nontrivial if C �= {ε}, where
ε is the empty word.

Regarding definitions and notations concerning formal languages and au-
tomata, not defined in this paper, refer, for instance, to [2].

2 Shuffle Product and n-Insertion

First, we consider the shuffle product of languages.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 213–218, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

214 Masami Ito and Ryo Sugiura

Lemma 21 Let A,B ⊆ X∗ be regular languages. Then A � B is a regular lan-
guage.

Proof. By X we denote the new alphabet {a | a ∈ X}. Let A = (S,X, δ, s0, F)
be a finite deterministic automaton with L(A) = A and let B = (T,X, θ, t0, G)
be a finite deterministic automaton with L(B) = B. Define the automaton B =
(T,X, θ, t0, G) as θ(t, a) = θ(t, a) for any t ∈ T and a ∈ X . Let ρ be the
homomorphism of (X ∪X)∗ onto X∗ defined as ρ(a) = ρ(a) = a for any a ∈ X .
Moreover, let L(B) = B. Then ρ(B) = {ρ(u) | u ∈ B} = B and ρ(A�B) = A�B.
Hence, to prove the lemma, it is enough to show that A�B is a regular language
over X ∪X. Consider the automaton A�B = (S×T,X∪X, δ �θ, (s0, t0), F ×G)
where δ � θ((s, t), a) = (δ(s, a), t) and δ � θ((s, t), a) = (s, θ(t, a)) for any (s, t) ∈
S×T and a ∈ X . Then it is easy to see that w ∈ L(A�B) if and only if w ∈ A�B,
i.e., A �B is regular. This completes the proof of the lemma.

Proposition 21 Let A,B ⊆ X∗ be regular languages and let n be a positive
integer. Then A �[n] B is a regular language.

Proof. Let the notations of X, B and ρ be the same as above. Notice that
A �[n] B = (A � B) ∩ (X

∗
X∗)nX

∗
. Since (X

∗
X∗)nX

∗
is regular, A �[n] B is

regular. Consequently, A �[n] B = ρ(A �[n] B) is regular.

Remark 21 The n-insertion of a context-free language into a context-free lan-
guage is not always context-free. For instance, it is well known that A = {anbn |
n ≥ 1} and B = {cndn | n ≥ 1} are context-free languages over {a, b} and {c, d},
respectively. Since (A �[2] B) ∩ a+c+b+d+ = {ancmbndm | n,m ≥ 1} is not
context-free, A�[2] B is not context-free. Therefore, for any n ≥ 2, n-insertion of
a context-free language into a context-free language is not always context-free.
However, A �[1] B is a context-free language for any context-free languages A
and B (see [4]). Usually, a 1-insertion is called an insertion.

Now consider the n-insertion of a regular (context-free) language into a
context-free (regular) language.

Lemma 22 Let A ⊆ X∗ be a regular language and let B ⊆ X∗ be a context-free
language. Then A �B is a context-free language.

Proof. The notations which we will use for the proof are assumed to be the
same as above. Let A = (S,X, δ, s0, F) be a finite deterministic automaton with
L(A) = A and let B = (T,X, Γ, θ, t0, ε) be a pushdown automaton with N (B) =
B. Let B = (T,X, Γ, θ, t0, γ0, ε) be a pushdown automaton such that θ(t, a, γ) =
θ(t, a, γ) for any t ∈ T, a ∈ X ∪ {ε} and γ ∈ Γ . Then ρ(N (B)) = B. Now define
the pushdown automaton A�B = (S×T,X ∪X,Γ ∪{#}, δ � θ, (s0, t0), γ0, ε) as
follows:

1. ∀a ∈ X, δ � θ((s0, t0), a, γ0) = {((δ(s0, a), t0),#γ0)},
δ � θ((s0, t0), a, γ0) = {((s0, t

′),#γ′) | (t′, γ′) ∈ θ(t0, a, γ0)}.
2. ∀a ∈ X, ∀(s, t) ∈ S × T, ∀γ ∈ Γ ∪ {#}, δ � θ((s, t), a, γ) = {((δ(s, a), t), γ)}.

n-Insertion on Languages 215

3. ∀a ∈ X, ∀(s, t) ∈ S × T, ∀γ ∈ Γ, δ � θ((s, t), a, γ) = {((s, t′), γ′) | (t′, γ′) ∈
θ(t, a, γ)}.

4. ∀(s, t) ∈ F × T, δ � θ((s, t), ε,#) = {((s, t), ε)}.
Let w = v1u1v2u2 . . . vnunvn+1 where u1, u2, . . . , un ∈ X∗ and v1, v2, . . . ,

vn+1 ∈ X
∗
. Assume δ � θ((s0, t0), w, γ0) �= ∅. Then we have the following

configuration: ((s0, t0), w, γ0) �∗A�B ((δ(s0, u1u2 · · ·un), t′), ε,# · · ·#γ′) where
(t′, γ′) ∈ θ(t0, v1v2 · · · vn+1, γ0). If w ∈ N (A � B), then (δ(s0, u1u2 · · ·un), t′),
ε,# · · ·#γ′) �∗A�B (δ(s0, u1u2 · · ·un), t′), ε, ε). Hence (δ(s0, u1u2 · · ·un), t′) ∈
F × T and γ′ = ε. This means that u1u2 · · ·un ∈ A and v1, v2, . . . , vn+1 ∈ B.
Hence w ∈ A × B. Now let w ∈ A × B. Then, by the above configu-
ration, we have ((s0, t0), w, γ0) �∗A�B ((δ(s0, u1u2 · · ·un), t′), ε,# · · ·#) �∗A�B
((δ(s0, u1u2 · · ·un), t′), ε, ε) and w ∈ N (A � B). Thus A � B = N (A � B) and
A �B is context-free. Since ρ(A �B) = A �B, A �B is context-free.

Proposition 22 Let A ⊆ X∗ be a regular (context-free) language and let B ⊆
X∗ be a context-free (regular) language. Then A�[n]B is a context-free language.

Proof. We consider the case that A ⊆ X∗ is regular and B ⊆ X∗ is context-free.
Since A �[n] B = (A �B)∩ (X

∗
X∗)nX

∗
and (X

∗
X∗)nX

∗
is regular, A �[n] B is

context-free. Consequently, A �[n] B = ρ(A �[n] B) is context-free.

3 Decomposition

Let L ⊆ X∗ be a regular language and let A = (S,X, δ, s0, F) be a finite de-
terministic automaton accepting the language L, i.e., L(A) = L. For u, v ∈ X∗,
by u ∼ v we denote the equivalence relation of finite index on X∗ such that
δ(s, u) = δ(s, v) for any s ∈ S. Then it is well known that for any x, y ∈ X∗,
xuy ∈ L ⇔ xvy ∈ L if u ∼ v. Let [u] = {v ∈ X∗ | u ∼ v} for u ∈ X∗. It is
easy to see that [u] can be effectively constructed using A for any u ∈ X∗. Now
let n be a positive integer. We consider the decomposition L = A �[n] B. Let
Kn = {([u1], [u2], . . . , [un]) | u1, u2, . . . , un ∈ X∗}. Notice that Kn is a finite set.

Lemma 31 There is an algorithm to construct Kn.

Proof. Obvious from the fact that [u] can be effectively constructed for any
u ∈ X∗ and {[u] | u ∈ X∗} = {[u] | u ∈ X∗, |u| ≤ |S||S|}. Here |u| and |S| denote
the length of u and the cardinality of S, respectively.

Let u ∈ X∗. By ρn(u), we denote {([u1], [u2], . . . , [un]) | u = u1u2 · · ·un, u1,
u2, . . . , un ∈ X∗}. Let μ = ([u1], [u2], . . . , [un]) ∈ Kn and let Bμ = {v ∈ X∗ |
{v1}[u1]{v2}[u2] · · · {vn}[un]{vn+1} ⊆ L for any v = v1v2 · · · vnvn+1, v1, v2, . . . ,
vn, vn+1 ∈ X∗}.

Lemma 32 Bμ ⊆ X∗ is a regular language and it can be effectively constructed.

216 Masami Ito and Ryo Sugiura

Proof. Let S(i) = {s(i) | s ∈ S}, 0 ≤ i ≤ n, and let S̃ =
⋃

0≤i≤n S(i). We define

the following nondeterministic automaton Ã′ = (S̃, X, δ̃, {s(0)
0 }, S(n) \F (n)) with

ε-moves, where F (n) = {s(n) | s ∈ F}. The state transition relation δ̃ is defined
as follows:

δ̃(s(i), a) = {δ(s, a)(i), δ(s, aui+1)(i+1)}, for any a ∈ X ∪ {ε} and i = 0, 1, . . . ,
n− 1, and δ̃(s(n), a) = {δ(s, a)(n)}, for any a ∈ X .

Let v ∈ L(Ã′). Then δ(s0, v1u1v2u2 · · · vnunvn+1)(n) ∈ δ̃(s(0)
0 , v1v2 · · · vnvn+1)

∩(S(n) \ F (n)) for some v = v1v2 · · · vnvn+1, v1, v2, . . . , vn, vn+1 ∈ X∗. Hence
v1u1v2u2 · · · vnunvn+1 /∈ L, i.e., v ∈ X∗ \ Bμ. Now let v ∈ X∗ \ Bμ.
Then there exists v = v1v2 · · · vnvn+1, v1, v2, . . . , vn.vn+1 ∈ X∗ such that
v1u1v2u1 · · · vnunvn+1 /∈ L. Therefore, δ̃(s(0)

0 , v1v2 · · · vnvn+1) ∈ S(n) \ F (n), i.e.,
v = v1v2 · · · vnvn+1 ∈ L(Ã′). Consequently, Bμ = X∗ \ L(Ã′) and Bμ is regular.
Notice that X∗ \ L(Ã′) can be effectively constructed.

Symmetrically, consider ν = ([v1], [v2], . . . , [vn], [vn+1]) ∈ Kn+1 and Aν =
{u ∈ X∗ | ∀u = u1u2 · · ·un, u1, u2, . . . , un ∈ X∗, [v1]{u1}[v2]{u2} · · · [vn]{un}
[vn+1] ⊆ L}.
Lemma 33 Aν ⊆ X∗ is a regular language and it can be effectively constructed.

Proof. Let S(i) = {s(i) | s ∈ S}, 1 ≤ i ≤ n + 1, and let S =
⋃

1≤i≤n+1 S(i).

We define the nondeterministic automaton B′
= (S,X, δ, {δ(s0, v1)(1)}, S(n+1) \

F (n+1)) with ε-move where F (n+1) = {s(n+1) | s ∈ F}. The state transition
relation δ is defined as follows:

δ(s(i), a) = {δ(s, a)(i), δ(s, aui+1)(i+1)}, for any a ∈ X ∪ {ε}
and i = 1, 2, . . . , n.

By the same way as in the proof of Lemma 6, we can prove that Aν = X∗\L(B′).
Therefore, Aν is regular. Notice that X∗ \ L(B′) can be effectively constructed.

Proposition 31 Let A,B ⊆ X∗ and let L ⊆ X∗ be a regular language. If L =
A�[n]B, then there exist regular languages A′, B′ ⊆ X∗ such that A ⊆ A′, B ⊆ B′

and L = A′ �[n] B′.

Proof. Put B′ =
⋂

μ∈ρn(A) Bμ. Let v ∈ B and let μ ∈ ρn(A). Since μ ∈
ρn(A), there exists u ∈ A such that μ = ([u1], [u2], . . . , [un]) and u =
u1u2 · · ·un, u1, u2, . . . , un ∈ X∗. By u �[n] v ⊆ L, we have {v1}[u1]{v2}[u2] · · ·
{vn}[un]{vn+1} ⊆ L for any v = v1v2 . . . vnvn+1, v1, v2, . . . , vn, vn+1 ∈ X∗.
This means that v ∈ Bμ. Thus B ⊆ ⋂

μ∈ρn(A) Bμ = B′. Now assume that
u ∈ A and v ∈ B′. Let u = u1u2 · · ·un, u1, u2, . . . , un ∈ X∗ and let μ =
([u1], [u2], . . . , [un]) ∈ ρn(u) ⊆ ρn(A). By v ∈ B′ ⊆ Bμ, v1u1v2u2 · · · vnunvn+1

∈ {v1}[u1]{v2}[u2] · · · {vn}[un]{vn+1} ⊆ L for any v = v1v2 · · · vnvn+1, v1, v2,
. . . , vn, vn+1 ∈ X∗. Hence u �[n] v ⊆ L and A �[n] B′ ⊆ L. On the other hand,
since B ⊆ B′ and A �[n] B = L, we have A �[n] B′ = L. Symmetrically, put
A′ =

⋂
ν∈ρn+1(B′) Aν . By the same way as the above, we can prove that A ⊆ A′

and L = A′ �[n] B′.

n-Insertion on Languages 217

Theorem 1. For any regular language L ⊆ X∗ and a positive integer n, it is
decidable whether L = A�[n]B for some nontrivial regular languages A,B ⊆ X∗.

Proof. Let A = {Aν | ν ∈ Kn+1} and B = {Bμ | μ ∈ Kn}. By the preced-
ing lemmata, A, B are finite sets of regular languages which can be effectively
constructed. Assume that L = A �[n] B for some nontrivial regular languages
A,B ⊆ X∗. In this case, by Proposition 8, there exist regular languages A ⊆ A′

and B ⊆ B′ which are an intersection of languages in A and an intersection of
languages in B, respectively. It is obvious that A′, B′ are nontrivial languages.
Thus we have the following algorithm:

1. Take any languages from A and let A′ be their intersection.
2. Take any languages from B and let B′ be their intersection.
3. Calculate A′ �[n] B′.
4. If A′ �[n] B′ = L, then the output is “YES”.
5. If the output is “NO”, search another pair of {A′, B′} until obtaining the

output “YES”.
6. This procedure terminates after a finite-step trial.
7. Once we get the output “YES”, then L = A�[n]B for some nontrivial regular

languages A,B ⊆ X∗.
8. Otherwise, there are no such decompositions.

Let n be a positive integer. By F(n,X), we denote the class of finite languages
{L ⊆ X∗ | max{|u| | u ∈ L} ≤ n}. Then the following result by C. Câmpeanu
et al. ([1]) can be obtained as a corollary of Theorem 9.

Corollary 31 For a given positive integer n and a regular language A ⊆ X∗,
the problem whether A = B � C for a nontrivial language B ∈ F(n,X) and a
nontrivial regular language C ⊆ X∗ is decidable.

Proof. Obvious from the following fact: If u, v ∈ X∗ and |u| ≤ n, then u � v =
u �[n] v.

The proof of the above corollary was given in a different way in [3] using
the following result: Let A,L ⊆ X∗ be regular languages. Then it is decidable
whether there exists a regular languages B ⊆ X∗ such that L = A �B.

References

1. C. Câmpeanu, K. Salomaa and S. Vágvölgyi, Shuffle quotient and decompositions,
Lecture Notes in Computer Science 2295, Springer, 2002, 186–196.

2. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, Reading MA,1979.

3. M. Ito, Shuffle decomposition of regular languages, Journal of Universal Computer
Science, 8 (2002), 257–259.

4. L. Kari, On insertion and deletion in formal languages, PhD thesis, University of
Turku, 1991.

218 Masami Ito and Ryo Sugiura

5. L. Kari, Gh. Păun, G. Thierrin, S. Yu, At the crossroads of DNA computing and
formal languages: Characterizing RE using insertion-deletion systems, Prof. 3rd DI-
MACS Workshop on DNA Based Computers, Philadelphia, 1997, 318–333.

6. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms,
Springer, Berlin, 1998.

Transducers with Programmable Input by DNA

Self-assembly

Nataša Jonoska1, Shiping Liao2, and Nadrian C. Seeman2

1 University of South Florida, Department of Mathematics
Tampa, FL 33620, USA
jonoska@math.usf.edu

2 New York University, Department of Chemistry
New York, NY 1003, USA

sl558@nyu.edu, ned.seeman@nyu.edu

Abstract. Notions of Wang tiles, finite state machines and recursive
functions are tied together. We show that there is a natural way to
simulate finite state machines with output (transducers) with Wang tiles
and we show that recursive (computable) functions can be obtained as
composition of transducers through employing Wang tiles. We also show
how a programmable transducer can be self-assembled using TX DNA
molecules simulating Wang tiles and a linear array of DNA PX-JX2

nanodevices.

1 Introduction

In recent years there have been several major developments both experimentally
and theoretically, that use DNA for obtaining three dimensional nanostructures,
computation and as a material for nano-devices.

Nanostructures. The inherently informational character of DNA makes it an
attractive molecule for use in applications that entail targeted assembly. Ge-
netic engineers have used the specificity of sticky-ended cohesion to direct the
construction of plasmids and other vectors. Naturally-occurring DNA is a linear
molecule in the sense that its helix axis is a line, although that line is typically
not straight. Linear DNA molecules are not well-suited to serve as components
of complex nanomaterials, but it is easy to construct DNA molecules with sta-
ble branch points [20]. Synthetic molecules have been designed and shown to
assemble into branched species [12,23], and more complex species that entail the
lateral fusion of DNA double helices [21], such as DNA double crossover (DX)
molecules [7], triple crossover (TX) molecules [13] or paranemic crossover (PX)
molecules. Double and triple cross-over molecules have been used as tiles and
building blocks for large nanoscale arrays [24,25]. In addition, three dimensional
structures such as a cube [4], a truncated octahedron [29] and arbitrary graphs
[10,19] have been constructed from DNA duplex and junction molecules.

Computation. Theoretically, it has been shown that two dimensional arrays
can simulate the dynamics of a bounded one dimensional cellular automaton
and so are capable of potentially performing computations as a Universal Turing

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 219–240, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

220 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

machine [24]. Several successful experiments performing computation have been
reported, most notably the initial successful experiment by Adleman [1] and the
recent one from the same group solving an instance of SAT with 20 variables
[3]. Successful experiments that have confirmed computation such as the binary
addition (simulation of XOR) using triple cross-over molecules (tiles) have been
reported in [16]. In [6] a 9-bit instance of the “knight problem” has been solved
using RNA and in [8] a small instance of the maximal clique problem has been
solved using plasmids. Theoretically it has been shown that by self-assembly of
three dimensional graph structure many hard computational problems can be
solved in one (constant) biostep operation [10,11].

Nano Devices. Based on the B-Z transition of DNA, a nano-mechanical device
was introduced in [17]. Soon after, “DNA fuel” strands were used to produce
devices whose activity is controlled by DNA strands [26,28]. The PX-JX2 device
introduced in [26] has two distinct structural states, differing by a half-rotation;
each state is obtained by addition of a pair of DNA strands that hybridizes with
the device such that the molecule is in either the JX2 state or in the PX state.

We consider it a natural step at this point to use the PX-JX2 device and
DNA self-assembly to develop a programmable finite state machine. A simulation
of a finite state automaton that uses duplex DNA molecules and a restriction
endonuclease to recognize a sequence of DNA was reported in [2]. Unfortunately
this model is such that the DNA representing the input string is “eaten up”
during the process of computation and no output (besides “accept-reject”) is
produced.

In this paper we exploit the idea of using DNA tiles (TX molecules) that
correspond to Wang tiles to simulate a finite state machine with output, i.e., a
transducer. Theoretically we show that by composition of transducers we can
obtain all recursive functions and hence all computable functions (see Sections
3, and 4). This result is not surprising considering the fact that iterations of
a generalized sequential machine can simulate type-0 grammars [14,15]. How-
ever, the explicit connection between recursive functions and Wang tiles has not
been described before. Also, although the dynamics of transducers have been
considered [22], the composition of transducers as means to obtain class of re-
cursive functions represents a new way to tie together recursive functions, tiles
and transducers. Moreover, in this paper, the purpose of Wang tiles is not to
tile the plane, as they usually appear in literature, but merely to facilitate our
description of the use of DNA TX molecules to simulate transducers and their
composition. In particular, we assume the existence of “boundary colors” at some
of the tiles which do not allow tiling extension beyond the appearance of such a
color. The input tiles contain input “colors” on one side and a boundary color
on the opposite side, such that the computation is performed in the direction of
the input color. This is facilitated with composition colors on the sides (Section
4).

We go beyond two dimensions in this paper. We show how PX-JX2 DNA
devices (whose rotation uses three dimensional space) can be incorporated into
the boundary such that the input of the transducer can be programmed and

Transducers with Programmable Input by DNA Self-assembly 221

potentially the whole finite-state nano-machine can be reusable. The paper is
organized as follows. Section 2 describes the relationship between Wang tiles
and transducers. It describes the basic prototiles that can be used to simulate
a transducer. The composition of transducers obtained through Wang tiles is
described in Section 3. Here we also show how primitive recursive functions can
be obtained through composition of transducers. The general recursion (com-
putable functions) simulated with Wang tiles is presented in Section 4. DNA
implementation of transducers with TX molecules is described in Section 5 and
the use of the PX-JX2 devices for setting up the input sequence is described in
Section 5.2. We end with few concluding remarks.

2 Finite State Machines with Output: Basic Model

In this section we show the general idea of performing a computation by a
finite state machine using tiles. The actual assembly by DNA will be described
in Section 5. We briefly recall the definition of a transducer. This notion is well
known in automata theory and an introduction to transducers (Mealy machines)
can be found in [9].

A finite state machine with output or a transducer is T = (Σ,Σ′, Q, δ, s0, F)
where Σ and Σ′ are finite alphabets, Q is a finite set of states, δ is the transition
function, s0 ∈ Q is the initial state, and F ⊆ Q is the set of final or terminal
states. The alphabet Σ is the input alphabet and the alphabet Σ′ is the output
alphabet. We denote with Σ∗ the set of all words over the alphabet Σ. This
includes the word with “no symbols”, the empty word denoted with λ. For a
word w = a1 · · · ak where ai ∈ Σ, the length of w denoted with |w| is k. For the
empty word λ, we have |λ| = 0.

The transition operation δ is a subset of Q×Σ ×Σ′ ×Q. The elements of δ

are denoted with (q, a, a′, q′) or (q, a) δ�→ (a′, q′) meaning that when T is in state
q and scans input symbol a, then T changes into state q′ and gives output symbol
a′. In the case of deterministic transducers, δ is a function δ : Q×Σ → Σ′ ×Q,
i.e., at a given state reading a given input symbol, there is a unique output state
and an output symbol. Usually the states of the transducer are presented as
vertices of a graph and the transitions defined with δ are presented as directed
edges with input/output symbols as labels. If there is no edge from a vertex
q in the graph that has input label a, we assume that there is an additional
“junk” state q̄ where all such transitions end. This state is usually omitted from
the graph since it is not essential for the computation. The transducer is said
to recognize a string (or a word) w over alphabet Σ if there is a path in the
graph from the initial state s0 to a terminal state in F with input label w. The
set of words recognized by a transducer T is denoted with L(T) and is called a
language recognized by T. It is well known that finite state transducers recognize
the class of regular languages.

We concentrate on deterministic transducers. In this case the transition func-
tion δ maps the input word w ∈ Σ∗ to a word w′ ∈ (Σ′)∗. So the transducer T

can be considered to be a function from L(T) to (Σ′)∗, i.e., T : L(T)→ (Σ′)∗.

222 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

Examples:

1. The transducer T1 presented in Figure 1 (a) has initial and terminal state s0.
The input alphabet is {0, 1} and the output alphabet is Σ′ = ∅. It recognizes
the set of binary strings that represent numbers divisible by 3. The states
s0, s1, s2 represent the remainder of the division of the input string with 3.

s0 s1 s2
s0

s1 s2

0 1

1

0

0

1

1

(a) (b)

00
0

11

0 0

10

1 1

Fig. 1. A finite state machine that accepts binary strings that are divisible by 3.
The machine in figure (b) outputs the result of dividing the binary string with
3 in binary

2. The transducer T2 presented in Figure 1 (b) is essentially the same as T1

except that now the output alphabet is also {0, 1}. The output in this case
is the result of the division of the binary string with three. On input 10101
(21 in decimal) the transducer gives the output 00111 (7 in decimal).

3. Our next example refers to encoders. Due to manufacturing constraints of
magnetic storage devices, the binary data cannot be stored verbatim on the
disk drive. One method of storing binary data on a disk drive is by using the
modified frequency modulation (MFM) scheme currently used on many disk
drives. The MFM scheme inserts a 0 between each pair of data bits, unless
both data bits are 0, in which case it inserts a 1. The finite state machine,
transducer, that provides this simple scheme is represented in Figure 2 (a).
In this case the output alphabet is Σ′ = {00, 01, 10}. If we consider rewriting
of the symbols with 00 �→ α, 01 �→ β and 10 �→ γ we have the transducer in
Figure 2 (b).

4. A transducer that performs binary addition is presented in Figure 2 (c).
The input alphabet is Σ = {00, 01, 10, 11} representing a pair of digits to
be added, i.e., if x = x1 · · ·xk and y = y1 · · · yk are two numbers written
in binary (xi, yi = {0, 1}), the input for the transducer is written in form
[xkyk] [xk−1yk−1] · · · [x1y1]. The output of the transducer is the sum of
those numbers. The state s1 is the “carry”, s0 is the initial state and all
states are terminal. In [16] essentially the same transducer was simultaed by
gradually connecting TX molecules.

For a given T = (Σ,Σ′, Q, δ, s0, F) the transition (q, a) δ�→ (a′, q′) schemati-
cally can be represented with a square as shown in Figure 3. Such a square can
be considered as a Wang tile with colored edges, such that left and right we have
the state colors encoding the input and output states of the transition and down

Transducers with Programmable Input by DNA Self-assembly 223

s0 s1s0 s1
s0 s1 s2

01
0

1

0

1

(a) (b)

000 10 1 β 0 α
γ

β01

1
00 0

01
10 1

11 0

00 1

01
10 0

11 1

λ 1

(c)

Fig. 2. An encoder that produces the modified frequency modulation code.

and up we have colors encoding input and output symbols. Then a computation
with T is obtained by a process of assembling the tiles such that the abutted
edges are colored with the same color. Only translation, and no rotations of the
tiles are allowed. We describe this process in a better detail below.

2.1 Finite State Machines with Tile Assembly

Tiles: A Wang tile is a unit square with colored edges. A finite set of distinct
unit squares with colored edges are called Wang prototiles. We assume that from
each prototile there are arbitrarily large number of copies that we call tiles. A
tile τ with left edge colored l, bottom edge colored b, top edge colored t and right
edge colored r is denoted with τ = [l, b, t, r]. No rotation of the tiles is allowed.
Two tiles τ = [l, b, t, r] and τ ′ = [l′, b′, t′, r′] can be placed next to each other, τ
to the left of τ ′ iff r = l′, and τ ′ on top of τ iff t = b′.

– Computational tiles. For a transducer T with a transition of form (q, a) �→
(a′, q′) we associate a prototile [q, a, a′, q′] as presented in Figure 3. If there
are m transitions in the transducer, we associate m such prototiles. These
tiles will be called computational tiles.

q
a

q’

a’ []q,a,a’,q’tile:

transition: (q,a () a’,q’)
δ

Fig. 3. A computational tile for a transducer.

– Input and output tiles. Additional colors called border are added to the set
of colors. These colors will not be part of the assembly, but will represent
the boundary of the computational assembly. Hence the left border is dis-
tinct from the right border. We denote these with βl, βb, βr, βt for left, bot-
tom, right and top border. We assume that each input word is from Σ∗α
where α is a new symbol “end of input” that does not belong to Σ. For

224 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

a ∈ Σ an input prototile τa = [c, βb, a, c] is added. There are |Σ| input
prototiles, each representing an input symbol. The left and right sides are
colored with the same color, connect color c. For the “end of input” sym-
bol α a prototile τα = [c, βb, α, βr] is constructed. The output tiles are es-
sentially the same as the input tiles, except they have the “top” border:
τ ′
a = [c′, a, βt, c

′] where c′ is another connect color. The output row of tiles
starts with τleft = [βl, β

′
t, βt, c

′] and ends with τright = [c′β′
t, βt, βr]. For

DNA implementation, βt may be represented with a set of different motiffs
that will fascilitate the “read out” of the result. With these sets of input
and output tiles, every computation with T is obtained as a tiled rectangle
surrounded by boundary colors.

– Start tiles and accepting (end) tiles. Start of the input for the transducer T is
indicated with the start prototile ST = [βl, βb, T, c] where T is a special color
specifying the transducer T. The input tiles can then be placed next to such
a starting tile. For the starting state s0 a starting prototile τ0 = [βl, T, η, s0]
is constructed. Then τ0 can be placed on top of ST . The color η can be
equal to T if we want to iterate the same transducer or it can indicate
another transducer that should be applied after T. If the computation is to
be ended, η is equal to β′

t, indicating the start of “top boundary”. For each
terminal state f ∈ F we associate a terminal prototile τf = [f, α, α, βr] if
another computation is required, otherwise, τf = [f, α, β′

t, βr] which stops
the computation.

The set of tiles for executing a computation for transducer T2 that performs
division by 3 (see Figure 1 (b)) is depicted in Figure 4 (a).
Computation: The computation is performed by first assembling the input
starting with tile S and a sequence of input tiles ending with τα. The computation
of the transducer starts by assembling the computation tiles according to the
input state (to the left) and the input symbol (at the bottom). The computation
ends by assembling the end tile τf which can lie next to both the last input tile
and the last computational tile iff it ends with a terminal state. The output result
will be read from the sequence of the output colors assembled with the second
row of tiles and application of the output tiles. In this way one computation
with T is obtained with a tiled 3 × n rectangle (n > 2) such that the sides of
the rectangle are colored with boundary colors. Denote all such 3×n rectangles
with D(T). By construction, the four boundary colors are different and since no
rotation of Wang tiles is allowed, each boundary color can appear at only one
side of such a rectangle. For a rectangle ρ ∈ D(T) we denote wρ the sequence
of colors opposite of boundary βb and w′

ρ the sequence of colors opposite of
boundary βt. Then we have the following

Proposition 21 For a transducer T with input alphabet Σ, output alphabet Σ′,
and any ρ ∈ D(T) the following hold:

(i) wρ ∈ L(T) and w′
ρ ∈ Σ′.

(ii) T(wρ) = w′
ρ

Transducers with Programmable Input by DNA Self-assembly 225

b
β

0s
0s

rβrβ

l
β

0s
0s0s

s2 s1
s1 s2 s2

s20ss1
s1

l
β

l
β0s 0s

rβ

start color
for T

border

α
end of input

border

border Tile 1

next computation

Tile 0

next computation

terminal
state

terminal
state

end of input end of input
α α

(a)

b
β

stop computation
border β t

β t

border border

input
connect

connect
input

border

0 1

1

100

1

1

1

Computational tiles

1

10

11

10

00

1

(b)

start color start color

Symbol (input) tiles

Start input tile

End input tile

0 0 0

Start computation tile

border
stop computation

border

End computation tile

Fig. 4. All prototiles needed for performing the computation of the transducer
presented in Figure 1 and a simple computation over the string 10101 with result
00111.

Moreover, if w ∈ L(T) and T(w) = w′, then there is a ρ ∈ D(T) such that
w = wρ and w′ = w′

ρ.

The tile computation of T2 from Figure 1 (b) for the input string 10101 is
shown in Figure 4 (b). The output tiles are not included.

226 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

3 Primitive Recursive Functions from Transducers

In this section we show how the basic idea of modeling finite transducers by Wang
tiles, with a small modification to allow composition of such computations, can
perform computations of any primitive recursive function over the set of natural
numbers. There is extensive literature on (primitive) recursive functions, and
some introduction to the topic can be found in [5].

The primitive recursive functions are defined inductively as follows:

Definition 31

(i) Three initial functions: “zero” function z(x) = 0, “add one” function s(x) =
x + 1 and the “i-th projection” function πn

i (x1, . . . , xn) = xi are primitive
recursive.

(ii) Let x denote (x1, . . . , xn). If f(x1, . . . , xk) and g1(x), . . . , gk(x) are primi-
tive recursive, then the composition h(x) = f(g1(x), . . . , gk(x)) is primitive
recursive too.

(iii) Let f(x1, . . . , xn) and g(y, x1, . . . , xn, z) be two primitive recursive func-
tions, then the function h defined recursively (recursion):

h(x1, . . . , xn, 0) = f(x1, . . . , xn)
h(x1, . . . , xn, t + 1) = g(h(x1, . . . , xn, t), x1, . . . , xn, t)

is also primitive recursive.

Primitive recursive functions are total functions (defined for every input of
natural numbers) and their range belongs to the class of recursive sets of numbers
(see Section [5] and 4). Some of the primitive recursive functions include: x + y,
x · y, x!, xy ... In fact, in practice, most of the total functions (defined for all
initial values) are primitive recursive. All computable functions are recursive
(see Section 4), and there are examples of such functions that are not primitive
recursive (see for ex. [5]).

In order to show that the previous tiling model can simulate every primitive
recursive function we need to show that the initial functions can be modeled in
this manner, as well as their composition and recursion.

3.1 Initial Functions

The input and the output alphabets for the transducers are equal: Σ = Σ′ =
{0, 1}. An input representing the number n is given with a non-empty list of 0’s
followed with n +1 ones and a non-empty list of 0’s, i.e., 0 . . . 01n+10 . . . 0. That
means that the string 01110 represents the number 2. The input as an n-tuple
x = (x1, . . . , xn) is represented with

0 · · · 01x1+10s11x2+10s2 · · · 0sn1xn+10 · · · 0
where si > 0. This is known as the unary representation of x. In Figure 5, trans-
ducers corresponding to the initial primitive recursive functions z(x), s(x), Un

i (x)

Transducers with Programmable Input by DNA Self-assembly 227

are depicted. Note that the only input accepted by these functions is the cor-
rect representation of x or x. The zero transducer has three states, q0 is initial
and q2 is terminal. The transducer for the function s(x) contains a transition
that adds a symbol 0 to the input if the last 0 is changed into 1. This tran-
sition utilizes the “end of input” symbol α. The state q0 is the initial and q3

and ! are terminal states for this transducer. The increase of space needed as
a result of computation is provided with the end tile (denoted !) for q3. This
tile is of the form ! =!α = [q3, βb, α, βr] which corresponds to the transition
(q3, λ) �→ (α, !). (In DNA implementation, this corresponds to a tile whose bot-
tom side has no sticky ends.) The i-th projection function Un

i accepts as inputs
strings 0 · · · 01x1+10s11x2+10 · · · 01xn+10 · · · 0, i.e, unary representations of x and
it has 2n + 1 states. Transitions starting from every state change 1’s into 0’s
except at the state qi where the i-th entry of 1’s is copied.

1 0

0 0

1 0 1 0

0 0

s1s0 s2 s3

s0 s1 s1 s2

1 0

1 0

0 0 1 1

1 1

0 0 1 0

si si’ sn

1 0

1 0

U (x , x , ..., x) n21i
n

0 0

0 0

sn

00
1 0

1 0
0 0

0 0

z(x)
initial terminal

S(x)

initial terminal terminal

0 1 1 1
0

0 0
α 0 λ 0

1
10

!

’

initial
terminal

’

Fig. 5. The three initial functions of the primitive recursive functions

3.2 Composition

Let h be the composition h(x) = f(g1(x), . . . , gk(x)) where x = (x1, . . . , xn).
Since the input of h is x and there are k functions that need to be simultaneously
computed on that input, we use a new alphabet Σ̄ = {(a1, . . . , ak) | ai ∈ Σ} as an
aid. By the inductive hypothesis, there are sets of prototiles P (gi) that perform
computations for gi with input x for each i = 1, . . . , k. Also there is a set of
prototiles P (f) that simulates the computation for f . The composition function
h is obtained with the following steps. Each step is explained below.

1. Check for correct input.
2. Translate the input symbol a into k-tuples (a, a, . . . , a) for a ∈ Σ.

228 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

3. For i = 1, . . . , k apply P̄ (gi). The start prototiles are adjusted as follows: If
the current transducer Ti is to be followed by transducer Tj, then the start
tile for Ti is [βl,Ti,Tj, s0] where s0 is the initial state for Ti.

4. For all i = 1, . . . , k − 1 in the i-th coordinate of the input mark the end of
the last 1.

5. For all i = 2, . . . , k shift all 1’s in the i-th coordinate to the right of all 1’s in
the i− 1 coordinate. This ensures a proper input for the tiles that compute
f . After this, the k-tuples contain at most one 1.

6. Translate back k-tuples into 1 if they contain a symbol 1, otherwise into 0.
7. Apply the tiles that perform the computation for function f .

Step 1 and 2 The input tiles are the same as described in Section 2. The transla-
tion of the input from a symbol to a k-tuple is obtained with the transducer Tk

depicted in Figure 6. Note that this transducer is also checking the correctness
of the input.

s0 s1 s1 s2
sn

0 (0,...0)

1 (1,...1)

1 (1,...1)

0 (0,...0)

0 (0,...0)

1 (1,...1)

1 (1,...1)

0 (0,...0)

0 (0,...0)1 (1,...1)

0 (0,...0)1 (1,...1)

sn’

initial terminal

’

Tk

Fig. 6. The transducer Tk that translates symbols into k-tuples

Step 3 Each computational prototile for gi of the form [q, a, a′, q′] is substituted
with a set of prototiles [q, (a1, . . . , ai−1, a, . . . , ak), (a1, . . . , ai−1, a

′, . . . , ak), q′]
where ai is any symbol in the alphabet Σgi used by transducers for gi. The
end tile !α = [qi, βb, α, βr] that increases the computational space is substituted
with !(α,...,α) = [qi, βb, (α, . . . , α), βr]. We call this set of prototiles P̄ (gi). The
idea is to use the tiles P̄ (gi) to compute the function gi on coordinate i and leave
the rest of the coordinates unchanged.

Step 4 After the application of the tiles P̄ (g1) to P̄ (gk), the k-tuples have the
property that for each i the sequence of symbols that appears in the i-th co-
ordinate represents a number mi = g(x) of the form wi = 0 · · · 01mi0 · · · 0αsi

for some si ≥ 1. The end of input is obtained with the symbol (α, . . . , α). In
order to prepare an input for the function f , all 1’s in the i-th coordinate have
to appear to the right of the first 0 after the 1’s in the i − 1 coordinate for all
i = 2, . . . , k. Hence, first we mark the end of 1’s in each coordinate with an
additional symbol γ. The transducer Mi substitutes γ instead of the first 0 after
the sequence of 1’s in the i-th coordinate. It has the following transitions (all

Transducers with Programmable Input by DNA Self-assembly 229

states have superscripts i which are avoided to simplify the reading, we denote
y = (a1, . . . , ak) and y′ = (a′

1, . . . , a
′
k))

(s0,y) �→
{

(y, s0) for ai = 0
(y, s1) for ai = 1

when 1 is found in the i-th coordinate, change to s1

(s1,y) �→
{

(y, s1) for ai = 1
(y′, s2) for ai = 0, a′

i = γ
when all 1’s are scanned, change the first 0 into γ

(s2,y) �→ (y, s2)

Note that the starting tile for each Mi (i �= k) is [βl,Mi,Mi+1, s
i
0]. For i = k,

Mi+1 is substituted with σ2 which is the function that start shifting with the
second coordinate. Similarly, for i = k the end of input (α, . . . , α) in the end tile
is substituted with (σ2, σ2, . . . , σ2).

Step 5 Now the shifting of the i-th input to the right of the i − 1 input is
achieved with the function σi. This function corresponds to a transducer with
the following transitions (all states have superscripts i which are avoided to
simplify the reading, hence we denote y = (a1, . . . , ak) and y′ = (a′

1, . . . , a
′
k)):

(s0,y) �→
⎧⎨⎩

(y, s0) for ai = 0, ai−1 �= γ
(y, D) for ai = 0, ai−1 = γ
(y′, s1) for ai = 1, aj = a′

j , a
′
i = 0 (j �= i)

start the shift with s1 unless there is a γ in the i− 1 coordinate
before there is 1 in the i-th coordinate, in that case
go to the final state D

(s1,y) �→
{

(y, s1) for ai = 1
(y, s2) for ai = γ, a′

i = 1, aj = a′
j(j �= i)

copy the 1s, change the end γ into 1 and go to s2

(s2,y) �→ (y′, s3) for ai = 0, α, a′
i = γ

record the end symbol γ and change to s3, note that ai cannot be 1

(s3,y) �→
{

(y, s3) for ai �= σi,y �= λ
(y′, !y′) for y = λ, a′

j = σi (j = 1, . . . , k)
copy the input while there are input symbols, if no input
is to be found indicate the end of input and go to the next shifting,
expand space if necessary

if i < k then
(D,y) �→ (y, D)

go to the end of input and change the shift to the next coordinate
using the ending tile τD = [D, (σi, . . . , σi), (σi+1, . . . , σi+1), βr]

if i = k then
(D,y) �→ (y, D) with ending tile τD = [D, (σk, . . . , σk), TR, βr]

230 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

Since the shifting is performed one at a time, σi potentially has to be re-
peated many times. This is obtained by setting the “end of input” of the form
(σi, . . . , σi, . . . , σi) which indicates that the next shift is the function σi. The
terminal states D and s3 make distinction between whether the shift σi has to
be repeated (state s3) or the shifting of the i’th coordinates is completed (state
D). When i = k the end tile at state D changes such that (σk, . . . , σk) is sub-
stituted with TR which is the transducer that translates symbols from k-tuples
back into symbols from Σ.

Step 6 The transition from k-tuples of symbols to a single symbol is done with
the following simple transitions and only one state (note that after shifting, each
n-tuple contains at most one 1):

(q0,y) �→
{

0 if y contains no 1’s
1 if y contains a 1

The start tile for TR is [βl, TR, f, q0] indicating that the next computation has
to be performed with tiles for function f and the end tile for TR is [q0, TR, α, βr]
fixing the input for f in the standard form. After the application of TR, the
input reads the unary representation of (g1(x), . . . , gk(x)).

Step 7 The composition is completed using tiles for f . These tiles exist by the
inductive hypothesis.

3.3 Recursion

In order to perform the recursion, we observe that the composition and trans-
lation into n-tuples is sufficient. Denote with x the n-tuple (x1, . . . , xn). Then
we have h(x, 0) = f(x) for some primitive recursive function f . By induction we
assume that there is a set of tiles that performs the computation for the function
f . For h(x, t + 1) = g(h(x, t),x, t), also by the inductive hypothesis we assume
that there is a set of tiles that performs the computation of g(y,x, t).

Set up the input. We use the following input 01t+1νx̄010 where x̄ denotes
the unary representation of the n-tuple x. We denote this with (t + 1 |x, 0).
The symbol ν is used to separate the computational input from the counter of
the recursion. Since this input is not standard, we show that we can get to this
input from a standard input for h which is given with an ordered (n + 1)-tuple
(x, y). First we add a 0 unary represented with string 010 at the end of the
input to obtain (x, y, 0). This is obtained with the transducer T n+1

add(0) depicted
in Figure 7. Note that for k = 1 the translation function Tk (Figure 6) is in
fact the identity function, hence, there is a set of prototiles that represents the
function Id(x, y, 0). Consider the composition Id(Un+1

n+2 , U1
n+2, . . . , U

n
n+2, U

n+2
n+2).

This composition transforms (x, y, 0) into (y,x, 0). We obtain the desired entry
for the recursion by marking the end of the first coordinate input (used as a
counter for the recursion) with symbol ν. This is obtained by adding the following
transitions to Id(x, 0): (i0, 0) �→ (0, i0), (i0, 1) �→ (1, i1), (i1, 1) �→ (1, i1) and

Transducers with Programmable Input by DNA Self-assembly 231

α 1

input
Check for n −tuple

with
2n+1 states

λ λ0 α

!

Fig. 7. The transducer T n
add(0) that increases the input from n-tuple x to (n+1)-

tuple (x, 0).

(i1, 0) �→ (ν, s0) where i0, i1 are new states and s0 is the starting state for
Id(x, 0). With this, our entry is in the desired form of (y, x, 0) = (t + 1 |x, 0).

Execution of the recursion. Each transducer T that is used for computation
of functions f and g is adjusted to T ′ which skips the input until symbol γ is
obtained. This is obtained with one additional state (cT , i) �→ (i, cT) for i = 0, 1
and (cT , ν) �→ (ν, s0) where s0 is the starting state for T . As in the case of
composition we further adjust the prototiles for functions f and g into prototiles
P̄ (f)′ and P̄ (g)′ which read/write pairs of symbols, but the computation of f and
g is performed on the first coordinate, i.e., every prototile of the form [q, a, a′, q′]
in the set of prototiles for f and g is substituted with [q, (a, a2), (a′, a2), q′] where
a2 are in {0, 1}. Second coordinates are kept to “remember” the input for f and g
that is used in the current computation and will be used in the next computation
as well.

In this case the recursion is obtained by the following procedure:

– Translate input (t+1 |x, 0) into (t+1 | x̄, 0̄) using the translation transducer
T2 as presented in Figure 6 and adjusted with the additional state to skip
the initial t + 1. Now each symbol a in the input portion (x, 0) is translated
into a pair (a, a).

– Apply P̄ (f)′, hence the result f(x) can be read from the first coordinates of
the input symbols and the input (x, 0) is read in the second coordinates.

– Mark with M ′
1 the end of input from the first coordinate. This is the same

transducer M1 as used in the composition, except in this case there is an
extra state cM1 that skips the counter t + 1 at the beginning.

– Shift coordinates using σ′
2, i.e., the same transducer as σ2 for the composition

with the additional state cσ2 to skip the counter.
– Translate back from pairs into {0, 1} with T ′

R. Now the result reads as (t +
1 | f(x),x, 0), i.e., h(x, 0) = f(x) is read right after symbol ν.

– For an input (t + 1 | f(x),x, 0) reduce t + 1 for one. This is done with trans-
ducer presented in Figure 8 (a). The new input reads (t | f(x),x, 0).

– Check for end of computation with transducer that accepts 0 · · · 0νw for any
word w. Note that the language 0∗ν(0 + 1)∗ is regular and so accepted by
a finite state transducer that has each transition with output symbols same
as input symbols.

232 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

0 0

0 0 11

0 0 0 0

11
q1

q
1

q0 q
2

q0

(a)

(b)

Check for

S(x)

1 0
initial

entries

input
n+1 −tuple with
2n+2 states

ν ν

1 0

11

terminal

initial
ν ν

Fig. 8. The transducer that reduces the count of t and adds 1 to the input for
the recursion. When count down is reduced to 0, the recursion has been applied
t + 1 times

– For j = t, . . . , 0 perform the recursion on input (j | yj ,x, t− j):

• Translate with T ′
2 leaving the first entry unchanged, and making all en-

tries 2, . . . , n + 2 into pairs.
• Perform P̄ (g)′ on the first coordinate of these entries (skipping the first

entry j). In other words, g is applied on the entry (yj ,x, t− j), and by
the inductive hypothesis yj = h(x, t− j).

• Mark the end of first coordinate input in the pairs of symbols with M ′
1.

• Shift with σ′
2.

• Translate back from pairs into single symbols with T ′
R. Now the result

reads as (j | g(yj,x, t−j),x, t−j). By definition, g(yj,x, t−j) = g(h(x, t−
j),x, t− j) is in fact h(x, t− j + 1). Denote yj−1 = g(yj ,x, t− j).

• For an input (j | yj−1,x, t−j) reduce j for one and increase the last entry
by 1. This is done with transducer presented in Figure 8 (b). The new
input now reads (j − 1 | yj−1,x, t− j + 1).

• Check for end of the loop with transducer that accepts 0 · · · 0νw for any
word w.

– The end of the loop reads the following (0 | y0,x, t) and by construction
h(x, t+1) = y0. Now change all symbols before and after y0 into 0 (note that
y0 appears right after ν). This can be obtained with the following transitions:

(s0, 0) �→ (0, s0) (s0, ν) �→ (0, s1) (s1, 0) �→ (0, s1) (s1, 1) �→ (1, s2)
(s2, 1) �→ (1, s2) (s2, 0) �→ (0, s3) (s3, 0) �→ (0, s3) (s3, 1) �→ (0, s3)

– Read out the result with upper border.

Transducers with Programmable Input by DNA Self-assembly 233

4 Recursive Functions as Composition of Transducers

Recursive functions are defined through the so called minimization operator.
Given a function g(x1, . . . , xn, y) = g(x, y) the minimization f(x) = μyg(x, y) is
defined as:

f(x) = μyg(x, y) =

⎧⎨⎩
y if y is the least natural number such that

g(x, y) = 0
undefined if g(x, y) �= 0 for all y

A function f(x) is called total if it is defined for all x. The class of recursive
or computable functions is the class of total functions that can be obtained
from the initial functions z(x), s(x), U i

n(x) with a finite number of applications
of composition, recursion and minimization. The Kleene normal form theorem
shows that every recursive function can be obtained with only one application
of minimization (see for example [5]).

In order to show that all recursive (computable) functions can be obtained
as a composition of transducers we are left to observe that the minimization
operation can be obtained in this same way. As in the case of recursion we
adjust the prototiles for function g into prototiles P̄ (g) which contain pairs as
symbols, but the computation of g is performed on the first coordinate i.e.,
every prototile of the form [q, a, a′, q′] in the set of prototiles for g is substituted
with [q, (a, a2), (a′, a2), q′] where a2 are in {0, 1}. Second coordinates are kept to
“remember” the input for g. Now the minimization is obtained in the following
way (all representations of x are in unary).

– Fix the input x into (x, 0) by the transducer T n
add(0).

– Translate input (x, 0) into (x̄, 0̄) using the translation transducer T2 as pre-
sented in Figure 6. Now each symbol a in the input portion (x, 0) is translated
into a pair (a, a).

– Apply P̄ (g), hence the result g(x) can be read from the first coordinates of
the input symbols. The second coordinates read (x, 0).

– Until the first coordinate reads 0 continue:
• (*) Check whether g(x) = 0 in the first coordinate. This can be done

with a transducer which “reads” only the first coordinate of the input
pair and accepts strings of the form 0+10+ and rejects 0+11+0+.

• If the transducer is in “accept” form, then
∗ Change 1 from the first coordinate in the input into 0.
∗ Translate back from pairs of symbols into a single symbol with TR.
∗ Apply Un+1

n+1 , stop.
• If the transducer is in “reject” form,

∗ Change all 1’s from the first coordinate with 0’s. (I.e., apply z(x) on
the first coordinate.)

∗ Apply T n+1
add(0) to the second coordinate. Hence an input that reads

from the second coordinate (x, y) is changed into (x, y + 1).
∗ Copy the second coordinates to the first with transitions: (s, (a1, a2))
�→ ((a2, a2), s).

234 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

∗ Apply P̄ (g), i.e., compute g(x, y+1) on the first coordinate, go back
to (*).

5 DNA Implementation

5.1 The Basic Transducer Model

Winfree et. al [24] have shown that 2D arrays made of DX molecules can simu-
late dynamics of one-dimensional cellular automata (CA). This provides a way
to simulate a Turing machine, since at one time step the configuration of a one-
dimensional CA can represent one instance of the Turing machine. In the case
of tiling representations of finite state machines (transducers) each tile repre-
sents a transition, such that the result of the computation with a transducer is
obtained within one row of tiles. Transducers can be seen as Turing machines
without left movement. Hence, the Wang tile simulation gives the result of a
computation with such a machine within one row of tiles, which is not the case
in the simulation of CA. A single tile simulating a transducer transition requires
more information and DX molecules are not suitable for this simulation. Here
we propose to use tiles made of triple crossover (TX) DNA molecules with sticky
ends corresponding to one side of the Wang tile. An example of such molecule is
presented in Figure 9 (b) with 3′ends indicated with arrowheads. The connector
is a sticky part that does not contain any information but it is necessary for
the correct assembly of the tiles (see below). The TX tile representing transi-
tions for a transducer have the middle duplex longer than the other two (see the
schematic presentation in Figure 13). It has been shown that such TX molecules
can self-assemble in an array [13], and they have been linearly assembled such
that a cumulative XOR operation has been executed [16]. However, we have yet
to demonstrate that they can be assembled reliably in a programmable way in a
two dimensional array. Progress towards using double crossover molecules (DX)
for assembly of a 2D array that generates the Sierpinski triangle was recently
reported by the Winfree lab [18].

q
a

q’

a’ []q,a,a’,q’tile:

transition: (q,a () a’,q’)
δ

Input symbol

Current state Next state

Output symbolConnector sequence

Connector sequence

Fig. 9. A computational tile for a FSM and a proposed computational TX
molecule tile.

Controlling the right assembly can be done by two approaches: (1) by regu-
lating the temperature of the assembly such that only tiles that can bind three

Transducers with Programmable Input by DNA Self-assembly 235

sticky ends at a time hybridize, and those with less than three don’t, or (2) by
including competitive imperfect hairpins that will extend to proper sticky ends
only when all three sites are paired properly.

An iterated computation of the machine can be obtained by allowing third,
fourth etc. rows of assembly and hence primitive recursive functions can be
obtained. The input for this task is a combination of DX and TX molecules as
presented in Figure 10. The top TX duplex (not connected to the neighboring
DX) will have the right end sticky part encoding one of the input symbols and
the left sticky end will be used as connector. The left (right) boundary of the
assembly is obtained with TX molecules that have the left (right) sides of their
duplexes ending with hairpins instead of sticky ends. The top boundary contains
different motifs (such as the half hexagon in Figure 11 (b)) for different symbols.
For a two symbol alphabet, the output tile for one symbol may contain a motif
that acts as a topographic marker, and the other not. In this way the output
can be detectable by atomic force microscopy.

Fig. 10. Input for the computational assembly.

5.2 Programable Computations with DNA Devices

Recent developments in DNA nanotechnology enable us to produce FSM’s with
variable and potentially programmable inputs. The first of these developments is
the sequence-dependent PX-JX2 2-state nanomechanical device [26]. This robust
device, whose machine cycle is shown in Figure 11 to the left, is directed by the
addition of set strands to the solution that forms its environment.

The set strands, drawn thick and thin, establish which of the two states the
device will assume. They differ by rotation of a half-turn in the bottom parts
of their structures. The sequence-driven nature of the device means that many
different devices can be constructed, each of which is individually addressable;
this is done by changing the sequences of the strands connecting the DX portion
AB with the DX portion CD where the thick or thin strands pair with them.
The thick and thin strands have short, unpaired extensions on them. The state
of the device is changed by binding the full biotin-tailed complements of thick
or thin strands, removing them from solution by magnetic streptavidin beads,
and then adding the other strands. Figure 11 to the right shows that the device
can change the orientation of large DNA trapezoids, as revealed by atomic force
microscopy. The PX (thick strand) state leads to parallel trapezoids and the JX2

(thin strand) state leads to a zig-zag pattern.
Linear arrays of a series of PX-JX2 devices can be adapted to set the input

of a FSM. This is presented in Figure 12 where we have replaced the trapezoids

236 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

Fig. 11.

with double-triangle double diamonds. The computational set-up is illustrated
schematically in Figure 13 with just two computational tiles made of DNA triple
crossover (TX) molecules.

Fig. 12. Linear array of a series of devices to set-up the input.

Both diamonds and trapezoids are the result of edge-sharing motifs [27]. A
key difference between this structure and the previous one is that the devices
between the two illustrated double diamond structures differ from each other.
Consequently, we can set the states of the two devices independently. The double-
diamond structures contain domains that can bind to DX molecules; this design
will set up the linear array of the input, see Figure 12. Depending on the state
of the devices, one or the other of the double diamonds will be on the top
side. The two DX molecules will then act similarly to bind with computational
TX molecules, in the gap between them, as shown schematically in Figure 13.
The system is designed to be asymmetric by allowing an extra diamond for the
“start” and the “end” tiles (this is necessary in order to distinguish the top and

Transducers with Programmable Input by DNA Self-assembly 237

b

S S STX TX

input symbol

computation tile

S

a

S

a b b

b’a’

a

ba

00 1 1 2

start tile

input

PX−JX device2

Fig. 13. Schematic view for a couple of first step computations. The linear array
of DX and TX molecules that sets up the input is substituted only with a
rectangle for each of the input symbol.

Fig. 14.

the bottom by in atomic force microscopy, (AFM) visualizations). The left side
must contain an initiator (shown blunt at the top) and the right side will contain
a terminator. The bottom assembly can be removed using the same Yurke-type
techniques [28] that are used to control the state of the devices for removal of
the set strands. Successive layers can be added to the device by binding to the
initiator on the left, and to the terminator on the right.

For this task, we have prototyped the assembly of the central 4-diamond
patterns, connecting them with sticky ends, rather than PX-JX2 devices. AFM
images of these strings are shown on the left in Figure 14. We have also built a
5-diamond system connected by devices. Its AFM pattern is shown on the right
in Figure 14.

238 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

6 Discussion

What is the feasibility of this proposed system for a finite state machine? The
TX tiles have already been developed and have been successfully self-assembled
into a periodic 2D array [13]. Thus, we feel it is a reasonable extension of this
previous work to extend this system to prototiles in a Wang tile system. Likewise,
we have developed and purified a short double diamond-like system of connected
PX-JX2 devices. The experimental problems that we envision are the following:
(i) Purifying a long linear system so that we do not have a mixture of input
components. We expect that this can be done as done with the short system,
using specifically biotinylated molecules on the end members of the input array.
If the system is to be run similarly to the PX-JX2 device previously constructed,
we will need to remove the biotin groups from the system before operation. (ii)
A second problem that we envision is that three sticky ends need to bind, but
two sticky ends must be rejected. We have noted above two different methods
by which this goal might be achieved. The most obvious form of competition
is to make all of the sticky ends imperfect hairpins that require perfect mates
to come undone. Experimentation will be required to identify the most effective
protocol for this purpose.

An iterated computation (or a composition) of the machine can be obtained
by allowing third, fourth etc. rows of assembly and hence recursive functions
can be obtained. Although theoretically this has already been observed, the pro-
posed way to simulate a transducer provides a much faster computational device
than simulating a CA. As shown by examples in Figure 1 and 2 functions like
addition and division as well as encoding devices can be simulated with a sin-
gle row of tiles. However, the theoretical proofs for composition and recursion
use transducers that perform a single rewriting step and are not much different
from the computational steps simulated by CA. It is a theoretical question to
characterize the functions that can be computed by a single application of a
transducer. Knowing these functions, we can get a better understanding of the
computational complexity of their iterations and compositions and with that
a better understanding of the practical power of the proposed method. From
another point, it is clear that errors can be minimized with minimal number
of prototiles. It is known that the iterations of a four-state gsm provide uni-
versal computation [15], but what will be the minimal number of transitions
in a transducer whose iterations provide universal computation remains to be
determined.

With this paper we have presented ideas how to obtain a finite state nano-
machine that is programmable, produces an output and is potentially reusable.
Success in this objective relies on contributions of multiple disciplines, includ-
ing biochemistry and information theory. Chemistry and biochemistry provide
the infrastructure for dealing with biomolecules such as DNA and RNA. The
development of programmable nano-devices provides us with a tool for building
new (bio)molecules. Information theory provides the algorithms as well as the
understanding of the potential and limitations of these devices as information
processing machines. In turn, we expect that information technology will gain

Transducers with Programmable Input by DNA Self-assembly 239

improved molecular based methods that ultimately will prove to be of value for
difficult applications and computational problems.

Acknowledgements. This research has been supported by grants GM-29554 from
the National Institute of General Medical Sciences, N00014-98-1-0093 from the
Office of Naval Research, grants DMI-0210844, EIA-0086015, EIA-0074808, DMR-
01138790, and CTS-0103002 from the National Science Foundation, and F30602-
01-2-0561 from DARPA/AFSOR.

References

1. L. Adleman, Molecular computation of solutions of combinatorial problems, Science
266 (1994) 1021-1024.

2. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, E. Shapiro: Programmable and
autonomous computing machine made of biomolecules, Nature 414 (2001) 430-434.

3. R. S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, L. Adleman, Solution
of a 20-variable 3-SAT problem on a DNA Computer, Science 296 (2002) 499-502.

4. J.H. Chen, N.C. Seeman, Synthesis from DNA of a molecule with the connectivity
of a cube, Nature 350 (1991) 631-633.

5. N.J. Cutland, Computability, an introduction to recursive function theory, Cam-
bridge University Press, Cambridge 1980.

6. D. Faulhammer, A.R. Curkas, R.J. Lipton, L.F. Landweber, Molecular computa-
tion: RNA solution to chess problems, PNAS 97 (2000) 1385-1389.

7. T.J. Fu, N.C. Seeman, DNA double crossover structures, Biochemistry 32 3211-
3220 (1993).

8. T. Head et.al, Computing with DNA by operating on plasmids, BioSystems 57
(2000) 87-93.

9. J.E. Hopcroft, J.D. Ullman, Introduction to automata theory, languages and com-
putation, Addison-Wesley 1979.

10. N. Jonoska, P. Sa-Ardyen, N.C. Seeman, Computation by self-assembly of DNA
graphs, Genetic Programming and Evolvable Machines 4 (2003) 123-137.

11. N. Jonoska, S. Karl, M. Saito, Three dimensional DNA structures in computing,
BioSystems 52 (1999) 143-153.

12. N.R. Kallenbach, R.-I. Ma, N.C. Seeman, An immobile nucleic acid junction con-
structed from oligonucleotides, Nature 305 (1983) 829-831.

13. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, N.C. Seeman,
The construction, analysis, ligation and self-assembly of DNA triple crossover com-
plexes, J. Am. Chem. Soc. 122 (2000) 1848-1860.

14. V. Manca, C. Martin-Vide, Gh. Păun, New computing paradigms suggested by DNA
computing: computing by carving, BioSystems 52 (1999) 47-54.

15. V. Manca, C. Martin-Vide, Gh. Păun, Iterated gsm mappings: a collapsing hier-
archy, in Jewels are forever, (J. Karhumaki, H. Maurer, Gh. Păun, G. Rozenberg
eds.) Springer-Verlag 1999, 182-193.

16. C. Mao, T.H. LaBean, J.H. Reif, N.C. Seeman, Logical computation using algorith-
mic self-assembly of DNA triple-crossover molecules, Nature 407 (2000) 493-496.

17. C. Mao, W. Sun, Z. Shen, N.C. Seeman, A nanomechanical device based on the
B-Z transition of DNA, Nature 397 (2000) 144-146.

240 Nataša Jonoska, Shiping Liao, and Nadrian C. Seeman

18. P. Rothemund, N. Papadakis, E. Winfree, Algorithmic self-assembly of DNA sier-
pinski triangles (abstract) Preproceedings of the 9th International Meeting of DNA
Based Computers, June 1-4, 2003.

19. P. Sa-Ardyen, N. Jonoska, N. Seeman, Self-assembling DNA graphs, Journal of
Natural Computing (to appear).

20. N.C. Seeman, DNA junctions and lattices, J. Theor. Biol. 99 (1982) 237-247.
21. N.C. Seeman, DNA nicks and nodes and nanotechnology, NanoLetters 1 (2001)

22-26.
22. P. Siwak, Soliton like dynamics of filtrons on cyclic automata, Inverse Problems

17, Institute for Physics Publishing (2001) 897-918.
23. Y. Wang, J.E. Mueller, B. Kemper, N.C. Seeman, The assembly and characteriza-

tion of 5-arm and 6-arm DNA junctions, Biochemistry 30 (1991) 5667-5674.
24. E. Winfree, X. Yang, N.C. Seeman, Universal computation via self-assembly of

DNA: some theory and experiments, DNA computers II, (L. Landweber, E. Baum
editors), AMS DIMACS series 44 (1998) 191-214.

25. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-
dimensional DNA crystals, Nature 394 (1998) 539-544.

26. H. Yan, X. Zhang, Z. Shen and N.C. Seeman, A robust DNA mechanical device
controlled by hybridization topology, Nature 415 (2002) 62-65.

27. H. Yan, N.C. Seeman, Edge-sharing motifs in DNA nanotechnology, Journal of
Supramolecular Chemistry 1 (2003) 229-237.

28. B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel Jr., A DNA fueled molecular
machine made of DNA, Nature 406 (2000) 605-608.

29. Y. Zhang, N.C. Seeman, The construction of a DNA truncated octahedron, J. Am.
Chem. Soc. 160 (1994) 1661-1669.

Methods for Constructing Coded DNA

Languages

Nataša Jonoska and Kalpana Mahalingam

Department of Mathematics
University of South Florida, Tampa, FL 33620, USA

jonoska@math.usf.edu, mahaling@helios.acomp.usf.edu

Abstract. The set of all sequences that are generated by a biomolecular
protocol forms a language over the four letter alphabet Δ = {A, G, C, T}.
This alphabet is associated with a natural involution mapping θ, A �→ T
and G �→ C which is an antimorphism of Δ∗. In order to avoid undesir-
able Watson-Crick bonds between the words (undesirable hybridization),
the language has to satisfy certain coding properties. In this paper we
build upon an earlier initiated study and give general methods for ob-
taining sets of code words with the same properties. We show that some
of these code words have enough entropy to encode {0, 1}∗ in a symbol-
to-symbol mapping.

1 Introduction

In bio-molecular computing and in particular DNA based computations and
DNA nanotechnology, one of the main problems is associated with the design
of the oligonucleotides such that mismatched pairing due to the Watson-Crick
complementarity is minimized. In laboratory experiments non-specific hybridiza-
tions pose potential problems for the results of the experiment. Many authors
have addressed this problem and proposed various solutions. Common approach
has been to use the Hamming distance as a measure for uniqueness [3,8,9,11,19].
Deaton et al. [8,11] used genetic algorithms to generate a set of DNA sequences
that satisfy predetermined Hamming distance. Marathe et al. [20] also used
Hamming distance to analyze combinatorial properties of DNA sequences, and
they used dynamic programing for design of the strands used in [19]. Seeman’s
program [23] generates sequences by testing overlapping subsequences to enforce
uniqueness. This program is designed for producing sequences that are suitable
for complex three-dimensional DNA structures, and the generation of suitable
sequences is not as automatic as the other programs have proposed. Feldkamp
et al. [10] also uses the test for uniqueness of subsequences and relies on tree
structures in generating new sequences. Ruben at al. [22] use a random gener-
ator for initial sequence design, and afterwards check for unique subsequences
with a predetermined properties based on Hamming distance. One of the first
theoretical observations about number of DNA code words satisfying minimal
Hamming distance properties was done by Baum [3]. Experimental separation
of strands with “good” codes that avoid intermolecular cross hybridization was

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 241–253, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

242 Nataša Jonoska and Kalpana Mahalingam

reported in [7]. One of the more significant attempt to design a method for gen-
erating good codes of uniform length is obtained by Arita and Kobayashi [2].
They design a single template DNA molecule, encode it binary and by taking a
product with already known good binary code obtain a sequence of codes that
satisfy certain minimal distance conditions. In this paper we do not consider the
Hamming distance.

Every biomolecular protocol involving DNA or RNA generates molecules
whose sequences of nucleotides form a language over the four letter alphabet
Δ = {A,G,C, T}. The Watson-Crick (WC) complementarity of the nucleotides
defines a natural involution mapping θ, A �→ T and G �→ C which is an anti-
morphism of Δ∗. Undesirable WC bonds (undesirable hybridizations) can be
avoided if the language satisfies certain coding properties. Tom Head considered
comma-free levels of a language by identifying the maximal comma-free sublan-
guage of a given L ⊆ Δ∗. This notion is closely related to the ones investigated
in this paper by taking θ to be the identity map I. In [13], the authors introduce
the theoretical approach followed here. Based on these ideas and code-theoretic
properties, a computer program for generating code words is being developed [15]
and additional properties were investigated in [14]. Another algorithm based on
backtracking, for generating such code words is also developed by Li [18]. In
particular for DNA code words it was considered that no involution of a word
is a subword of another word, or no involution of a word is a subword of a com-
position of two words. These properties are called θ-compliance and θ-freedom
respectively. The case when a DNA strand may form a hairpin, (i.e. when a
word contains a reverse complement of a subword) was introduced in [15] and
was called θ-subword compliance.

We start the paper with definitions of coding properties that avoid inter-
molecular and intramolecular cross hybridizations. The definitions of θ-compliant
and θ-free languages are same as the ones introduced in [13]. Here we also con-
sider intramolecular hybridizations and subword hybridizations. Hence, we have
two additional coding properties: θ-subword compliance and θ-k-code. We make
several observations about the closure properties of the code word languages.
Section 3 provides several general methods for constructing code words with
certain desired properties. For each of the resulting sets we compute the infor-
mational entropy showing that they can be used to encode {0, 1}∗. We end with
few concluding remarks.

2 Definitions and Closure Properties

An alphabet Σ is a finite non-empty set of symbols. We will denote by Δ the
special case when the alphabet is {A,G,C, T} representing the DNA nucleotides.
A word u over Σ is a finite sequence of symbols in Σ. We denote by Σ∗ the set
of all words over Σ, including the empty word 1 and, by Σ+, the set of all non-
empty words over Σ. We note that with concatenation, Σ∗ is the free monoid
and Σ+ is the free semigroup generated by Σ. The length of a word u = a1 · · · an

is n and is denoted with |u|.

Methods for Constructing Coded DNA Languages 243

For words representing DNA sequences we use the following convention. A
word u over Δ denotes a DNA strand in its 5′ → 3′ orientation. The Watson-
Crick complement of the word u, also in orientation 5′ → 3′ is denoted with
←
u . For example if u = AGGC then

←
u= GCCT . There are two types of un-

wanted hybridizations: intramolecular and intermolecular. The intramolecular
hybridization happens when two sequences, one being a reverse complement of
the other appear within the same DNA strand (see Fig. 1). In this case the DNA
strand forms a hairpin.

(a) (b)

v x

w=uvux, u = k, v = m

u u

Fig. 1. Intramolecular hybridization (θ-subword compliance): (a) the reverse comple-
ment is at the beginning of the 5′ end, (b) the reverse complement is at the end of the
3′. The 3′ end of the DNA strand is indicated with an arrow.

Two particular intermolecular hybridizations are of interest (see Fig. 2). In
Fig. 2 (a) the strand labeled u is a reverse complement of a subsequence of the
strand labeled v, and in the same figure (b) represents the case when u is the
reverse complement of a portion of a concatenation of v and w.

(b)(a)

v

u u

wv

Fig. 2. Two types of intermolecular hybridization: (a) (θ-compliant) one code word is
a reverse complement of a subword of another code word, (b) (θ-free) a code word is a
reverse complement of a subword of a concatenation of two other code words. The 3′

end is indicated with an arrow.

Throughout the rest of the paper, we concentrate on finite sets X ⊆ Σ∗ that
are codes such that every word in X+ can be written uniquely as a product
of words in X . In other words, X∗ is a free monoid generated with X . For
the background on codes we refer the reader to [5]. We will need the following
definitions:

Pref(w) = {u | ∃v ∈ Σ∗, uv = w}
Suff(w) = {u | ∃v ∈ Σ∗, vu = w}
Sub(w) = {u | ∃v1, v2 ∈ Σ∗, v1uv2 = w}

We define the set of prefixes, suffixes and subwords of a set of words. Similarly,
we have Suffk(w) = Suff(w) ∩ Σk, Prefk(w) = Pref(w) ∩ Σk and Subk(w) =
Sub(w) ∩Σk.

244 Nataša Jonoska and Kalpana Mahalingam

We follow the definitions initiated in [13] and used in [15,16].
An involution θ : Σ → Σ of a set Σ is a mapping such that θ2 equals the

identity mapping, θ(θ(x)) = x, ∀x ∈ Σ.
The mapping ν : Δ → Δ defined by ν(A) = T , ν(T) = A, ν(C) = G,

ν(G) = C is an involution on Δ and can be extended to a morphic involution of
Δ∗. Since the Watson-Crick complementarity appears in a reverse orientation,
we consider another involution ρ : Δ∗ → Δ∗ defined inductively, ρ(s) = s for
s ∈ Δ and ρ(us) = ρ(s)ρ(u) = sρ(u) for all s ∈ Δ and u ∈ Δ∗. This involution is
antimorphism such that ρ(uv) = ρ(v)ρ(u). The Watson-Crick complementarity
then is the antimorphic involution obtained with the composition νρ = ρν. Hence
for a DNA strand u we have that ρν(u) = νρ(u) =

←
u . The involution ρ reverses

the order of the letters in a word and as such is used in the rest of the paper.
For the general case, we concentrate on morphic and antimorphic involutions

of Σ∗ that we denote with θ. The notions of θ-free and θ-compliant in 2, 3 of
Definition 21 below were initially introduced in [13]. Various other intermolecular
possibilities for cross hybridizations were considered in [16] (see Fig. 3). All of
these properties are included with θ-k-code introduced in [14] (4 of Definition
21).

Definition 21 Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution. Let
X ⊆ Σ∗ be a finite set.

1. The set X is called θ(k,m1,m2)-subword compliant if for all u ∈ Σ∗ such
that for all u ∈ Σk we have Σ∗uΣmθ(u)Σ∗ ∩X = ∅ for m1 ≤ m ≤ m2.

2. We say that X is called θ-compliant if Σ∗θ(X)Σ+∩X = ∅ and Σ+θ(X)Σ∗∩
X = ∅.

3. The set X is called θ-free if X2 ∩Σ+θ(X)Σ+ = ∅.
4. The set X is called θ-k-code for some k > 0 if Subk(X) ∩ Subk(θ(X)) = ∅.
5. The set X is called strictly θ if X ′ ∩ θ(X ′) = ∅ where X ′ = X \ {1}.

The notions of prefix, suffix (subword) compliance can be defined naturally
from the notions described above, but since this paper does not investigate these
properties separately, we don’t list the formal definitions here.

We have the following observations:

Observation 22 In the following we assume that k ≤ min{ |x| : x ∈ X}.
1. X is strictly θ-compliant iff Σ∗θ(X)Σ∗ ∩X = ∅.
2. If X is strictly θ-free then X and θ(X) are strictly θ-compliant and θ(X) is

θ-free.
3. If X is θ-k-code, then X is θ-k′-code for all k′ > k.
4. X is a θ-k-code iff θ(X) is a θ-k-code.
5. If X is strictly θ such that X2 is θ(k, 1,m)-subword compliant, then X is

strictly θ-k-code.
6. If X is a θ-k-code then both X and θ(X) are θ(k, 1,m)-subword compliant,

θ(k, 1,m) prefix and suffix compliant for any m ≥ 1, θ-compliant. If k ≤ |x|
2

for all x ∈ X then X is θ-free and hence avoids the cross hybridizations as
shown in Fig. 1 and 2.

Methods for Constructing Coded DNA Languages 245

u = k

u

u

u

u

u

u

Fig. 3. Various cross hybridizations of molecules one of which contains subword of
length k and the other its complement.

7. If X is a θ-k-code then X and θ(X) avoids all cross hybridizations of length
k shown in Fig. 3 and so all cross hybridizations presented in Fig. 2 of [16].

It is clear that θ-subword compliance implies θ-prefix and θ-suffix compliance.
We note that when θ = ρν, the θ(k,m1,m2)-subword compliance of the code
words X ⊆ Δ∗ does not allow intramolecular hybridization as in Fig. 1 for a pre-
determined k and m1 ≤ m ≤ m2. The maximal length of a word that together
with its reverse complement can appear as subwords of code words is limited
with k. The length of the hairpin, i.e. “distance” between the word and its re-
versed complement is bounded between m1 and m2. The values of k and m1,m2

would depend on the laboratory conditions (ex. the melting temperature, the
length of the code words and the particular application). In order to avoid inter-
molecular hybridizations as presented in Fig. 2, X has to satisfy θ-compliance
and θ-freedom. Most applications would require X to be strictly θ. The most
restricted and valuable properties are obtained with θ-k-code, and the analysis
of this type of codes also seems to be more difficult. When X is θ-k-code, all
intermolecular hybridizations presented in Fig. 3 are avoided. We include several
observations in the next section.

2.1 Closure Properties

In this part of the paper we consider several closure properties of languages that
satisfy some of the properties described with the Definition 21. We concentrate
on closure properties of union and concatenation of “good” code words. From
practical point of view, we would like to know under what conditions two sets of
available “good” code words can be joined (union) such that the resulting set is
still a “good” set of code words. Also, whenever ligation of strands is involved,
we need to consider concatenation of code words. In this case it is useful to
know under what conditions the “good” properties of the codewords will be
preserved after arbitrary ligations. The following table shows closure properties
of these languages under various operations.

246 Nataša Jonoska and Kalpana Mahalingam

Table 2.1 Closure Properties

θ-subword compl. θ-compl. θ-free θ-k-code
Union Yes No No No

Intersection Yes Yes Yes Yes
Complement No No No No

Concatenation (XY,X �= Y) No Y/N No No
Kleene * No No Yes No

Most of the properties included in the table are straight forward. We add
couple of notes for clarification.

– θ(k,m1,m2)-subword compliant languages are not closed under concatena-
tion and Kleene*. For example consider the set X = {aba2} ⊆ {a, b}∗ with
the morphic involution θ : a �→ b, b �→ a. Then X is θ(2, 2, 4)-subword
compliant. But X2 = {aba3ba2} is not θ(2, 2, 4)-subword compliant, i.e. X2

contains (ab)a3θ(ab)a.
– When θ is a morphism θ-compliant languages are closed under concatena-

tion, but when θ is antimorphism, they may not be. Consider the following
example: X1 = {a2, ab} and X2 = {b2, aba} with the antimorphic involution
θ : a �→ b, b �→ a. Then ab3 ∈ X1X2 and bab3 ∈ θ(X1X2).

The next proposition which is a stronger version of Proposition 10 in [13], shows
that for an antimorphic θ, concatenation of two distinct θ-compliant or θ-free
languages is θ-compliant or θ-free whenever their union is θ-compliant i.e. θ-free
respectively. The proof is not difficult and is omitted.

Proposition 23 Let X,Y ⊆ Σ+ be two θ-compliant (θ-free) languages for a
morphic or antimorphic θ. If X ∪ Y is θ-compliant (θ-free) then XY is θ-
compliant (θ-free).

3 Methods to Generate Good Code Words

In the previous section closure properties of “good” code words were obtained.
With the constructions in this section we show several ways to generate such
codes. Many authors have realized that in the design of DNA strands it is helpful
to consider three out of the four bases. This was the case with several successful
experiments [4,9,19]. It turns out that this, or a variation of this technique can
be generalized such that codes with some of the desired properties can be easily
constructed. In this section we concentrate on providing methods to generate
“good” code words X and for each code X the entropy of X∗ is computed. The
entropy measures the information capacity of the codes, i.e., the efficiency of
these codes when used to represent information.

The standard definition of entropy of a code X ⊆ Σ∗ uses probability distri-
bution over the symbols of the alphabet of X (see [5]). However, for a p-symbol
alphabet, the maximal entropy is obtained when each symbol appears with the

Methods for Constructing Coded DNA Languages 247

same probability 1
p . In this case the entropy essentially counts the average num-

ber of words of a given length as subwords of the code words [17]. From the
coding theorem, it follows that {0, 1}∗ can be encoded by X∗ with Σ �→ {0, 1} if
the entropy of X∗ is at least log 2 ([1], see also Theorem 5.2.5 in [6]). The codes
for θ-free, strictly θ-free, and θ-k-codes designed in this section have entropy
larger than log 2 when the alphabet has p = 4 symbols. Hence, such DNA codes
can be used for encoding bit-strings.

We start with the entropy definition as defined in [6].

Definition 31 Let X be a code. The entropy of X∗ is defined by

�(X) = limn→∞
1
n

log |Subn(X∗)|.

If G is a deterministic automaton or an automaton with a delay that recog-
nizes X∗ and AG is the adjacency matrix of G, then by Perron-Frobenius theory
AG has a positive eigen value μ̄ and the entropy of X∗ is log μ̄ (see Chapter 4
of [6]). We will use this fact in the following computations of the entropies of
the designed codes. In [13], Proposition 16, authors designed a set of DNA code
words that is strictly θ-free. The following propositions show that in a similar
way we can construct codes with additional “good” propoerties.

In what follows we assume that Σ is a finite alphabet with |Σ| ≥ 3 and
θ : Σ → Σ is an involution which is not identity. We denote with p the number
of symbols in Σ. We also use the fact that X is (strictly) θ-free iff X∗ is (strictly)
θ-free, (Proposition 4 in [14]).

Proposition 32 Let a, b ∈ Σ be such that for all c ∈ Σ \ {a, b}, θ(c) /∈ {a, b}.
Let X =

⋃∞
i=1 am(Σ \ {a, b})ibm for a fixed integer m ≥ 1.

Then X and X∗ are θ-free. The entropy of X∗ is such that log(p−2) < �(X∗).

Proof. Let x1, x2, y ∈ X such that x1x2 = sθ(y)t for some s, t ∈ Σ+ such
that x1 = ampbm, x2 = amqbm and y = amrbm, for p, q, r ∈ (Σ \ {a, b})+.
Since θ is an involution, if θ(a) �= a, b, then there is a c ∈ Σ \ {a, b} such
that θ(c) = a, which is excluded by assumption. Hence, either θ(a) = a or
θ(a) = b. When θ is morphic θ(y) = θ(am)θ(r)θ(bm) and when θ is antimorphic
θ(y) = θ(bm)θ(r)θ(am). So, θ(y) = amθ(r)bm or θ(y) = bmθ(r)am. Since x1x2 =
ampbmamqbm = sbmθ(r)amt or x1x2 = ampbmamqbm = samθ(r)bmt the only
possibilities for r are θ(r) = p or θ(r) = q. In the first case s = 1 and in the
second case t = 1 which is a contradiction with the definition of θ-free. Hence X
is θ-free.

Let A = (V,E, λ) be the automaton that recognizes X∗ where V =
{1, ..., 2m + 1} is the set of vertices, E ⊆ V × Σ × V and λ : E → Σ (with
(i, s, j) �→ s) is the labeling function.

An edge (i, s, j) is in E if and only if:

s =

⎧⎨⎩
a, for 1 ≤ i ≤ m, j = i + 1
b, for m + 2 ≤ i ≤ 2m, j = i + 1, and i = 2m + 1, j = 1
s, for i = m + 1,m + 2, j = m + 2, s ∈ Σ \ {a, b}

248 Nataša Jonoska and Kalpana Mahalingam

Then the adjacency matrix for A is a (2m+1)× (2m+1) matrix with ijth entry
equal to the number of edges from vertex i to vertex j. Then the characteristic
polynomial can be computed to be det(A−μI) = (−μ)2m(p−2−μ)+(−1)2m(p−
2). The eigen values are solutions of the equation μ2m(p−2)−μ2m+1 +p−2 = 0
which gives p − 2 = μ − μ

μ2m+1 . The largest real value for μ is positive. Hence
0 < μ

μ2m+1 < 1, i.e., p− 2 < μ < p− 1.�
In the case of the DNA alphabet, p = 4 and for m = 1 the above characteristic

equation becomes μ3− 2μ2− 2 = 0. The largest real value of μ is approximately
2.3593 which means that the entropy of X∗ is greater than log 2.

Example 1. Consider the DNA alphabet Δ with θ = ρν. Let m=2 and choose A
and T such that X ⊆ ⋃n

i=1 A2{G,C}iT 2. Then X and so X∗ is θ-free.

Proposition 33 Choose distinct a, b, c ∈ Σ such that θ(c) �= a, b θ(a) �= a and
θ(b) �= b. Let X =

⋃∞
i=1 am(Σm−1c)ibm for some m ≥ 2.

Then X, and so X∗ is strictly θ-free. The entropy of X∗ is such that
log(p

m−1
m) < �(X∗) < log((pm−1 + 1)

1
m).

Proof. (Sketch) Suppose there are x, x1, x2 ∈ X such that sθ(x)t =
x1x2 for some s, t ∈ Σ+. Let x = ams1cs2c..skcb

m then θ(x) is either
θ(am)θ(s1c...skc)θ(bm) or θ(bm)θ(s1c...skc)θ(am) which cannot be a proper sub-
word of x1x2 for any x1, x2 ∈ X . Hence X is θ-free.

Let A = (V,E, λ) be the automaton that recognizes X∗ where V =
{1, ..., 3m} is the set of vertices, E ⊆ V ×Σ×V is the set of edges and λ : E → Σ
(with (i, s, j) �→ s) is the labeling function.

An edge (i, s, j) is in E if and only if:

s =

⎧⎪⎪⎨⎪⎪⎩
a, for 1 ≤ i ≤ m, j = i + 1
b, for 2m + 1 ≤ i ≤ 3m− 1, j = i + 1, and i = 3m, j = i + 1
c, for i = 2m, j = m + 1, and i = 2m, j = 2m + 1
t, for m + 1 ≤ i ≤ 2m− 1 j = i + 1 t ∈ Σ

Note that this automaton is not deterministic, but it has a delay 1, hence
the entropy of X∗ can be obtained form its adjacency matrix. Let A be
the adjacency matrix of this automaton. The characteristic equation for A is
−(μ)3m + (μ)2mpm−1 + pm−1 = 0. This implies pm−1 = μ3m

μ2m+1 = μm − μm

μ2m+1 .

Since p is an integer and 0 < μm

μ2m+1 < 1, we have p
m−1

m < μ.�
For the DNA alphabet, p = 4 and for m = 2 the above characteristic equation

becomes μ6−4μ4−4 = 0. Solving for μ, the largest real value of μ is 2.055278539.
Hence the entropy of X∗ is greater than log 2.

Example 2. Consider Δ and θ = ρν and let m = 2, a = A, c = C, b = G.
Then X =

⋃∞
i=1 AA(ΔC)iGG and X∗ are strictly θ-free.

With the following propositions we consider ways to generate θ-subword com-
pliant and θ-k-codes.

Methods for Constructing Coded DNA Languages 249

Proposition 34 Choose a, b ∈ Σ such that θ(a) = b.
Let X = ∪∞

i=1a
k−1((Σ \ {a, b})kb)i for k > 1.

Then X is θ(k, k, k)-subword compliant. The entropy of X∗ is such that
�(X∗) > log((p− 2)

k
k+1).

Proof. We use induction on i. For i = 1, X = ak−1Bkb, where B = Σ−{a, b}.
Then for every x ∈ X , |x| = 2k. Hence X is θ(k, k, k)-subword compliant.
Assume that the statement is true for i = n. Let x ∈ X ⊆ ∪n+1

i=1 ak−1((Σ \
{a, b})kb)i = ∪n+1

i=1 ak−1(Bkb)i. Suppose x ∈ Σ∗uΣkθ(u)Σ∗ for some u ∈ Σk.
Then there are several ways for θ(u) to be a subword of x. If θ(u) is a subword
of BkbBk then u is a subword of BkaBk which is not possible. If θ(u) is a
subword of bBk then u is a subword of either Bka or aBk. In the first case u
would not be a subword of X and in the second case x ∈ Σ∗uΣtθ(u)Σ∗ for some
t �= k which is a contradiction. If θ(u) ∈ Bk then u ∈ Bk which is a contradiction
to our assumption that k > 1. Hence X is θ(k, k, k) subword compliant.

Let A = (V,E, λ) be the automaton that recognizes X∗ where V = {1, ..., 2k}
is the set of vertices, E ⊆ V ×Σ × V and λ : E → Σ (with (i, s, j) �→ s) is the
labeling function.

An edge (i, s, j) is in E if and only if:

s =

⎧⎨⎩
a, for 1 ≤ i ≤ k − 1, j = i + 1
b, for i = 2k, j = k, and i = 2k, j = 1
s, for k ≤ i ≤ 2k − 1, j = i + 1 s ∈ Σ \ {a, b}

This automaton is with delay 1. Let A be the adjacency matrix of this automaton.
The characteristic equation is (μ)2k−(p−2)kμk−1−(p−2)k = 0. Then (p−2)k =
μk+1 − μk+1

μk−1+1 . Since p− 2 is an integer μ > 1. Hence μ > (p− 2)
k

k+1 . �
For the DNA alphabet, p = 4 and for k = 2 the above characteristic equation

becomes μ4 − 4μ− 4 = 0. When we solve for μ we get the largest real value of μ
to be 1.83508 which is greater than the golden mean (1.618), but not quite gets
to log 2. In this case encoding bits with symbols from Σ is not possible with X∗,
although as k approaches infinity, μ approaches 2.�
Example 3. Consider Δ with θ = ρν. Let k = 2 and choose A and T so that
X =

⋃n
i=1 A({G,C}2T)i. Clearly X is θ(2, 2, 2)-subword compliant.

Proposition 35 Let a, b ∈ Σ such that θ(a) = b and let X =
⋃∞

i=1 ak−1((Σ \
{a, b})k−2b)i.

Then X is θ(k, 1,m)-subword compliant for k ≥ 3 and m ≥ 1. Moreover,
when θ is morphic then X is a θ-k-code. The entropy of X∗ is such that log((p−
2)

k−2
k−1) < �(X∗).

Proof. Suppose there exists x ∈ X such that x = rusθ(u)t for some r, t ∈ Σ∗,
u, θ(u) ∈ Σk and s ∈ Σm. Let x = ak−1s1bs2b...snb where si ∈ (Σ \ a, b)k−2.
Then the following are all possible cases for u:

1. u is a subword of ak−1s1,
2. u is a subword of as1b,

250 Nataša Jonoska and Kalpana Mahalingam

3. u is a subword of s1bs2,
4. u is a subword of bsib for some i ≤ n.

In all these cases, since θ(a) = b, θ(u) is not a subword of x . Hence X is θ(k, 1,m)
subowrd compliant.

Let A = (V,E, λ) be the automaton that recognizes X∗ where V =
{1, ..., 2k − 2} is the set of vertices, E ⊆ V × Σ × V and λ : E → Σ (with
(i, s, j) �→ s) is the labeling function.

An edge (i, s, j) is in E if and only if:

s =

⎧⎨⎩
a, for 1 ≤ i ≤ k − 1, j = i + 1
b, for i = 2k − 2, j = k, and i = 2k − 2, j = 1
s, for k ≤ i ≤ 2k − 3, j = i + 1 s ∈ Σ \ {a, b}

This automaton is with delay 1.
Let A be the adjacency matrix of this automaton. The characteristic equation

is (−μ)2k−2 − (p− 2)k−2μk−1 − (p− 2)k−2 = 0. So (p− 2)k−2 = μk−1 − μk−1

μk−1+1
.

Since 0 < μk−1

μk−1+1
< 1 , (p− 2)

k−2
k−1 < μ.�

For the DNA alphabet, p = 4 and for k = 3 the above characteristic equation
becomes μ4− 2μ2− 2 = 0. Solving for μ, the largest real value is 1.6528 which is
greater than the golden mean (1.618), but less than 2. Again as in the previous
case, the asymptotic value for μ is 2 when k approaches infinity.

Example 4. Consider Δ with θ = ρν and choose k = 3. Then
X =

⋃∞
i=1 AA({G,C}T)i is θ(3, 1,m)-subword compliant for any m ≥ 1.

As other authors have observed, note that it is easy to get θ-k-code if one
of the symbols in the alphabet is completely ignored in the construction of the
code X .

Proposition 36 Assume that θ(a) �= a for all symbols a ∈ Σ. Let b, c ∈ Σ such
that θ(b) = c and let X =

⋃∞
i=1 ak−1((Σ \ {c})k−2b)i for k ≥ 3.

Then X and X∗ are a θ-k-code. The entropy of X∗ is such that log((p −
1)

k−2
k−1) < �(X∗).

Proof. The fact that X∗ is a θ-k-code is straight forward, since every subword
of x ∈ X of length k is either power of a or contains the symbol b.

Let A = (V,E, λ) be the automaton that recognizes X∗ where V =
{1, ..., 2k − 2} is the set of vertices, E ⊆ V × Σ × V and λ : E → Σ (with
(i, s, j) �→ s) is the labeling function and as in the previous propositions, the
edges (i, s, j) are defined such that:

s =

⎧⎨⎩
a, for 1 ≤ i ≤ k − 1, j = i + 1
b, for i = 2k − 2, j = k, and i = 2k − 2, j = 1
s, for k ≤ i ≤ 2k − 3, j = i + 1 s ∈ Σ \ {c}

This automaton is with delay 1.

Methods for Constructing Coded DNA Languages 251

Let A be the adjacency matrix of this automaton with the characteristic
equation μ2k−2 − μk−1(p − 1)k−2 − (p − 1)k−2 = 0. This implies (p − 1)k−2 =
μk−1− μk−1

μk−1+1
. We are interested in the largest real value for μ. Since μ > 0, we

have 0 < μk−1

μk−1+1
< 1 which implies (p− 1)

k−2
k−1 < μ.�

For the DNA alphabet, p = 4 and for k = 4 the above estimate says that
μ > 3

2
3 > 2. Hence the entropy of X∗ in this case is greater than log 2.

4 Concluding Remarks

In this paper we investigated theoretical properties of languages that consist of
DNA based code words. In particular we concentrated on intermolecular and
intramolecular cross hybridizations that can occur as a result that a Watson-
Crick complement of a (sub)word of a code word is also a (sub)word of a code
word. These conditions are necessary for a design of good codes, but certainly
may not be sufficient. For example, the algorithms used in the programs devel-
oped by Seeman [23], Feldkamp [10] and Ruben [22], all check for uniqueness of
k-length subsequences in the code words. Unfortunately, none of the properties
from Definition 21 ensures uniqueness of k-length words. Such code word prop-
erties remain to be investigated. We hope that the general methods of designing
such codewords will simplify the search for “good” codes. Better characteriza-
tions of good code words that are closed under Kleene ∗ operation may provide
even faster ways for designing such codewords. Although the Proposition 36
provides a rather good design of code words, the potential repetition of certain
subwords is not desirable. The most challenging questions of characterizing and
designing good θ-k-codes that avoids numerous repetition of subwords remains
to be developed.

Our approach to the question of designing “good” DNA codes has been from
the formal language theory aspect. Many issues that are involved in designing
such codes have not been considered. These include (and are not limited to)
the free energy conditions, melting temperature as well as Hamming distance
conditions. All these remain to be challenging problems and a procedure that
includes all or majority of these aspects will be desirable in practice. It may be
the case that regardless of the way the codes are designed, the ultimate test for
the “goodness” of the codes will be in the laboratory.

Acknowledgment
This work has been partially supported by the grant EIA-0086015 from the
National Science Foundation, USA.

References

1. R.L. Adler, D. Coppersmith, M. Hassner, Algorithms for sliding block codes -an ap-
plication of symbolic dynamics to information theory, IEEE Trans. Inform. Theory
29 (1983), 5-22.

252 Nataša Jonoska and Kalpana Mahalingam

2. M. Arita and S. Kobayashi, DNA sequence design using templates, New Gen-
eration Comput. 20(3), 263–277 (2002). (Available as a sample paper at
http://www.ohmsha.co.jp/ngc/index.htm.)

3. E.B. Baum, DNA Sequences useful for computation unpublished article, available
at: http://www.neci.nj.nec.com/homepages/eric/seq.ps (1996).

4. R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, L. Adleman, Solution
of a 20-variable 3-SAT problem on a DNA computer, Science 296 (2002) 499-502.

5. J. Berstel, D. Perrin, Theory of codes, Academis Press, Inc. Orlando Florida, 1985.

6. D. Lind, B. Marcus, An introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Inc. Cambridge United Kingdom, 1999.

7. R. Deaton, J. Chen, H. Bi, M. Garzon, H. Rubin, D.F. Wood, A PCR-based pro-
tocol for in vitro selection of non-crosshybridizing oligonucleotides, DNA Comput-
ing: Proceedings of the 8th International Meeting on DNA Based Computers (M.
Hagiya, A. Ohuchi editors), Springer LNCS 2568 (2003) 196-204.

8. R. Deaton et. al, A DNA based implementation of an evolutionary search for good
encodings for DNA computation, Proc. IEEE Conference on Evolutionary Compu-
tation ICEC-97 (1997) 267-271.

9. D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F.Landweber, Molecular Compu-
tation: RNA solutions to chess problems, Proceedings of the National Academy of
Sciences, USA 97 4 (2000) 1385-1389.

10. U. Feldkamp, S. Saghafi, H. Rauhe, DNASequenceGenerator - A program for the
construction of DNA sequences, DNA Computing: Proceedings of the 7th Inter-
national Meeting on DNA Based Computers (N. Jonoska, N.C. Seeman editors),
Springer LNCS 2340 (2002) 23-32.

11. M. Garzon, R. Deaton, D. Reanult, Virtual test tubes: a new methodology for com-
puting, Proc. 7th. Int. Symposium on String Processing and Information retrieval,
A Corun̆a, Spain. IEEE Computing Society Press (2000) 116-121.

12. T. Head, Relativised code properties and multi-tube DNA dictionaries in Finite vs.
Infinite (Ed. by C. Calude, Gh. Paun) Springer, (2000) 175-186.

13. S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages, DNA
Computing: Proceedings of the 7th International Meeting on DNA Based Com-
puters (N. Jonoska, N.C. Seeman editors), Springer LNCS 2340 (2002) 57-69.

14. N. Jonoska, K. Mahalingam Languages of DNA based code words Preliminary Pro-
ceedings of the 9th International Meeting on DNA Based Computers, Madison,
Wisconsin June 1-4, (2003) 58-68.

15. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words Congressus
Numernatium 156 (2002) 99-110.

16. L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-free
DNA languages preprint.

17. M.S. Keane, Ergodic theory an subshifts of finite type, in Ergodic theory, symbolic
dynamics and hyperbolic spaces (ed. T. edford, et.al.) Oxford Univ. Press, Oxford
1991, pp.35-70.

18. Z. Li, Construct DNA code words using backtrack algorithm, preprint.

19. Q. Liu et al., DNA computing on surfaces, Nature 403 (2000) 175-179.

20. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial word design, Preliminary
Preproceedings of the 5th International Meeting on DNA Based Computers, Boston
(1999) 75-88.

21. Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing, new computing paradigms,
Springer Verlag 1998.

Methods for Constructing Coded DNA Languages 253

22. A.J. Ruben, S.J. Freeland, L.F. Landweber, PUNCH: An evolutionary algorithm
for optimizing bit set selection, DNA Computing: Proceedings of the 7th Inter-
national Meeting on DNA Based Computers (N. Jonoska, N.C. Seeman editors),
Springer LNCS 2340 (2002) 150-160.

23. N.C. Seeman, De Novo design of sequences for nucleic acid structural engineering
J. of Biomolecular Structure & Dynamics 8 (3) (1990) 573-581.

On the Universality of P Systems with Minimal

Symport/Antiport Rules�

Lila Kari1, Carlos Mart́ın-Vide2, and Andrei Păun3

1 Department of Computer Science, University of Western Ontario
London, Ontario, Canada N6A 5B7

lila@csd.uwo.ca
2 Research Group on Mathematical Linguistics

Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

cmv@astor.urv.es
3 Department of Computer Science
College of Engineering and Science
Louisiana Tech University, Ruston

P.O. Box 10348, Louisiana, LA-71272 USA
apaun@coes.latech.edu

Abstract. P systems with symport/antiport rules of a minimal size
(only one object passes in any direction in a communication step) were
recently proven to be computationally universal. The proof from [2] uses
systems with nine membranes. In this paper we improve this results, by
showing that six membranes suffice. The optimality of this result remains
open (we believe that the number of membranes can be reduced by one).

1 Introduction

The present paper deals with a class of P systems which has recently received
a considerable interest: the purely communicative ones, based on the biological
phenomena of symport/antiport.

P systems are distributed parallel computing models which abstract from
the structure and the functioning of the living cells. In short, we have a mem-
brane structure, consisting of several membranes embedded in a main membrane
(called the skin) and delimiting regions (Figure 1 illustrates these notions) where
multisets of certain objects are placed. In the basic variant, the objects evolve
according to given evolution rules, which are applied non-deterministically (the
rules to be used and the objects to evolve are randomly chosen) in a maximally
parallel manner (in each step, all objects which can evolve must evolve). The
objects can also be communicated from one region to another one. In this way,
we get transitions from a configuration of the system to the next one. A sequence
of transitions constitutes a computation; with each halting computation we asso-
ciate a result, the number of objects in an initially specified output membrane.
� Research supported by Natural Sciences and Engineering Research Council of

Canada grants and the Canada Research Chair Program to L.K. and A.P.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 254–265, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Universality of P Systems with Minimal Symport/Antiport Rules 255

Since these computing devices were introduced ([8]) several different classes
were considered. Many of them were proved to be computationally complete, able
to compute all Turing computable sets of natural numbers. When membrane di-
vision, membrane creation (or string-object replication) is allowed, NP-complete
problems are shown to be solved in polynomial time. Comprehensive details can
be found in the monograph [9], while information about the state of the art of the
domain can be found at the web address http://psystems.disco.unimib.it.

�

	

�

�

	

�

�

�

�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

���

�
�

��

�
�

�
��

membrane

���

skin elementary membranemembrane

region ��

�

�
�

���

Figure 1: A membrane structure

1 2

3

4
5

6

7

8

9

A purely communicative variant of P systems was proposed in [7], modeling
a real life phenomenon, that of membrane transport in pairs of chemicals – see
[1]. When two chemicals pass through a membrane only together, in the same
direction, we say that we have a process of symport. When the two chemicals pass
only with the help of each other, but in opposite directions, the process is called
antiport. For uniformity, when a single chemical passes through a membrane,
one says that we have an uniport.

Technically, the rules modeling these biological phenomena and used in P
systems are of the forms (x, in), (x, out) (for symport), and (x, out; y, in) (for
antiport), where x, y are strings of symbols representing multisets of chemicals.
Thus, the only used rules govern the passage of objects through membranes, the
objects only change their places in the compartments of the membrane structure,
they never transform/evolve.

Somewhat surprisingly, computing by communication only, in this “osmotic”
manner, turned out to be computationally universal: by using only symport and
antiport rules we can compute all Turing computable sets of numbers, [7]. The
results from [7] were improved in several places – see, e.g., [3], [4], [6], [9] – in what
concerns the number of membranes used and/or the size of symport/antiport
rules.

256 Lila Kari, Carlos Mart́ın-Vide, and Andrei Păun

Recently, a rather unexpected result was reported in [2]: in order to get
the universality, minimal symport and antiport rules, that is of the forms
(a, in), (a, out), (a, out; b, in), where a, b are objects, are sufficient. The price was
to use nine membranes, much more than in the results from [3] and [4], for ex-
ample. The problem whether or not the number of membranes can be decreased
was formulated as an open problem in [2]. We contribute here to this question,
by improving the result from [2]: six membranes suffice. The proof uses the same
techniques as the proofs from [2], [4]: simulating a counter automaton by a P
system with minimal symport/antiport rules.

It is highly probable that our result is not optimal, but we conjecture that
it cannot be significantly improved; we believe that at most one membrane can
be saved.

2 Counter Automata

In this section we briefly recall the concept of counter automata, useful in the
proof of our main theorem. We follow here the style of [2] and [4]. Informally
speaking, a counter automaton is a finite state machine that has a finite number
of counters able to store values represented by natural numbers; the machine
runs a program consisting of instructions which can increase or decrease by one
the contents of registers, changing at the same time the state of the automaton;
starting with each counter empty, the machine performs a computation; if it
reaches a terminal state, then the number stored in a specified counter is said
to be generated during this computation. It is known (see, e.g., [5]) that counter
automata (of various types) are computationally universal, they can generate
exactly all Turing computable sets of natural numbers.

More formally, a counter automaton is a construct M = (Q,F, p0, C, cout, S),
where:

– Q is the set of the possible states,
– F ⊆ Q is the set of the final states,
– p0 ∈ Q is the start state,
– C is the set of the counters,
– cout ∈ C is the output counter,
– S is a finite set of instructions of the following forms:

(p → q,+c), with p, q ∈ Q, c ∈ C: add 1 to the value of the counter c
and move from state p into state q;
(p→ q,−c), with p, q ∈ Q, c ∈ C: if the current value of the counter c is
not zero, then subtract 1 from the value of the counter c and move from
state p into state q; otherwise the computation is blocked in state p;
(p→ q, c = 0), with p, q ∈ Q, c ∈ C: if the current value of the counter c
is zero, then move from state p into state q; otherwise the computation
is blocked in state p.

On the Universality of P Systems with Minimal Symport/Antiport Rules 257

A transition step in such a counter automaton consists in updating/checking
the value of a counter according to an instruction of one of the types presented
above and moving from a state to another one. Starting with the number zero
stored in each counter, we say that the counter automaton computes the value n
if and only if, starting from the initial state, the system reaches a final state after
a finite sequence of transitions, with n being the value of the output counter cout

at that moment.
Without loss of generality, we may assume that in the end of the computation

the automaton makes zero all the counters but the output counter; also, we may
assume that there are no transitions possible that start from a final state (this
is to avoid the automaton getting stuck in a final state).

As we have mentioned above, such counter automata are computationally
equivalent to Turing machines, and we will make below an essential use of this
result.

3 P Systems with Symport/Antiport Rules

The language theory notions we use here are standard, and can be found in any
of the many monographs available, for instance, in [11].

A membrane structure is pictorially represented by a Venn diagram (like the
one in Figure 1), and it will be represented here by a string of matching paren-
theses. For instance, the membrane structure from Figure 1 can be represented
by [1[2]2[3]3[4[5]5[6[8]8[9]9]6[7]7]4]1.

A multiset over a set X is a mapping M : X −→ N. Here we always use
multisets over finite sets X (that is, X will be an alphabet). A multiset with a
finite support can be represented by a string over X ; the number of occurrences
of a symbol a ∈ X in a string x ∈ X∗ represents the multiplicity of a in the
multiset represented by x. Clearly, all permutations of a string represent the
same multiset, and the empty multiset is represented by the empty string, λ.

We start from the biological observation that there are many cases where
two chemicals pass at the same time through a membrane, with the help of each
other, either in the same direction, or in opposite directions; in the first case we
say that we have a symport, in the second case we have an antiport (we refer to
[1] for details).

Mathematically, we can capture the idea of symport by considering rules of
the form (ab, in) and (ab, out) associated with a membrane, and stating that the
objects a, b can enter, respectively, exit the membrane together. For antiport we
consider rules of the form (a, out; b, in), stating that a exits and at the same time
b enters the membrane. Generalizing such kinds of rules, we can consider rules of
the unrestricted forms (x, in), (x, out) (generalized symport) and (x, out; y, in)
(generalized antiport), where x, y are non-empty strings representing multisets
of objects, without any restriction on the length of these strings.

Based on rules of this types, in [7] one introduces P systems with sym-
port/antiport as constructs

Π = (V, μ, w1, . . . , wm, E,R1, . . . , Rm, io),

258 Lila Kari, Carlos Mart́ın-Vide, and Andrei Păun

where:

– V is an alphabet (its elements are called objects);
– μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) injectively labeled with 1, 2, . . . ,m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over V representing multisets of objects associated
with the regions 1, 2, . . . ,m of μ, present in the system at the beginning of
a computation;

– E ⊆ V is the set of objects which are supposed to continuously appear in
the environment in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . ,m of μ;

– io is the label of an elementary membrane of μ (the output membrane).

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the
rule. The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}.

The rules from a set Ri are used with respect to membrane i as explained
above. In the case of (x, in), the multiset of objects x enters the region defined
by the membrane, from the surrounding region, which is the environment when
the rule is associated with the skin membrane. In the case of (x, out), the ob-
jects specified by x are sent out of membrane i, into the surrounding region;
in the case of the skin membrane, this is the environment. The use of a rule
(x, out; y, in) means expelling the objects specified by x from membrane i at the
same time with bringing the objects specified by y into membrane i. The objects
from E (in the environment) are supposed to appear in arbitrarily many copies;
since we only move objects from a membrane to another membrane and do not
create new objects in the system, we need a supply of objects in order to com-
pute with arbitrarily large multisets. The rules are used in the non-deterministic
maximally parallel manner specific to P systems with symbol objects: in each
step, a maximal number of rules is used (all objects which can change the region
should do it).

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in
the m regions of the system, as well as the multiset of objects from V −E which
were sent out of the system during the computation; it is important to keep
track of such objects because they appear only in a finite number of copies in
the initial configuration and can enter the system again. On the other hand, it is
not necessary to take care of the objects from E which leave the system because
they appear in arbitrarily many copies in the environment as defined before (the
environment is supposed to be inexhaustible, irrespective how many copies of
an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is (w1, . . . , wm, λ). A sequence of
transitions is called a computation.

With any halting computation, we may associate an output represented by
the number of objects from V present in membrane io in the halting configu-
ration. The set of all such numbers computed by Π is denoted by N(Π). The

On the Universality of P Systems with Minimal Symport/Antiport Rules 259

family of all sets N(Π) computed by systems Π of degree at most m ≥ 1, using
symport rules of weight at most p and antiport rules of weight at most q, is
denoted by NOPm(symp, antiq) (we use here the notations from [9]).

Details about P systems with symport/antiport rules can be found in [9];
a complete formalization of the syntax and the semantics of these systems is
provided in [10].

We recall from [3], [4] the best known results dealing with the power of P
systems with symport/antiport.

Theorem 1. NRE = NOPm(symr, antit), for (m, r, t) ∈ {(1, 1, 2), (3, 2, 0),
(2, 3, 0)}.

The optimality of these results is not known. In particular, it is an open
problem whether or not also the families NOPm(symr, antit) with (m, r, t) ∈
{(2, 2, 0), (2, 2, 1)} are equal to NRE.

Note that we do not have here a universality result for systems of type
(m, 1, 1). Recently, such a surprising result was proved in [2]:

Theorem 2. NRE = NOP9(sym1, anti1).

Thus, at the price of using nine membranes, uniport rules together with
antiport rules as common in biology (one chemical exits in exchange with other
chemical) suffice for obtaining the Turing computational level. The question
whether or not the number of membranes can be decreased was formulated as
an open problem in [2].

4 Universality with Six Membranes

We (partially) solve the problem from [2], by improving the result from Theorem
2: the number of membranes can be decreased to six – but we do not know
whether this is an optimal bound or not.

Theorem 3. NRE = NOP6(sym1, anti1).

Proof. Let us consider a counter automaton M = (Q,F, p0, C, cout, S) as speci-
fied in Section 2. We construct the symport/antiport P system

Π = (V, μ, w1, w2, w3, w4, w5, w6, E,R1, R2, R3, R4, R5, R6, io),

where:

V = Q ∪ {cq | c ∈ C, q ∈ Q, and (p → q,+c) ∈ S}
∪ {c′q, dc,q | c ∈ C, q ∈ Q, and (p → q,−c) ∈ S}
∪ {c′′q , d′c,q | c ∈ C, q ∈ Q, and (p→ q, c = 0) ∈ S}
∪ {a1, a2, a3, a4, b1, b2, i1, i2, i3, i4, i5, h, h′, h′′, n1, n2, n3, n4,#1,#3},

μ = [1[2 [3[4]4]3 [5[6]6]5]2]1,

260 Lila Kari, Carlos Mart́ın-Vide, and Andrei Păun

w1 = b1b2#3,

w2 = a1i1i2i4i5n1n2n3n4h
′′#1,

w3 = a2a3i3,

w4 = a4#3,

w5 = h′,
w6 = λ,

E = V − {#1, b1},
io = 6,
Ri = R′

i ∪R′′
i ∪R′′′

i , where 1 ≤ i ≤ 6.

Each computation in M will be simulated by Π in three main phases; the first
phase will use rules from R′

i, 1 ≤ i ≤ 6, R′′
i contains the rules for the second

phase, and R′′′
i are the rules used for the third phase. These phases perform the

following operations: (1) preparing the system for the simulation, (2) the actual
simulation of the counter automaton, and (3) terminating the computation and
moving the relevant objects into the output membrane.

We give now the rules from the sets R′
i, R

′′
i , R′′′

i for each membrane together
with explanations about their use in the simulation of the counter automaton.

Phase 1 performs the following operations: we bring in membrane 2 an arbi-
trary number of objects q ∈ Q that represent the states of the automaton, then
we also bring in membrane 4 an arbitrary number of objects dc,q and d′c,q that
will be used in the simulation phase for simulating the rules (p → q,−c) and
(p→ q, c = 0), respectively. The rules used in this phase are as follows:

R′
1 = {(b1, out;X, in) | X ∈ Q ∪ {dc,p, d

′
c,p | c ∈ C, p ∈ Q}} ∪ {(b1, in)},

R′
2 = {(b2, out;X, in) | X ∈ Q ∪ {dc,p, d

′
c,p | c ∈ C, p ∈ Q}} ∪ {(b2, in)}

∪ {(a1, out; b1, in), (b2, out; #3, in), (a2, out; a1, in), (a2, out; #3, in)},
R′

3 = {(a3, out; d, in) | d ∈ {dc,p, d
′
c,p | c ∈ C, p ∈ Q}} ∪ {(a3, in)}

∪ {(a2, out; b2, in), (a4, out, b1, in), (#3, in), (#3, out)},
R′

4 = {(a4, out; d, in) | d ∈ {dc,p, d
′
c,p | c ∈ C, p ∈ Q}} ∪ {(a4, in)}

∪ {(a4, out; b2, in), (b2, out; a3, in)},
R′

5 = {(h′, out;h′′, in), (h′′, out, h′, in)},
R′

6 = ∅.
The special symbol b1 brings from the environment the objects q, dc,q, d′c,q

by means of the rules (b1, out;X, in), and at the same time the symbol b2 enters
membrane 2 using the rule (b2, in). At the next step b1 comes back in the system,
while b2 moves the object that was introduced in membrane 1 in the previous
step, q, dc,q, or d′c,q into membrane 2 by means of the rules (b2, out;X, in). We
can iterate these steps since we reach a configuration similar with the original
configuration.

If the objects moved from the environment into membrane 2 are versions
of d, then those objects are immediately moved into membrane 4 by the rules

On the Universality of P Systems with Minimal Symport/Antiport Rules 261

(a3, out; d, in) ∈ R′
3 and (a4, out; d, in) ∈ R′

4. One can notice that in the sim-
ulation phase these special symbols that we bring in the system in this initial
phase are used to simulate some specific rules from the counter automaton. A
difficulty appears here because there are rules that will allow such a symbol to
exit membrane 1 bringing in another such symbol (this leads to a partial simu-
lation of rules from the counter automaton). To solve this problem we make sure
that the symbols that we bring in the system do end up into one of membranes
2 or 4: if an object q, dc,q, or d′c,q exits membrane 1 (using a rule from R′′

1)
immediately after it is brought in, then b2 which is in membrane 2 now has to
use the rule (a2, out; #3, in) ∈ R′

2 and then the computation will never halt since
#3 is present in membrane 2 and will move forever between membranes 2 and 3
by means of (#3, in), (#3, out) from R′

3.
After bringing in membrane 2 an arbitrary number of symbols q and in

membrane 4 an arbitrary number of symbols dc,q, d
′
c,q we pass to the second

phase of the computation in Π , the actual simulation of rules from the counter
automaton. Before that we have to stop the “influx” of special symbols from the
environment: instead of going into environment, b1 is interchanged with a1 from
membrane 2 by means of the rule (a1, out; b1, in); at the same step b2 enters
the same membrane 2 by (b2, in). Next b2 is interchanged with a2 by using
the rule (a2, out; b2, in) ∈ R′

3, then in membrane 4 the same b2 is interchanged
with a4 by means of (a4, out; b2, in) ∈ R′

4; simultaneously, for membrane 2 we
apply (a2, out; a1, in). At the next step we use the rules (a4, out, b1, in) and
(b2, out; a3, in) from R′

4.
There are two delicate points in this process. First, if b2 instead of bring-

ing in membrane 2 the objects from environment starts the finishing pro-
cess by (a2, out; b2, in) ∈ R′

3, then at the next step the only rule possible is
(a2, out; #3, in) ∈ R′

2, since a1 is still in membrane 2, and then the computation
will never render a result. The second problem can be noticed by looking at the
rules (a4, in) and (a4, out; b1, in) associated with membranes 4 and 3, respec-
tively: if instead of applying the second rule in the finishing phase of this step,
we apply the rule of membrane 4, then the computation stops in membranes 1
through 4, but for membrane 5 we will apply the rules from R′

5 continuously.

The second phase starts by introducing the start state of M in membrane
1, then we simulate all the rules from the counter automaton; to do this we use
the following rules:

R′′
1 = {(a4, out; p0, in), (#1, out), (#1, in)} ∪ {(p, out; cq, in), (p, out; c′q, in),

(dc,q, out; q, in), (p, out; c′′q , in), (d′c,q, out; q, in) | p, q ∈ Q, c ∈ C},
R′′

2 = {(q, out; cq, in), (#1, out; cq, in), (n1, out; c′q, in), (dc,q, out;n4, in),
(i1, out; c′′q , in), (dc,q, out; #3, in), (d′c,q, out; i5, in), (d′c,q, out; #3, in) |
q ∈ Q, c ∈ C}

∪ {(a4, out), (n2, out;n1, in), (n3, out;n2, in), (n4, out;n3, in),
(#1, out;n4, in), (i2, out; i1, in), (i3, out; i2, in), (i4, out; i3, in),
(i5, out; i4, in)},

262 Lila Kari, Carlos Mart́ın-Vide, and Andrei Păun

R′′
3 = {(c′q, in), (dc,q, out; cα, in), (i3, out; c′′q , in), (d′c,q, out; cα, in),

(d′c,q, out; i3, in) | q, α ∈ Q, c ∈ C},
R′′

4 = {(dc,q, out; c′q, in), (#3, out; c′q, in), (d′c,q, out; c′′q , in), (#3, out; c′′q , in) |
q ∈ Q, c ∈ C},

R′′
5 = ∅,

R′′
6 = ∅.

We explain now the usage of these rules: we bring in the system the start
state p0 by using the rules (a4, out) ∈ R′′

2 and then (a4, out; p0, in) ∈ R′′
1 ; a4

should be in membrane 2 at the end of the step 1 if everything went well in the
first phase.

We are now ready to simulate the transitions of the counter automaton.
The simulation of an instruction (p → q,+c) is done as follows. First p is

exchanged with cq by (p, out; cq, in) ∈ R′′
1 , and then at the next step q is pushed

in membrane 1 while cq enters membrane 2 by means of the rule (q, out; cq, in) ∈
R′′

2 . If there are no more copies of q in membrane 2, then we have to use the rule
(#1, out; cq, in) ∈ R′′

2 , which kills the computation. It is clear that the simulation
is correct and can be iterated since we have again a state in membrane 1.

The simulation of an instruction (p → q,−c) is performed in the fol-
lowing manner. The state p is exchanged in this case with c′q by the rule
(p, out; c′q, in) ∈ R′′

1 . The object c′q is responsible of decreasing the counter c
and then moving the automaton into state q. To do this c′q will go through the
membrane structure up to membrane 4 by using the rules (n1, out; c′q, in) ∈ R′′

2 ,
(c′q, in) ∈ R′′

3 , and (da,q, out; c′q, in) ∈ R′′
4 . When entering membrane 2, it starts a

“timer” in membrane 1 and when entering membrane 4 it brings out the symbol
dc,q which will perform the actual decrementing of the counter c.

The next step of the computation involves membrane 3, by means of the rule
(dc,q, out; cα, in) ∈ R′′

3 , which is effectively decreasing the content of counter
c. If no more copies of cα are present in membrane 2, then dc,q will sit in
membrane 3 until the object n, the timer, reaches the subscript 4 and then
#3 is brought in killing the computation, by means of the following rules from
R′′

2 : (n2, out;n1, in), (n3, out;n2, in), (n4, out;n3, in), (#1, out;n4, in). If there is
at least one copy of cα in membrane 2, then we can apply (dc,q, out;n4, in) ∈ R′′

2

and then we finish the simulation by bringing q in membrane 1 by means of
(dc,q, out; q, in) ∈ R′′

1 . If dc,q was not present in membrane 4, then #3 will be
released from membrane 4 by (#3, out; c′q, in) ∈ R′′

4 . It is clear that also these
instructions are correctly simulated by our system, and also the process can be
iterated.

It remains to discuss the case of rules (p → q, c = 0) from the counter
automaton. The state p is replaced by c′′q by (p, out; c′′q , in) ∈ R′′

1 , then this
symbol will start to increment the subscripts of i when entering membrane 2:
(i1, out; c′′q , in) ∈ R′′

2 , at the next step the subscript of i is incremented in mem-
brane 1 and also i3 is pushed in membrane 2 by means of (i3, out; c′′q , in) ∈ R′′

3 .
At the next step the special marker d′c,q is brought out of membrane 4 by

On the Universality of P Systems with Minimal Symport/Antiport Rules 263

means (d′c,q, out; c′′q , in) ∈ R′′
4 and the subscript of i is still incremented by

(i3, out; i2, in) ∈ R′′
2 . Now d′c,q performs the checking for the counter c (whether

it is zero or not): if there is at least one cα present, then d′c,q will enter mem-
brane 2, and at the next step will bring #3 from membrane 1 since the subscript
of i did not reach position 5; on the other hand, if there are no copies of c in
membrane 2, then d′c,q will sit unused in membrane 3 for one step until i3 is
brought from membrane 1 by (i4, out; i3, in) ∈ R′′

2 , then we apply the follow-
ing rules: (i5, out; i4, in) ∈ R′′

2 and (d′c,q, out; i3, in) ∈ R′′
3 . Next we can apply

(d′c,q, out; i5, in) ∈ R′′
2 and then in membrane 1 we finish the simulation by us-

ing (d′c,q, out; q, in) ∈ R′′
1 . One can notice that all the symbols are in the same

place as they were in the beginning of this simulation (i3 is back in membrane
3, i1, i2, i4, i5 are in membrane 2, etc.), the only symbols moved are one copy of
d′c,q which is now in the environment and c′′q which is in membrane 4. It is clear
that we can iterate the process described above for all the types of rules in the
counter automaton, so we correctly simulate the automaton.

The third phase, the finishing one, will stop the simulation and move the
relevant objects into the output membrane. Specifically, when we reach a state
p ∈ F we can use the following rules:

R′′′
1 = {(p, out;h, in) | p ∈ F},

R′′′
2 = {(h, in)},

R′′′
3 = ∅,

R′′′
4 = ∅,

R′′′
5 = {(h′, out;h, in), (h′′, out;h, in), (h, in)}
∪ {(h, out; coutα, in) | α ∈ Q},

R′′′
6 = {(coutα, in) | α ∈ Q}.

We first use (p, out;h, in) ∈ R′′′
1 , then h enters membrane 2 by (h, in) and at

the next step h stops the oscillation of h′ and h′′ by putting them together in
membrane 2 by means of (h′, out;h, in) ∈ R′′′

5 or (h′′, out;h, in) ∈ R′′′
5 . After this

h begins moving the content of output counter cout into membrane 5 by using
(h, out; cα, in) ∈ R′′′

5 . When the last cα enters membrane 6 by using (cα, in) ∈ R′′′
6

the system will be in a halting state only if a correct simulation was done in
phases one and two, so the counter automaton was correctly simulated. This
completes the proof.

5 Final Remarks

One can notice that membrane 6 was used only to collect the output. The same
system without membrane 6 will simulate in the same way the counter automa-
ton, but, when reaching the halt state will also contain the symbol h in the
output membrane 5. This suggests that it could be possible to use a similar
construct to improve the result from Theorem 3 to a result of the form:

Conjecture: NOP5(sym1, anti1) = RE.

264 Lila Kari, Carlos Mart́ın-Vide, and Andrei Păun

Obviously, P systems with minimal symport/antiport rules and using only
one membrane can compute at most finite sets of numbers, at most as large
as the number of objects present in the system in the initial configuration: the
antiport rules do not increase the number of objects present in the system, the
same with the symport rules of the form (a, out), while a symport rule of the
form (a, in) should have a ∈ V − E (otherwise the computation never stops,
because the environment is inexhaustible).

The family NOP2(sym1, anti1) contains infinite sets of numbers. Consider,
for instance, the system

Π = ({a, b}, [1[2]2]1, a, λ, {b}, R1, R2, 2),
R1 = {(a, out; b, in), (a, in)},
R2 = {(a, in), (b, in)}.

After bringing an arbitrary number of copies of b from the environment, the
object a gets “hidden” in membrane 2, the output one.

An estimation of the size of families NOPm(sym1, anti1) for m = 2, 3, 4, 5
remains to be found.

The P systems with symport and antiport rules are interesting from several
points of view: they have a precise biological inspiration, are mathematically
elegant, the computation is done only by communication, by moving objects
through membranes (hence the conservation law is observed), they are compu-
tationally complete. Thus, they deserve further investigations, including from
the points of view mentioned above.

References

1. B. Alberts, Essential Cell Biology. An Introduction to the Molecular Biology of the
Cell, Garland Publ. Inc., New York, London, 1998.

2. F. Bernardini, M. Gheorghe, On the Power of Minimal Symport/Antiport, Work-
shop on Membrane Computing, Tarragona, 2003.

3. R. Freund, A. Păun, Membrane Systems with Symport/Antiport: Universality Re-
sults, in Membrane Computing. Intern. Workshop WMC-CdeA2002, Revised Pa-
pers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in
Computer Science, 2597, Springer-Verlag, Berlin, 2003, 270–287.

4. P. Frisco, J.H. Hogeboom, Simulating Counter Automata by P Systems with Sym-
port/Antiport, in Membrane Computing. Intern. Workshop WMC-CdeA2002, Re-
vised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture
Notes in Computer Science, 2597, Springer-Verlag, Berlin, 2003, 288–301.

5. J. Hopcroft, J. Ulmann, Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, 1979.

6. C. Mart́ın-Vide, A. Păun, Gh. Păun, On the Power of P Systems with Symport
and Antiport Rules, J. of Universal Computer Sci., 8, 2 (2002) 317–331.

7. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-
port/Antiport, New Generation Computing, 20, 3 (2002) 295–306.

8. Gh. Păun, Computing with Membranes, J. of Computer and System Sciences, 61,
1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No 208,
1998 (www.tucs.fi).

On the Universality of P Systems with Minimal Symport/Antiport Rules 265

9. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
10. Gh. Păun, M. Perez-Jimenez, F. Sancho-Caparrini, On the Reachability Problem

for P Systems with Symport/Antiport, Proc. Automata and Formal Languages
Conf., Debrecen, Hungary, 2002.

11. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

An Algorithm for Testing Structure Freeness of

Biomolecular Sequences

Satoshi Kobayashi1, Takashi Yokomori2, and Yasubumi Sakakibara3

1 Dept. of Computer Science, Univ. of Electro-Communications
Yokohama, Japan

satoshi@cs.uec.ac.jp
2 Dept. of Mathematics, School of Education

Waseda University, Tokyo, Japan
CREST, JST (Japan Science and Technology Corporation)

yokomori@waseda.jp
3 Dept. of Biosciences and Informatics, Keio University, Chofu, Japan

CREST, JST (Japan Science and Technology Corporation)
yasu@bio.keio.ac.jp

Abstract. We are concerned with a problem of checking the structure
freeness of S+ for a given set S of DNA sequences. It is still open whether
or not there exists an efficient algorithm for this problem. In this paper,
we will give an efficient algorithm to check the structure freeness of S+

under the constraint that every sequence may form only linear secondary
structures, which partially solves the open problem.

1 Introduction

In the Adleman’s pioneering work on the biomolecular experimental solution to
the directed Hamiltonian path problem ([1]) and in many other works involving
wet lab experiments performed afterward, it has been recognized to be very
important how to encode information on DNA sequences, in order to guarantee
the reliability of those encoded DNA sequences to avoid mishybridization. The
problem of finding a good set of DNA sequences to use for computing is called
the DNA sequence design problem. In spite of the importance of this problem,
it seems that only rather recently research efforts have been paid to develop
systematic methods for solving this problem. An excellent survey on this topic
of DNA sequence design issues can be found in [6].

Being currently engaged in a research activity called molecular programming
project in Japan, we are aiming as a final goal at establishing a systematic
methodology for embodying desired molecular solutions within the molecular
programming paradigm in which designing not only DNA sequences but also
molecular reaction sequences of molecular machines are targeted as major goals
([12]). Here, by designing DNA sequences we mean a broader goal than the one
mentioned above, e.g., the DNA sequence design may generally deal with the
inverse folding problem, too, the problem of designing sequences so as to fold
themselves into intended structural molecules.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 266–277, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 267

Taking a backward glance at the research area of DNA sequence design,
there are already several works that employ some variants of Hamming distance
between sequences and propose methods to minimize the similarity between
sequences based on that measure ([8], [11]). Recently, Arita proposed a new
design technique, called template method ([3]), which enables us to obtain a very
large pool of sequences with uniform rate of the GC content such that any pair of
the sequences is guaranteed to have a fairly large amount of mismatched distance
(in the presence of the shift operation). The success of the template method
is due to the use of sophisticated theory of error correcting codes. However,
design methods based on the variants of Hamming distance do not take into
consideration the possibility of forming secondary structures such as internal or
bulge loops. Therefore, it would be very useful if we could devise a method for
extracting a structure free subset from a given set of sequences, where structure
freeness of the sequence set is defined as the property that the sequences in
that set does not form stable secondary structures. (The notion of structure
freeness will be defined precisely in Section 2.3.) In order to solve this extraction
problem, it is of a crucial importance to devise an efficient algorithm to test
the structure freeness of a given set of sequences. This motivated us to focus on
this structure freeness test problem in this paper. There are in fact some works
that took up for investigation the structure formation in the context of sequence
design problem ([10], [15], [16]). An essential principle (or feature) commonly
used in these papers involves the statistical thermodynamic theory of the DNA
molecules to compute a hybridization error rate.

The present paper focuses on giving a necessary and sufficient condition to
guarantee the global structure freeness of the whole set of sequences. More for-
mally, we have interests in the structure freeness of S+, where S is the set of
sequences to be designed, and S+ is the set of sequences obtained by concate-
nating the elements of S finitely many times. Concerning the structure freeness
of S+, Andronescu et al. proposed a method for testing whether Sm is structure-
free or not, where m is a positive integer or + ([2]). They gave a polynomial time
algorithm for the case that m is a positive integer, but the proposed algorithm
for the case of m = + runs in exponential time. This leaves it open whether
or not there exists an efficient algorithm for testing the structure freeness of
S+. In this paper, based on the idea of reducing the test problem to a classical
shortest-path problem on a directed graph, we present an efficient algorithm for
testing the structure freeness of S+ with the condition that every sequence in
S+ may form only linear secondary structures, which partially solves the open
problem posed in [2].

2 Preliminaries

Let Σ be an alphabet {A,C,G,T} or {A,C,G,U}. A letter in Σ is also called a
base in this paper. Furthermore, a string is regarded as a base sequence ordered
from 5′-end to 3′-end direction. Consider a string α over Σ. By |α| we denote
the length of α. On the other hand, for a set X , by |X | we denote the cardinality

268 Satoshi Kobayashi, Takashi Yokomori, and Yasubumi Sakakibara

of the set X . For integers i, j such that 1 ≤ i ≤ j ≤ |α|, by α[i, j] we denote
the substring of α starting from the ith letter and ending at the jth letter of α.
In case of i = j, we simply write α[i]. In case of i > j, α[i, j] represents a null
string.

2.1 Secondary Structure

We will mainly follow the terminologies and notations used in [17]. Let us in-
troduce the Watson-Crick complementarity function θ : Σ → Σ defined by
θ(A) = T, θ(T) = A, θ(C) = G, and θ(G) = C 4. A hydrogen bond between the
ith base and jth base of α is denoted by (i, j), and called a base pair. A hydrogen
bond (i, j) can be formed only if θ(α[i]) = α[j]. Without loss of generality, we
may always assume that i < j for a base pair (i, j). A secondary structure of
α is a finite set of such base pairs of α. A string α together with its secondary
structure T is called a structured string, and written α(T). For representing the
ith base in α(T), we often use the integer i.

For three bases i, j, and r in α(T), we say that i and j surround r if i < r < j.
In case of (i, j) ∈ T , we can also say that the base pair (i, j) surrounds r.
For two base pairs (i, j) and (p, q), we say that (i, j) surrounds (p, q), written
(p, q) < (i, j) or (i, j) > (p, q), if (i, j) surrounds both p and q. In this paper, we
consider only secondary structures which do not contain pseudo-knots, multiple
loops, or parallel concatenation of hairpin structures. More formally, we consider
only secondary structures T such that the base pairs of T can be linearly ordered
with respect to the relation <. Such secondary structures are said to be linear.
In the sequel, we will assume that every secondary structure is linear.

A base pair (p, q) or an unpaired base r is said to be accessible from a base
pair (i, j), if it is surrounded by (i, j) and is not surrounded by any base pair
(k, l) such that (k, l) < (i, j).

For each pair bp = (i, j) ∈ T , we define a cycle c(bp) as a substructure
consisting of the pair (i, j) together with any pairs (p1, q1), (p2, q2), ... accessible
from (i, j) and any unpaired bases accessible from (i, j). If c(bp) contains k pairs
(including the pair (i, j)), it is called a k-cycle or a cycle of order k. Since we
consider only linear secondary structures, every cycle contained in α(T) is either
a 1-cycle or a 2-cycle.

A cycle of order k defined by (i, j) is classified as follows: (See also Figure 1.)

1. In case of k = 1, it is called a hairpin.
2. In case that k = 2 and the accessible pair is (i+1, j−1), it is called a stacked

pair.
3. In case that k = 2 and the accessible pair is either (i + 1, p) or (p, j − 1) for

some i < p < j, it is called a bulge loop.
4. In case that k = 2 but any condition above is not satisfied, it is called an

internal loop.

4 For the case of RNA strings, replace the letter T by U.

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 269

The loop length of a hairpin c with a base pair (i, j) is defined as the number
of unpaired bases j − i− 1. The loop length of a bulge loop or an internal loop
with base pairs (i, j) and (p, q) ((p, q) < (i, j)) is also defined as the number of
unpaired bases p − i + j − q − 2. The loop length mismatch of an internal loop
with base pairs (i, j) and (p, q) ((p, q) < (i, j)) is defined as |(p− i)− (j − q)|.

Let (i, j) be the element in T such that for any (p, q) ∈ T with (p, q) �= (i, j),
(p, q) < (i, j) holds. Since T is linear, such an element is determined uniquely.
Then, the substructure of α(T) consisting of the pair (i, j) and unpaired bases
which are not surrounded by (i, j) is called a free end structure of α(T).

By |α) we denote a hairpin consisting of a sequence α with a base pair

between α[1] and α[|α|]. By
|−→α|
|β←−|

we denote a 2-cycle consisting of two sequences

α and β with base pairs between α[1] and β[|β|] and between α[|α|] and β[1].

By
−→α|
β←−|

we denote a free end structure consisting of two sequences α and β with

a base pair between α[|α|] and β[1].

2.2 Free Energy Calculation

Free energy value is assigned to each cycle or free end structure. Experimental
evidence is used to determine such free energy values. The method for assigning
free energy values is given as follows 5: (See Figure 1.)

1. The free energy E(c) of a hairpin c with a base pair (i, j) is dependent on
the base pair (i, j), the bases i+1, j−1 adjacent to (i, j), and its loop length
l:

E(c) = h1(α[i], α[j], α[i + 1], α[j − 1]) + h2(l),

where h1, h2 are experimentally obtained functions. The function h2 is posi-
tive and there exists a constant L such that for the range l > L, h2 is weakly
monotonically increasing.

2. The free energy E(c) of a stacked pair c with base pairs (i, j) and (i+1, j−1)
is dependent on the base pairs (i, j), (i + 1, j − 1):

E(c) = s1(α[i], α[j], α[i + 1], α[j − 1]),

where s1 is an experimentally obtained function.
3. The free energy E(c) of a bulge loop c with base pairs (i, j) and (p, q) ((p, q) <

(i, j)) is dependent on the base pairs (i, j), (p, q), and its loop length l:

E(c) = b1(α[i], α[j], α[p], α[q]) + b2(l),

where b1, b2 are experimentally obtained functions. The function b2 is posi-
tive and weakly monotonically increasing.

5 The calculation method presented here is in a general form so that it can be special-
ized to be equivalent to the one used in standard RNA packages such as ViennaRNA
([13]), mfold ([18]), etc.

270 Satoshi Kobayashi, Takashi Yokomori, and Yasubumi Sakakibara

4. The free energy E(c) of an internal loop c with base pairs (i, j) and (p, q)
((p, q) < (i, j)) is dependent on the base pairs (i, j), (p, q), the bases i+1, j−1
adjacent to (i, j), the bases p− 1, q + 1 adjacent to (p, q), its loop length l,
and its loop length mismatch d:

E(c) = e1(α[i], α[j], α[p], α[q], α[i+1], α[j−1], α[p−1], α[q+1])+e2(l)+e3(d),

where e1, e2, e3 are experimentally obtained functions. The functions e2, e3

are positive and weakly monotonically increasing.
5. The free energy E(c) of a free end structure c with a base pair (i, j) is

dependent on the base pair (i, j) and the bases i− 1, j + 1 adjacent to (i, j):

E(c) = d1(α[i], α[j], α[i− 1], α[j + 1]),

where d1 is an experimentally obtained function.

We assume that all functions h1, h2, s1, b1, b2, e1, e2, e3, d1 are computable in
constant time.

Let c1, ..., ck be the cycles contained in α(T), and c0 be a free end structure
of α(T). Then, the free energy E(α(T)) of α(T) is given by:

E(α(T)) = Σk
i=0E(ci).

There exist efficient algorithms for prediction of secondary structures ([17],
[18]), which is due to the fact that the free energy of a structured string is defined
as the sum of free energies of cycles and free end structures contained in it. This
fact also plays important roles in constructing the proposed algorithm in this
paper. Furthermore, the property of energy functions that h2, b2, e2, and e3 are
weakly monotonically increasing is important for the correctness of the proposed
algorithm. In particular, this property plays an important role in Theorem 1.

2.3 Structure Freeness Test Problem

In this paper, we will consider the problem of testing whether a given finite set
of strings of the same length n is structure free or not. The problem is formally
stated as follows:

Input: A finite set S of strings of the same length n
Output: Answer “yes” if for any structured string α(T) such that α ∈ S+

and T is linear, E(α(T)) ≥ 0 holds, otherwise, answer “no”.

We will give an efficient algorithm for solving this problem.

3 Configuration of Structured Strings

Let S be a finite set of strings of length n over Σ. Let α(T) be a structured
string such that α ∈ S+. Let us consider a base pair (i, j) ∈ T of α(T). Let

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 271

ii + 1
· · ·•=⇒•=⇒• · · ·•

| ⇓
· · ·•⇐=•⇐=• · · ·•

jj − 1

(a) Hairpin

1 i − 1i
•=⇒· · · =⇒•=⇒•· · ·

|
•⇐=· · · ⇐=•⇐=•· · ·
N j + 1j

(b) Free End

ii + 1 p − 1p
· · ·•=⇒•=⇒• · · ·•=⇒•=⇒• · · ·

| |
· · ·•⇐=•⇐=• · · ·•⇐=•⇐=• · · ·

jj − 1 q + 1q

(c) Internal Loop
(Bulge Loop in case of i + 1 = p or j = q + 1)

(Stacked Pair in case of i + 1 = p and j = q + 1)

Fig. 1. Basic Secondary Structures

β, γ ∈ S. Then, (i, j) is said to have configuration (β, k, γ, l) in α(T) if the ith
and jth bases of α correspond to the kth base of the segment β and the lth base
of the segment γ, respectively. More formally, (i, j) is said to have configuration
(β, k, γ, l) in α(T) if there exist x, y, z, w ∈ S∗ such that α = xβy = zγw,
|x| < i = |x| + k ≤ |xβ| and |z| < j = |z|+ l ≤ |zγ|. For a base pair bp in α(T),
by cf(bp) we denote the configuration of bp. For a configuration (β, k, γ, l), we
prefer to use the following representation:⎛⎝−→β (k)

·
γ←− (l)

⎞⎠
that is graphically more appealing to the reader.

The configuration cf(α(T)) of α(T), where T = {bp1, ..., bpm} and bp1 >
· · · > bpm, is defined as a sequence cf(bp1), ..., cf(bpm). For two structured
strings α1(T1) and α2(T2), we write α1(T1) ≡ α2(T2) if cf(α1(T1)) = cf(α2(T2)).

A structured string α(T) is said to be E-minimal if for any α′(T ′) such
that α(T) ≡ α′(T ′), E(α(T)) ≤ E(α′(T ′)) holds. The existence of such an E-
minimal structured string is not clear at this point. But, we can show that for
any configuration C, there always exists an E-minimal structured string α(T)
such that cf(α(T)) = C, which will be implicitly proved in the proof of (2)→(1)
in Theorem 2.

A 2-cycle c with base pairs bp1, bp2 (bp2 < bp1) in α(T) is said to have
boundary configuration (v1, v2) if cf(bpi) = vi (i = 1, 2). A 1-cycle or a free end
structure c with a base pair bp in α(T) is said to have the boundary configuration
v if cf(bp) = v.

272 Satoshi Kobayashi, Takashi Yokomori, and Yasubumi Sakakibara

4 Minimum Free Energy Under Boundary
Constraints

Let S be a finite set of strings of length n over Σ and consider the configurations,

v1 =

⎛⎝−→α (i)
·

β←− (j)

⎞⎠ and v2 =

(−→γ (k)
·

δ←− (l)

)
,

where α, β, γ, δ ∈ S. We define minI(v1, v2) as the minimum free energy of 2-
cycles among all 2-cycles with the boundary configuration (v1, v2) in a structured
string x(T) with x ranging over S+. By minH(v1) we denote the minimum free
energy of 1-cycles among all 1-cycles with the boundary configuration v1 in
a structured string x(T) with x ranging over S+. The notation minD(v1) is
defined to be the minimum free energy of free end structures among all free end
structures with the boundary configuration v1 in a structured string x(T) with
x ranging over S+.

For a string α ∈ S and an integer i with 1 ≤ i ≤ n, we introduce the notation
α:i which indicates the ith position of the string α.

Then, for a set S, we define:

V (S) = {α:i | α ∈ S, 1 ≤ i ≤ n }.
Consider two elements α:i, β:j in V (S).

(1) In case that either α �= β or i �< j holds, we define:

W (α:i, β:j) = {α[i, n]γβ[1, j] | γ ∈ S∗ }.

(2) In case that α = β and i < j hold, we define:

W (α:i, β:j) = {α[i, n]γβ[1, j] | γ ∈ S∗ } ∪ {α[i, j] }.

Theorem 1. For configurations,

v1 =

⎛⎝−→α (i)
·

β←− (j)

⎞⎠ and v2 =

(−→γ (k)
·

δ←− (l)

)
with θ(α[i]) = β[j], θ(γ[k]) = δ[l],

where α, β, γ, δ ∈ S, the following equations hold:

(1) minH(v1) = min {E(|x)) | x ∈W (α:i, β:j) },
(2) minI(v1, v2) = min {E(

|−→x|
|y←−|

) | x ∈ W (α:i, γ:k), y ∈W (δ:l, β:j) },

(3) minD(v1) = min {E(
−−−−→
xα[1, i]|
β[j, n]y←−−−−|

) | x, y ∈ S∗ }.

Furthermore, minH(v1), minI(v1, v2), and minD(v1) are computable in O(|S|)
time.

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 273

Proof. (1) The set of hairpins |x) such that x ∈ W (α : i, β : j) corresponds to
the set of all hairpins which could have the boundary configuration v1. However,
since there exist infinitely many such x’s, it is not clear whether the minimum
of E(|x)) exists or not.

Recall that n is the length of each string in S and L is the constant in-
troduced in Section 2.2. Let x ∈ W (α : i, β : j) such that |x| > L + 5n. Since
|x| > 5n, we can write x = α[i, n]α′γβ′β[1, j] for some α′, β′ ∈ S+ and γ ∈ S.
Then, we have that x′ = α[i, n]α′β′β[1, j] is also in W (α : i, β : j) and that
|x| > |x′| > L. Since the values of h1 for |x) and |x′) are equal to each other
and h2(|x|) ≥ h2(|x′|) holds (recall that h2 is weakly monotonically increasing),
we have E(|x′)) ≤ E(|x)). Therefore, we can conclude that E(|x)) takes the
minimum value for some x ∈ W (α:i, β:j) with |x| ≤ L+5n. Thus, the first equa-
tion holds. Note that the value of E(|x)) depends only on the loop length and
the four bases x[1], x[2], x[|x| − 1], x[|x|]. Since, for each loop length, all possible
combinations of those four bases can be computed in O(|S|) time, minH(v1) can
also be computed in O(|S|) time.

(2) The set of 2-cycles
|−→x|
|y←−|

such that x ∈ W (α : i, γ : k) and y ∈ W (δ : l, β : j)

corresponds to the set of all 2-cycles which could have boundary configuration
(v1, v2). However, since there exist infinitely many such x’s and y’s, it is not

clear whether the minimum of E(
|−→x|
|y←−|

) exists or not.

Let x ∈ W (α : i, γ :k) and y ∈ W (δ : l, β : j). Suppose that |x| > 6n. Since
|x| > 6n, we can write x = α[i, n]α′ηγ′γ[1, k] for some α′, γ′ ∈ S+ and η ∈ S.
Then, we have that x′ = α[i, n]α′γ′γ[1, j] is also in W (α:i, γ :k) and that |x| >
|x′| > 5n. If |y| ≤ 5n, set y′ = y. Otherwise, we can write y = δ[l, n]δ′ρβ′β[1, j]
for some δ′, β′ ∈ S+ and ρ ∈ S, and set y′ = δ[l, n]δ′β′β[1, j]. Then, we have

y′ ∈ W (δ : l, β :j). Note that the loop length of
|−→x|
|y←−|

is greater than that of |
−→
x′|
|y′
←−|

.

Further, note that the loop length mismatch of
|−→x|
|y←−|

is greater than or equal

to that of |
−→
x′|
|y′
←−|

. Since the values of s1, b1 and e1 for
|−→x|
|y←−|

are equal to those for

|−→x′|
|y′
←−|

, respectively, we have E(|
−→
x′|
|y′
←−|

) ≤ E(
|−→x|
|y←−|

) (recall that b2, e2 and e3 are weakly

monotonically increasing).

In case that |y| > 6n, in a similar manner, we can show the existence of

x′ ∈W (α:i, γ:k) and y′ ∈ W (δ:l, β:j) such that E(|
−→
x′|
|y′
←−|

) ≤ E(
|−→x|
|y←−|

).

Therefore, we can conclude that E(
|−→x|
|y←−|

) takes the minimum value for some

x ∈ W (α : i, γ : k) and y ∈ W (δ : l, β : j) such that |x| ≤ 6n and |y| ≤ 6n.

274 Satoshi Kobayashi, Takashi Yokomori, and Yasubumi Sakakibara

Thus, the second equation holds. Note that the value of E(
|−→x|
|y←−|

) depends only on

the loop length, the loop length mismatch, and the eight bases x[1], x[2], x[|x| −
1], x[|x|], y[1], y[2], y[|y| − 1], y[|y|]. Since, for each loop length and loop length
mismatch, all possible combinations of those eight bases can be computed in
O(|S|) time, minI(v1, v2) can also be computed in O(|S|) time.

(3) The set of free end structures
−−−−→
xα[1, i]|
β[j, n]y←−−−−|

such that x, y ∈ S∗ corresponds

to the set of all free end structures which could have boundary configuration

v1. It is clear that E(
−−−−→
xα[1, i]|
β[j, n]y←−−−−|

) takes the minimum value for some x, y ∈ S∗

such that |x|, |y| ≤ n. Thus, the third equation holds. Let s = xα[1, i] and

t = β[j, n]y. Then, note that the value of E(
−→s|
t←−|

) depends only on the four

bases s[|s| − 1], s[|s|], t[1], t[2]. Since for fixed lengths of s and t, all possible
combinations of those four bases can be computed in O(|S|) time, minD(v1)
can also be computed in O(|S|) time. !"

5 Algorithm for Testing the Structure Freeness

For a set S of strings, we construct a weighted directed graph G(S) = (V,E,w),
called the Hydrogen Bond Network graph (HBN graph) of the set S, where V
and E are defined as follows:

V = V ′ ∪ {d, h},

V ′ = {
⎛⎝−→α (i)

·
β←− (j)

⎞⎠ | α, β ∈ S, θ(α[i]) = β[j], 1 ≤ i, j ≤ n },

E = (V ′ × V ′) ∪ ({d} × V ′) ∪ (V ′ × {h}).
Furthermore, the weight function w is defined as follows:

(1) for v1, v2 ∈ V ′, we define:

w((v1, v2)) = minI(v1, v2),

(2) for v ∈ V ′, we define:
w((d, v)) = minD(v),

(3) for v ∈ V ′, we define:
w((v, h)) = minH(v).

For a path p in G, by w(p) we denote the sum of weights of the edges contained
in p, i.e., the weight of the path p.

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 275

Theorem 2. For a finite set S of strings of the same length and a real value F ,
the following two statements are equivalent.
(1) There is an E-minimal structured string α(T) such that α ∈ S+, T �= ∅ and
E(α(T)) = F ,
(2) There is a path p from d to h of the graph G(S) such that w(p) = F .

Proof. (1)→(2) : Let α(T) be an E-minimal structured string such that α ∈
S+, T �= ∅. Let cf(α(T)) = v0, ..., vk. Then, by ci (i = 1, ..., k) we denote a 2-
cycle in α(T) with the boundary configuration (vi−1, vi), by c0 we denote a free
end structure in α(T) with the boundary configuration v0, and by ck+1 we denote
a hairpin in α(T) with the boundary configuration vk. By the definition of the
weight function w, for each i = 1, ..., k, we have w((vi−1, vi)) = minI(vi−1, vi).
By the definition of minI(vi−1, vi), E(ci) ≥ minI(vi−1, vi) holds for each i =
1, ..., k. Suppose E(ci) > minI(vi−1, vi) for some i, and let c′ be a 2-cycle with
the boundary configuration (vi−1, vi) such that E(c′) = minI(vi−1, vi). Then,
by replacing ci by c′, we will obtain a new structured string α′(T ′) such that
α(T) ≡ α′(T ′) and E(α′(T ′)) < E(α(T)), which contradicts the fact that α(T)
is E-minimal. Therefore, we have E(ci) = minI(vi−1, vi) for each i = 1, ..., k.
Thus, for each i = 1, ..., k, E(ci) = w((vi−1, vi)) holds. In similar ways, we
have E(c0) = minD(v0) = w((d, v0)) and E(ck+1) = minH(vk) = w((vk , h)).
Therefore, the weight of the path: d → v0 → · · · → vk → h is equivalent to
Σk+1

i=0 E(ci) = E(α(T)).
(2)→(1) : Let us consider a path p : d → v0 → · · · → vk → h. For each
i = 1, ..., k, let ci be a 2-cycle with the boundary configuration (vi−1, vi) such
that E(ci) = minI(vi−1, vi). Furthermore, let c0 be a free end structure with the
boundary configuration v0 such that E(c0) = minD(v0) and ck+1 be a hairpin
with the boundary configuration vk such that E(ck+1) = minH(vk). Then, we
can obtain a structured string α(T) by concatenating c0, c1, ..., ck, ck+1 in this
order so that for each i = 1, ..., k + 1, the two base pairs on the boundary
between ci−1 and ci could be a common single base pair of both ci−1 and ci.
Then, E(α(T)) is equivalent to the weight w(p) of the path p. Suppose that
α(T) is not E-minimal. Then, there exists a structured string α′(T ′) such that
α(T) ≡ α′(T ′) and E(α′(T ′)) < E(α(T)). Let c′i (i = 1, ..., k) be a 2-cycle in
α′(T ′) with the boundary configuration (vi−1, vi), c′0 be a free end structure in
α′(T ′) with the boundary configuration v0, and c′k+1 be a hairpin in α′(T ′) with
the boundary configuration vk. By E(α′(T ′)) < E(α(T)), there exists some i
(0 ≤ i ≤ k + 1) such that E(c′i) < E(ci), which leads to a contradiction to the
definition of either minD, minI, or minH . Thus, α(T) is E-minimal. !"

By the above theorem, we can obtain the following simple algorithm to test
the structure freeness of a given set S of strings of the same length:

Input: A finite set S of strings of the same length.
Output: Answer “yes” if for any structured string α(T) such that α ∈ S+ and

T is linear, E(α(T)) ≥ 0 holds, otherwise, answer “no”.

276 Satoshi Kobayashi, Takashi Yokomori, and Yasubumi Sakakibara

1. Construct the HBN graph G(S).
2. Apply to G(S) an algorithm for the single-source shortest-paths problem in

which edge weights can be negative. If there exists no negative-weight path
from d to h, answer “yes”. Otherwise answer “no”.

For the single-source shortest-paths problem in which edge weights can be
negative, we can use the Bellman-Ford algorithm ([4], [9]). Given a weighted and
directed graph G = (V,E) with source s and weight function w : E → R, the
Bellman-Ford algorithm returns a Boolean value indicating whether or not there
exists a negative-weight cycle that is reachable from the source. If there is such
a cycle, then the algorithm indicates that no shortest path exists. If there is no
such cycle, then the algorithm produces the weights of the shortest paths.

Note that every vertex in G(S) has a path to h. Thus, the existence of a
negative-weight cycle reachable from d implies the existence of negative-weight
path from d to h. So, we may answer “no” if there exists a negative-weight cycle
that is reachable from the vertex d. Otherwise answer “no” if the computed
weitht W of the path from d to h is negative. If W is not negative, answer “yes”.

Let S be a given finite set of strings of length n. Let m be the number of
strings in S. Then, the number of vertices of G(S) is O(m2n2). Therefore, the
number of edges of G(S) is O(m4n4). As discussed in Theorem 1, since the time
necessary for computing the weight of an edge is O(m), the time necessary for
the construction of G(S) is O(m5n4).

The time complexity of Bellman-Ford algorithm is O(|V ||E|). Consequently,
the time complexity of the second step of the proposed algorithm is O(m6n6).
Therefore, the proposed algorithm runs in O(m6n6) time in total.

6 Conclusions

In this paper, we focused on the problem of testing the structure freeness of
S+ for a given set S of sequences. We gave a partial answer to this problem,
and proposed an efficient algorithm to test the structure freeness of S+ under
the constraint that every string may form only linear secondary structures. We
are continuing our study in order to devise an efficient algorithm for solving the
general problem in which sequences may form multiple loop structures.

Acknowledgements

This work is supported in part by Grant-in-Aid for Scientific Research on Pri-
ority Area No.14085205, Ministry of Education, Culture, Sports, Science and
Technology, Japan. The first author is supported in part by Grant-in-Aid for
Exploratory Research NO.13878054, Japan Society for the Promotion of Science.
The first author is also under the Special Project Support from the President of
the University of Electro-Communications.

An Algorithm for Testing Structure Freeness of Biomolecular Sequences 277

References

1. L. Adleman, Molecular computation of solutions to combinatorial problems. Sci-
ence 266, pp.1021–1024, 1994.

2. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen, S. Skiena,
Algorithms for testing that sets of DNA words concatenate without secondary
structure, In Proc. of 8th International Meeting on DNA Based Computers, Lecture
Notes in Computer Science, Vol.2568, Springer, pp.182–195, 2002.

3. M. Arita and S. Kobayashi, DNA sequence design using templates, New Generation
Computing, 20, pp.263–277, 2002.

4. R. Bellman, On a routing problem, Quarterly of Applied Mathematics, Vol.16,
No.1, pp.87–90, 1958.

5. A. Ben-Dor, R. Karp, B. Schwikowski, and Z. Yakhini, Universal DNA tag systems:
A combinatorial design scheme, Proc. of the 4th Annual International Conference
on Computational Molecular Biology (RECOMB2000), pp.65–75, 2000.

6. A. Brenneman, A. E. Condon, Strand design for bio-molecular computation (Sur-
vey paper), Theoretical Computer Science 287 pp.39–58, 2002.

7. R. Deaton, M. Garzon, J.A. Rose, D.R. Franceschetti, R.C. Murphy and
S.E. Jr. Stevens, Reliability and efficiency of a DNA based computation, Physical
Review Letter, 80, pp.417–420, 1998.

8. A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith
and R. M. Corn, Demonstration of a word design strategy for DNA computing on
surfaces, Nucleic Acids Research, Vol.25, No.23, pp.4748–4757, 1997.

9. L.R. Ford, Jr., and D.R. Fulkerson, Flows in Networks, Princeton University Press,
1962.

10. M. Garzon, R. Deaton, J.A. Rose, D.R. Franceschetti, Soft molecular computing,
In Proc. of Fifth International Meeting on DNA Based Computers, June 14-15,
MIT, pp.89–98, 1999.

11. M. Garzon, P. Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, and
S.E. Jr. Stevens, A new metric for DNA computing, In Proc. of 2nd Annual Genetic
Programming Conference, Morgan Kaufmann, pp.472–478, 1997.

12. M. Hagiya, Towards molecular programming, in Modeling in Molecular Biology
(ed. by G.Ciobanu), Natural Computing Series, Springer, 2003 (to appear).

13. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schus-
ter, Fast folding and comparison of RNA secondary structures (The Vienna RNA
package), Monatshefte für Chemie, 125, pp.167–188, 1994.

14. S. Kobayashi, T. Kondo, M. Arita, On template method for DNA sequence design,
In Proc. of 8th International Meeting on DNA Based Computers, Lecture Notes in
Computer Science, Vol.2568, Springer, pp.205–214, 2002.

15. J.A. Rose, R. Deaton, M. Garzon, D.R. Franceschetti, S.E. Jr. Stevens, A statistical
mechanical treatment of error in the annealing biostep of DNA computation, In
Proc. of GECCO-99 conference, pp.1829–1834, 1999.

16. J.A. Rose, R. Deaton, The fidelity of annealing-ligation: a theoretical analysis, In
Proc. of 6th International Meeting on DNA Based Computers, pp.207–221, 2000.

17. D. Sankoff, J.B. Kruskal, S. Mainville, R.J. Cedergren, Fast algorithms to deter-
mine RNA secondary structures containing multiple loops, in Time Warps, String
Edits, and Macromolecules: The Theory and Practice of Sequence Comparison,
D. Sankoff and J. Kruskal, Editors, Chapter 3, pp.93–120, 1983.

18. M. Zuker, P. Steigler, Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information, Nucleic Acids Research, 9, pp.133–
148, 1981.

On Languages of Cyclic Words

Manfred Kudlek

Fachbereich Informatik, Universität Hamburg
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany

kudlek@informatik.uni-hamburg.de

Abstract. Languages of cyclic words and their relation to classical word
languages are considered. To this aim, an associative and commutative
operation on cyclic words is introduced.

1 Introduction

Related to DNA and splicing operations (see [1,2,4,11], etc.) it is of interest to
investigate characterizations of languages of cyclic words.

Languages of cyclic words can be generated in various ways. One possibil-
ity is to consider languages of classical type, like regular, linear, or context-free
languages, and then take the collection of all equivalence classes of words with
respect to cyclic permutation from such languages. Another possibility is to con-
sider languages of cyclic words defined by rational, linear, and algebraic systems
of equations via least fixed point, with respect to an underlying associative oper-
ation on the monoid of equivalence classes. If the operation is also commutative,
the classes of rational, linear, and algebraic languages coincide [10]. In the case
of catenation as underlying operation for words such least fixed points give reg-
ular, linear, and context-free languages, respectively. A third way is to define
languages of cyclic words by the algebraic closure under some (not necessarily
associative) operation. A fourth way to generate languages of cyclic words is
given by rewriting systems analogous to classical grammars for words, as right
linear, linear, context-free, monotone, and arbitrary grammars [9].

For all notions not defined here we refer to [5,12].
An associative and commutative operation on cyclic words is introduced be-

low. It is shown that the first two ways of defining languages of cyclic words do
not coincide. It is also shown that the classical classes of regular and context-free
languages are closed under cyclic permutation, but the class of linear languages
is not.

2 Definitions

Let V be an alphabet. λ denotes the empty word, |x| the length of a word, and
|x|a the number of symbols a ∈ V in x.

Furthermore, let REG, LIN, CF, CS, and RE denote the classes of regu-
lar, linear, context-free, context-sensitive, and recursively enumerable languages,
respectively.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 278–288, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Languages of Cyclic Words 279

Definition 1. Define the relation ∼ ⊆ V ∗ × V ∗ by

x ∼ y ⇔ x = αβ ∧ y = βα for some α, β ∈ V ∗

Lemma 1. The relation ∼ is an equivalence.

Proof. Trivially, ∼ is reflexive since x = λx = xλ = x, and symmetric by
definition.
∼ is also transitive since x ∼ y, y ∼ z implies x = αβ, y = βα = γδ, z = δγ.
If |β| ≤ |γ| then γ = βρ, α = ρδ, and therefore x = ρδβ, z = δβρ. Hence

x ∼ z
If |β| > |γ| then β = γσ, δ = σα, and therefore x = αγσ, z = σαγ. Hence

z ∼ x.
Thus ∼ is an equivalence relation. �

Definition 2. Denote by [x] the equivalence class of x consisting of all cyclic
permutations of x, and by CV = V ∗/ ∼ the set of all equivalence classes of ∼.

Definition 3. For each cyclic word [x] a norm may be defined in a natural way
by ||[x]|| = |x|. Clearly, ||[x]|| is well defined since |ξ| = |x| for all ξ ∈ [x]. The
norm may be extended to sets of cyclic words by

||A|| = max{||[x]|| | [x] ∈ A}.
It is obvious from the definition that ||{[x]} ◦ {[y]}|| = ||{[x]}||+ ||{[y]}||, and

therefore ||A ◦B|| ≤ ||A||+ ||B||.
The next aim is to define an associative operation on 2CV .

Definition 4. Define an operation $ on 2CV as follows:

{[x]} $ {[y]} = {[ξη] | ξ ∈ [x], η ∈ [y]}.

Note that {[λ]} $ {[x]} = {[x]} $ {[λ]} = {[x]}.
Unfortunately, we see that $ is only commutative but not associative.

Lemma 2. The operation $ is a commutative but not an associative.

Proof. {[x]} $ {[y]} = {[ξη] | ξ ∈ [x], η ∈ [y]}
= {[ηξ] | ξ ∈ [x], η ∈ [y]} = {[y]} $ {[x]}.

Thus $ is commutative.
({[ab]} $ {[c]})$ {[d]} = {[abc], [acb]} $ {[d]}

= {[abcd], [adbc], [abdc], [acbd], [adcb], [acdb]},
{[ab]} $ ({[c]} $ {[d]}) = {[ab]} $ {[cd]} = {[abcd], [acdb], [abdc], [adcb]}.
Thus $ is not associative. �

Another operation ⊗ can be defined as follows.

On Languages of Cyclic Words 281

Proposition 2. (Iteration Lemma) For any M ∈ RAT(◦) there exists a num-
ber N ∈ IN such that for all [x] ∈M with ||[x]|| > N there exist [u], [v], [w] ∈ CV

such that the following holds:
[x] ∈ {[u]} ◦ {[v]} ◦ {[w]}, ||[u] ◦ [v]|| ≤ N , ||[v]|| > 0,
∀k ≥ 0 {[u]} ◦ {[v]}k ◦ {[w]} ⊆M .

Definition 7. For any word language L ⊆ V ∗ define the set of all equivalence
classes with respect to ∼ by κ(L) = {[x] | x ∈ L}. κ is chosen for the Greek word
κύκλoς meaning circle.

For any set M ∈ CV let

γ(M) =
⋃

[x]∈M

[x] ⊆ V ∗.

γ is chosen for γραμμή meaning line in Greek.

Trivially, κγ(M) = M . But in general, γκ(L) �= L.
γκ(L) represents the closure of L under cyclic permutation.

Example 1. Let V = {a, b, c, d}. Then:
{[a]} ◦ {[b]} = {[ab]},
{[a]} ◦ {[a]} ◦ {[b]} = {[aa]} ◦ {[b]} = {[aab]},
{[a]} ◦ {[b]} ◦ {[c]} = {[ab]} ◦ {[c]} = {[a]} ◦ {[bc]} = {[abc], [acb]},
{[a]} ◦ {[b]} ◦ {[c]} ◦ {[d]} = {[a]} ◦ {[bc]} ◦ {[d]} = {[ab]} ◦ {[cd]}

= {[abcd], [abdc], [adbc], [acbd], [acdb], [adcb]},
{[abc]} ◦ {[d]} = {[abcd], [adbc], [abdc]},
{[ab]} ◦ {[ab]} = {[aabb], [abab]}.

Definition 8. (Primitive Cyclic Words) A cyclic word x is called primitive with
respect to ◦ iff it does not fulfill {[x]} ⊆ {[y]}k for some y ∈ V ∗ and some k > 1,
where the power is meant with respect to ◦.

Note that if x is primitive with respect to catenation ·, then all ξ ∈ [x] are
primitive with respect to ·, too.

Definition 9. Let A ⊆ CV . Then the ⊕-algebraic closure L⊕(A) of the set A,
with ⊕ ∈ {$,⊗, ◦}, is defined by

A0 = A,

Aj+1 = Aj ∪
⋃

[x],[y]∈Aj

{[x]} ⊕ {[y]},

L⊕(A) =
∞⋃

j=0

Aj .

Furthermore, if X is any class of sets (languages), let ACL⊕(X) denote the
class of all ⊕-algebraic closures of sets A ∈ X.

280 Manfred Kudlek

Definition 5. Consider

{[x]} ⊗ {[y]} =
⋃

a∈V

{[aξaη] | aξ ∈ [x], aη ∈ [y]}.

Note that {[x]} ⊗ ∅ = ∅ ⊗ {[x]} = ∅ ⊗ ∅ = ∅ and
{[x]} ⊗ {[λ]} = {[λ]} ⊗ {[x]} = ∅ .
Also this operation is commutative but not associative.

Lemma 3. The operation ⊗ is a commutative but not an associative.

Proof. Commutatitivity is obvious from the definition. But
({[ac]} ⊗ {[ab]})⊗ {[bc]} = {[acab]} ⊗ {[bc]} = {[bacabc], [cabacb]},
{[ac]} ⊗ ({[ab]} ⊗ {[bc]}) = {[ac]} ⊗ {[babc]} = {[acabcb], [cacbab]},

showing that ⊗ is not associative. �

Thus, we define another operation ◦, using the shuffle operation , as follows.

Definition 6.

{[x]} ◦ {[y]} = {[τ] | τ ∈ {ξ} {η}, ξ ∈ [x], η ∈ [y]} = {[τ] | τ ∈ [x] [y]}.

This operation may be called the shuffle of cyclic words.

Lemma 4. The operation ◦ is a commutative and associative.

Proof. Commutativity is obvious since is a commutative operation.
[σ] ∈ ({[x]} ◦ {[y]}) ◦ {[z]} ⇔ ∃ τ ∈ [x] [y] [σ] ∈ {[τ]} ◦ {[z]}

⇔ ∃ τ ∈ [x] [y] σ ∈ [τ] [z]
⇔ σ ∈ ([x] [y]) [z] = [x] ([y] [z])
⇔ ∃ ρ ∈ [y] [z] σ ∈ [x] [ρ]
⇔ ∃ ρ ∈ [y] [z] [σ] ∈ {[x]} ◦ {[ρ]}
⇔ [σ] ∈ {[x]} ◦ ({[y]} ◦ {[z]}).

Therefore, ◦ is associative. �

Consequently, the structureMC = (2CV , ◦, {[λ]}) is a monoid, and the struc-
ture SC = (2CV ,∪, ◦, ∅, {[λ]}) is an ω-complete semiring.

Thus, systems of equations may be defined [10]. Since ◦ is commutative, the
classes of rational, linear and algebraic sets coincide. The class of such sets will
be denoted by RAT(◦).

Proposition 1. Any M ∈ RAT(◦) can be generated by a right-linear ◦-
grammar G = (Δ,Σ, S, P) where Δ is a finite set of variables, Σ ⊂ CV a
finite set of constants, S ∈ Δ, and P a finite set of productions of the forms
X→Y ◦ {[x]}, X→{[x]} with [x] ∈ Σ, and [x] = [λ] only for S→{[λ]} and S
does not appear on any other right hand side of a production.

282 Manfred Kudlek

Lemma 5. {[x]}◦{[y]} = κ(γ([x]) ([y])), A◦B = κ(γ(A) γ(B)), and {x1]}◦
· · · ◦ {[xk]} = κ(γ([x1]) · · · γ([xk])) for k ≥ 1.

Proof. The first statement is just the definition of ◦.
A ◦B =

⋃
[x]∈A,[y]∈B{[x]} ◦ {[y]} =

⋃
[x]∈A,[y]∈B κ(γ([x]) γ([y]))

= κ(
⋃

[x]∈A,[y]∈B γ([x]) γ([y])) = κ(γ(A) γ(B)).
The last statement follows by induction on k, using the second statement. �

3 Results

The first theorem presents a proof of Exercises 3.4 c in [6] or 4.2.11 in [5],
respectively. (We give a proof because of technical reasons.)

Theorem 1. REG is closed under cyclic permutation: γκ(REG) ⊂ REG.

Proof. Let G = (VN , VT , S, P) be a type-3 grammar generating the language
L = L(G). Assume that G is in normal form, i.e. the productions are of the form
A→aB or A→a, and S does not occur on the right-hand side of any production.
Assume also that each x ∈ VN ∪ VT is reachable from S.

From G construct a new type-3 grammar G1 = (V1N , V1T , S1, P1) with

V1N = VN × VN ∪ VN × VN ∪ {S1},
V1T = VT , and productions
P1 = {S1→〈B,A〉 | ∃A→aB ∈ P}
∪ {〈B,A〉→a〈C,A〉 | B→aC ∈ P} ∪ {〈B,A〉→a〈S̄, A〉 | B→a ∈ P}
∪ {〈B̄, A〉→a〈C̄, A〉 | B→aC ∈ P} ∪ {〈Ā, A〉→a | A→a ∈ P}.

Then a derivation
S⇒a0A1⇒· · ·⇒a0 · · · ak−1Ak⇒a0 · · · akAk+1⇒· · ·
⇒a0 · · ·akak+1 · · ·amAm+1⇒a0 · · ·akak+1 · · ·amam+1

implies a derivation
S1⇒〈Ak+1, Ak〉⇒ak+1〈Ak+2, Ak〉⇒ak+1 · · ·am〈Am+1, Ak〉
⇒ak+1 · · · amam+1〈S̄, Ak〉⇒ak+1 · · · am+1a0〈Ā1, Ak〉
⇒ · · · ak+1 · · ·am+1a0 · · · ak−1〈Āk, Ak〉⇒ak+1 · · · am+1a0 · · · ak,

and therefore
S1⇒∗ ak+1 · · ·am+1a0 · · · am.

On the other hand, a derivation
S1⇒〈Ak+1, Ak〉⇒ak+1〈Ak+2, Ak〉⇒ak+1 · · ·am〈Am+1, Ak〉
⇒ak+1 · · · amam+1〈S̄, Ak〉⇒ak+1 · · · am+1a0〈Ā1, Ak〉
⇒ · · · ak+1 · · ·am+1a0 · · · ak−1〈Āk, Ak〉⇒ak+1 · · · am+1a0 · · · ak

implies derivations
Ak+1⇒· · ·⇒ak+1 · · · amAm+1⇒ak+1 · · ·amam+1 and
S⇒a0A1⇒· · ·a0 · · · ak−1Ak⇒a0 · · · ak−1akAk+1,

and therefore
S⇒∗ a0 · · ·akak+1 · · ·am+1.
Thus, L(G1) = γκ(L), the set of all cyclic permutations of L.

On Languages of Cyclic Words 283

The proper inclusion follows from the fact that there are regular languages
not being closed under cyclic permutation, like L = {ambn | m,n ≥ 0}. �

Theorem 2. LIN is not closed under cyclic permutation, i.e., γκ(LIN) �⊂
LIN.

Proof. Consider the language L = {anbn | n ≥ 0} ∈ LIN. Assume γκ(L) ∈
LIN. Thus, akb2kak ∈ [a2kb2k]. By the iteration lemma for linear context-free
languages there exists N = N(L) ∈ IN such that for k ≥ N there are words
u, v, w, x, y such that z = akb2kak = uvwxy with |uv| ≤ N , |xy| ≤ N , |vx| > 0,
and ∀j ≥ 0 : uvjwxjy ∈ L. But then uv ∈ {a}∗, xy ∈ {a}∗, and only a’s can be
iterated, contradicting the fact that |z|a = |z|b for all z ∈ γκ(L). �

The next Theorem is from [6].

Theorem 3. CF is closed under cyclic permutation: γκ(CF) ⊂ CF.

Proof. γκ(CF) ⊂ CF is Exercise 6.4 c and its solution in [6], pp. 142-144. The
problem is also stated as Exercise 7.3.1 c in [5].

The proper inclusion follows again from the fact that there are context-free
(even regular) languages not being closed under cyclic permutation, like the
example in Theorem 3.1. �

Theorem 4. κREG �⊂ RAT(◦).
Proof. Consider L = {(ab)n | n ≥ 0} ∈ REG. From this follows that κ(L) =
{[(ab)n] | n ≥ 0} with [(ab)n] = {(ab)n, (ba)n}.

Now assume κ(L) ∈ RAT(◦). Then, by the iteration lemma for RAT(◦)
there exists a N ∈ IN such that for k > N there exist u, v, w such that [(ab)k] ∈
{[u]} ◦ {[v]} ◦ {[w]} with ||{[u]} ◦ {[v]}|| ≤ N , ||[v]|| > 0, and with ∀j ≥ 0 :
{[u]} ◦ {[v]}j ◦ {[w]} ⊆ κ(L).

Now [uvw] ∈ κ(L) and [uvvw] ∈ κ(L). Because of ||[v]|| > 0 it follows that
v = av′ or v = bv′. From [v′a] = [av′] and [v′b] = [bv′] follows that [uv′aav′w] ∈
κ(L) or [uv′bbv′w] ∈ κ(L), a contradiction to the structure of κ(L). �

Theorem 5. γRAT(◦) �⊂ CF.

Proof. Consider the language M of cyclic words defined by M = {[a]}◦M◦{[bc]}.
Clearly,

M =
⋃
k≥0

{[a]}k ◦ {[bc]}k.

Now, {[a]}k = {[ak]}, and [bkck] ∈ {[bc]}k for k ≥ 0 which can be shown
by induction on k, namely [bc] ∈ {[bc]}, and assuming [bkck] ∈ {[bc]}k follows
[bk+1ck+1] = [bkckcb] ∈ {[bkck]} ◦ {[bc]} ⊆ {[bc]}k+1.

From this follows that [akbkck] ∈ {[ak]} ◦ {[bkck]} = {[a]}k ◦ {[bkck]} ⊆
{[a]}k ◦ {[bc]}k ⊆M .

Therefore, γ(M) ∩ {a}∗{b}∗{c}∗ = {akbkck | k ≥ 0} �∈ CF.
Thus, γ(M) �∈ CF. �

284 Manfred Kudlek

Theorem 6. RAT(◦) �⊂ κCF.

Proof. Assume the contrary, RAT(◦) ⊆ κCF. From this follows γRAT(◦) ⊆
γκCF ⊂ CF, a contradiction to Theorem 5. �

Theorem 7. γκREG �⊂ γRAT(◦).
Proof. Assume the contrary, γκREG ⊆ γRAT(◦). From this follows κREG =
κγκREG ⊆ κγRAT(◦) = RAT(◦), a contradiction to Theorem 4 �

Theorem 8. REG �⊂ γκCF.

Proof. Consider the language L = {a}{b}∗ ∈ REG. L �∈ γκCF is obvious since
L is not closed under cyclic permutation. �

Theorem 9. γκLIN ⊂ γκCF.

Proof. Consider the language L = {akbkcmdmenfn | k,m, n ≥ 0} ∈ CF and
assume the contrary, γκ(L) ∈ γκLIN. Then there exists a language L′ ∈ LIN
such that γκ(L′) = γκ(L), and L′ contains at least one cyclic permutation of
akbkcmdmenfn for any triple (k,m, n) ∈ (IN \ {0})3. Thus |L′| = ∞.

Define the languages
L1 = L′ ∩ {a}∗ · {b}∗ · {c}∗ · {d}∗ · {e}∗ · {f}∗{a}∗
∪ L′ ∩ {b}∗ · {c}∗ · {d}∗ · {e}∗ · {f}∗ · {a}∗ · {b}∗,

L2 = L′ ∩ {c}∗ · {d}∗ · {e}∗ · {f}∗ · {a}∗ · {b}∗{c}∗
∪ L′ ∩ {d}∗ · {e}∗ · {f}∗ · {a}∗ · {b}∗ · {c}∗ · {d}∗,

L3 = L′ ∩ {e}∗ · {f}∗ · {a}∗ · {b}∗ · {c}∗ · {d}∗{e}∗
∪ L′ ∩ {f}∗ · {a}∗ · {b}∗ · {c}∗ · {d}∗ · {e}∗ · {f}∗.

Because LIN is closed under intersection with regular languages, L1, L2, L3 ∈
LIN, and it is obvious that L′ = L1 ∪ L2 ∪ L3.

Now define the homomorphisms h1, h2, h3 by
h1(a) = h1(b) = λ, h1(c) = c, h1(d) = d, h1(e) = e, h1(f) = f ,
h2(a) = a, h2(b) = b, h2(c) = h2(d) = λ, h2(e) = e, h2(f) = f ,
h3(a) = a, h3(b) = b, h3(c) = c, h3(d) = d, h3(e) = h3(f) = λ.
Because LIN is closed under morphisms, h1(L1), h2(L2), h3(L3) ∈ LIN. Fur-

thermore, h1(L1) contains only words of the form cmdmenfn, h2(L2) only such
of the form enfnakbk, and h3(L3) only such of the form akbkcmdm.

At least one of the languages hj(Lj), j = 1, 2, 3, has the property that both
indices ((m,n), (k, n), or (k,m), respectively) are unbounded.

Assume the contrary, namely that one index is bounded. This implies for the
languages Lj, j = 1, 2, 3, that at most two indices are unbounded (k,m), (k, n),
(k,m), (m,n), (k, n), or (m,n), respectively). But from this follows that there is
no triple (k,m, n) with all three indices unbounded, contradicting the property
of L′.

Without loss of generality assume that h1(L1) has the above property, imply-
ing that h1(L1) contains words cmdmendn with both indices (m,n) unbounded.

On Languages of Cyclic Words 285

Now for h1(L1) the iteration lemma for linear languages holds, with a con-
stant N > 0. Thus there exist m,n > N such that cmdmenfn ∈ h1(L1). But the
iteration lemma implies cm+jdmenfn+j ∈ h1(L1) for j ≥ 0, a contradiction to
the structure of h1(L1).

The two other cases are shown in the same way. Therefore, γκ(L) �∈
γκLIN. �

Note that γκ(L) ∈ γκLIN for L = {aibicjdj | i, j ≥ 0} �∈ LIN. This is seen
by considering L′ = {bicjdjai | i, j ≥ 0}.
Theorem 10. κLIN ⊂ κCF.

Proof. Assume κLIN = κCF which implies γκLIN = γκCF, a contradiction
to Theorem 9. �

The next two theorems state the closure of context-sensitive and recursively
enumerable languages under cyclic permutation, also cited in [5].

Theorem 11. γκCS ⊂ CS.

Proof. This is obvious by adding productions to a length-increasing grammar G
with L(G) = L, achieving all cyclic permutations of words w ∈ L. The proper
inclusion follows from the fact that there exist context-sensitive languages not
being closed under cyclic permutation. �

Theorem 12. γκRE ⊂ RE.

Proof. This is shown in a way analogous to Theorem 11. �

For the following note that is an associative and commutative operation
on words. For it, propositions analogous to Propositions 1 and 2 hold.

Lemma 6. γ(κ({x} {y})) = γ(κ({x})) γ(κ({y})) for any x, y ∈ V ∗.

Proof. Any w ∈ {x} {y} has the form w = u1v1 · · ·unvn with x = u1 · · ·un

and y = v1 · · · vn where it is also possible that ui = λ and vj = λ for some i, j.
Then z ∈ γ(κ({x} {y})) has the form either z = ui2vi · · ·unvnu1v1 · · ·ui1 or
z = vj2uj+1 · · ·unvnu1v1 · · ·ujvj1 with ui = ui1ui2 and vj = vj1vj2.

Then either z = ui2vi2 · · ·unvnu1v1 · · ·ui1vi1 with v12 = vi, vi1 = λ, and
ui2 · · ·unu1 · · ·ui1 ∈ [x], vi2 · · · vnv1 · · · vi1 ∈ [y],

or z = uj2vj2uj+1 · · ·unvnu1v1 · · ·uj1vj1 with uj2 = λ, uj1 = uj , and
uj2 · · ·unu1 · · ·uj1 ∈ [x], vj2 · · · vnv1 · · · vj1 ∈ [y].

Therefore z ∈ γ(κ({x})) γ({y})).
On the other hand, if z ∈ γ(κ({x})) γ({y})), then x = u1 · · ·ui1ui2 · · ·un,

y = v1 · · · vi1vi2 · · · vn, and z = ui2vi2 · · ·unvnu1v1 · · ·ui1vi1, where possibly ui =
λ and vj = λ for some i, j.

But w = u1v1 · · ·ui1vi1ui2vi2 · · ·unvn ∈ {x} {y}, and therefore it follows
that z = ui2vi2 · · ·unvnu1v1 · · ·ui1vi1 ∈ γ(κ({x} {y})).

Hence γ(κ({x} {y})) = γ(κ({x})) γ(κ({y})). �

286 Manfred Kudlek

Theorem 13. γ(κ(A B)) = γ(κ(A)) γ(κ(B)) for any A,B ⊆ V ∗.

Proof.

γ(κ(A B)) = γ(κ(
⋃

x∈A,y∈B

{x} {y})) =
⋃

x∈A,y∈B

γ(κ({x} {y}))

=
⋃

x∈A,y∈B

(γ(κ({x}) γ(κ({y})) = γ(κ(A)) γ(κ(B)).

�

Lemma 7. γ(κ({x1} · · · {xk})) = γ(κ({x1})) · · · γ(κ({xk})) for xi ∈ V ∗

and k ∈ IN .

Proof. This is shown by induction on k. This is obviuos for k = 1. For k = 2
this is Lemma 6. Now, using Theorem 13,

γ(κ({x1} · · · {xk} {xk+1))
= γ(κ({x1} · · · {xk})) γ(κ({xk+1))
= γ(κ({x1})) · · · γ(κ({xk})) γ(κ({xk+1)). �

Lemma 8. γκRAT() ⊂ RAT().

Proof. Consider L ∈ RAT(). Then L can be generated by a right-linear -
grammar G = (Δ,Σ, S, P) with productions of the form X→Y {x} or X→{x}
where x ∈ Σ. S ∈ Δ, and all sets Δ, Σ ⊆ V ∗, and P are finite.

Therefore, for all x ∈ L there exist n ∈ IN and xi ∈ Σ such that x ∈
{x1} · · · {xn} with xi ∈ Σ.

Now construct a new right-linear -grammar G′ = (Δ,Σ′, S, P ′) with
Σ′ =

⋃
x∈Σ [x] and productions

P ′ = {X→Y {y} | X→Y {x} ∈ P, y ∈ [x]}
∪ {X→{y} | X→{x} ∈ P, y ∈ [x]}.

Now x ∈ L implies S⇒∗ {x1} · · · {xn} in G for some n ∈ IN and xi ∈ Σ.
By the construction of P ′ follows that S⇒∗ {y1} · · · {yn} in G′ for all yi ∈ [xi].
By Lemma 7, this implies

γ(κ({x1})) · · · γ(κ({xn})) = γ(κ({x1} · · · {xn})) ⊆ L(G′). Therefore
γ(κ{x})) ∈ L(G′) for all x ∈ L, hence γ(κ(L)) ⊆ L(G′).

On the other hand, z ∈ L(G′) implies z ∈ {y1} · · · {yn} for some n ∈ IN
and yi ∈ [xi], xi ∈ Σ. From this follows that

z ∈ γ(κ({x1})) · · · γ(κ({xn})) = γ(κ({x1} · · · {xn})), hence z ∈ γ(κ(L)),
implying L(G′) ⊆ γ(κ(L)).

Therefore L(G′) = γ(κ(L)).
Consider L = {ab} ∈ RAT(). Trivially, L �∈ γκRAT() since L is not

closed under cyclic permutation. E.g., ab, abab ∈ L, but ba, baba �∈ L. �

Theorem 14. RAT() ⊂ CS , κRAT() ⊂ κCS.

Proof. RAT() ⊆ CS has been shown in [7,8], from which follows κRAT() ⊆
κCS.

On Languages of Cyclic Words 287

The proper inclusions follow from the fact that all languages in RAT() are
semilinear, but CS contains non-semilinear languages. �

Figure 1

γRAT(◦)

γκRAT()

γκREG

REG γκLIN

LIN γκCF

CF γκCS

CS γκRE

RE

RAT()

�
�

���

�
�

���

�
�

���

�
�

���

� �

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�

�

Figure 2

RAT(◦)

κRAT()

κREG

κLIN

κCF

κCS

κRE

�

�

�

�
�

���

�
�

���

Theorem 15. RAT(◦) ⊆ κRAT().

Proof. Consider M ∈ RAT(◦). Then there exists a right-linear ◦-grammar G =
(Δ,Σ, S, P), generating M = L(G), with Σ ⊆ V ∗ and productions of the form
X→Y ◦ {[x]} or X→{[x]}, x ∈ Σ. Let [z] ∈M . Then z ∈ {[x1]} ◦ · · · ◦ {[xn]} for
some n ∈ IN , xi ∈ Σ, and S⇒∗ {[x1]} ◦ · · · ◦ {[xn]} in G.

Now {[x1]} ◦ · · · ◦ {[xn]} = {[τ] | τ ∈ {ξ1} · · · {ξn}, ξi ∈ [xi]}.
Construct a right-linear -grammar G′ = (Δ,Σ′, S, P ′) with
Σ′ =

⋃
x∈Σ [x] and productions

P ′ = {X→Y {ξ} | ξ ∈ [x], X→Y ◦ {[x]} ∈ P}
∪ {X→{ξ} | ξ ∈ [x], X→{[x]} ∈ P}.

Then S⇒∗ {ξ1} · · · {ξn} in G′ iff ξi ∈ [xi] and S⇒∗ {[x1]} ◦ · · · ◦ {[xn]} in G.
Since

κ({ξ1} · · · {ξn}) = {[τ] | τ ∈ {ξ1} · · · {ξn}} ⊆ {[x1]} ◦ · · · ◦ {[xn]} it
follows that κ(L(G′)) ⊆M .

On the other hand, this is true for all ξi ∈ [xi]. Therefore it follows that
{[x1]} ◦ · · · ◦ {[xn]} ⊆ κ(L(G′)), hence M ⊆ κ(L(G′)).

Thus M = κ(L(G′)). �

288 Manfred Kudlek

Theorem 16. γRAT(◦) ⊆ γκRAT().

Proof. This follows immediately from Theorem 15. �

The relations between the language classes considered so far are shown in
the diagrams of Figures 1 and 2.

4 Conclusion

An open problem is whether the inclusions RAT(◦) ⊆ κRAT() and
γRAT(◦) ⊆ γκRAT() are proper or not. Other problems to be solved are
the relation of language classes defined by grammars on cyclic words to those
language classes considered above, and closure properties under certain language
operations. Also the relations of language classes defined as algebraic closure un-
der the operations $ and ⊗ have to be investigated. These are related to simple
circular splicing operations [3]. Another open problem is to find alternative as-
sociative operations on cyclic words to generate classes of languages of cyclic
words. Of interest is also the investigation of the language of primitive cyclic
words and its relation to the set of primitive words.

References

1. P. Bonizzoni, C. de Felice, G. Mauri, R. Zizza: DNA and Circular Splicing.Proc.
DNA Computing (DNA’2000), eds. A. Condon, G. Rozenberg, LNCS 2054, pp
117–129, 2001.

2. P. Bonizzoni, C. de Felice, G. Mauri, R. Zizza: Decision Problems for Linear and
Circular Splicing Systems. Preproc. DLT’2002, eds. M. Ito, M. Toyama, pp 7–27,
Kyoto, 2002.

3. R. Ceterchi, K.G. Krithivasan: Simple Circular Splicing Systems. Romanian J.
Information Sci. and Technology, 6, 1-2 (2003), 121–134.

4. T. Head: Splicing Schemes and DNA. In: Lindenmayer Systems; Impacts on The-
oretical Computer Science and Developmental Biology, eds. G. Rozenberg, A. Sa-
lomaa, Springer, 1992, pp 371–383.

5. J.E. Hopcroft, R. Motwani, J.D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 2001.

6. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

7. M. Jantzen: Extending Regular Expressions with Iterated Shuffle. Theoretical Com-
puter Sci., 38, pp 223–247, 1985.

8. M. Kudlek, A. Mateescu: Mix Operation with Catenation and Shuffle. Proceed-
ings of the 3rd International Conference Developments in Language Theory, ed. S.
Bozapalidis, pp 387–398, Aristotle University Thessaloniki, 1998.

9. M. Kudlek, C. Mart́ın-Vide, Gh. Păun: Toward FMT (Formal Macroset Theory).
In: Multiset Processing, eds. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa,
LNCS 2235, pp 123–133, 2001.

10. W. Kuich, A. Salomaa: Semirings, Automata, Languages. EATCS Monographs on
TCS, Springer, 1986.

11. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing
Paradigms. Springer, 1998.

12. A. Salomaa: Formal Languages. Academic Press, 1973.

A DNA Algorithm for the Hamiltonian Path

Problem Using Microfluidic Systems

Lucas Ledesma�, Juan Pazos, and Alfonso Rodŕıguez-Patón��

Universidad Politécnica de Madrid
Facultad de Informática, Campus de Montegancedo s/n

Boadilla del Monte – 28660 Madrid, Spain
arpaton@fi.upm.es

Abstract. This paper describes the design of a linear time DNA algo-
rithm for the Hamiltonian Path Problem (HPP) suited for parallel imple-
mentation using a microfluidic system. This bioalgorithm was inspired by
the algorithm contained in [16] within the tissue P systems model. The
algorithm is not based on the usual brute force generate/test technique,
but builds the space solution gradually. The possible solutions/paths are
built step by step by exploring the graph according to a breadth-first
search so that only the paths that represent permutations of the set of
vertices, and which, therefore, do not have repeated vertices (a vertex is
only added to a path if this vertex is not already present) are extended.
This simple distributed DNA algorithm has only two operations: concate-
nation (append) and sequence separation (filter). The HPP is resolved
autonomously by the system, without the need for external control or
manipulation. In this paper, we also note other possible bioalgorithms
and the relationship of the implicit model used to solve the HPP to
other abstract theoretical distributed DNA computing models (test tube
distributed systems, grammar systems, parallel automata).

1 Introduction

A microfluidic device, microflow reactor or, alternatively, “lab-on-a-chip” (LOC)
are different names of micro devices composed basically of microchannels and
microchambers. These are passive fluidic elements, formed in the planar layer
of a chip substrate, which serve only to confine liquids to small cavities. In-
terconnection of channels allows the formation of networks along which liquids
can be transported from one location to another of the device, where controlled
biochemical reactions take place in a shorter time and more accurately than in
conventional laboratories. There are also 3D microfluidic systems with a limited
number of layers. See [20,21] for an in-depth study of microflow devices.

� Research supported by a grant of AECI (Agencia Española de Cooperación Interna-
cional).

�� Research partially supported by Ministerio de Ciencia y Tecnoloǵıa under project
TIC2002-04220-C03-03, cofinanced by FEDER funds.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 289–296, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

290 Lucas Ledesma, Juan Pazos, and Alfonso Rodŕıguez-Patón

The process of miniaturization and automation in analytical chemistry was
an issue first addressed in the early 1980s, but the design (year 1992) of the
device called “Capillary electrophoresis on a chip” [15] was the first important
miniaturized chemical analysis system. Though still in its infancy, the interest in
this technology has grown explosively over the last decade. The MIT Technology
Review has rated to microreactors as one of the ten most promising technologies.

Microelectromechnical (MEMS) technologies are now widely applied to mi-
croflow devices for fabrication of microchannels in different substrate materials,
the integration of electrical function into microfluidic devices, and the devel-
opment of valves, pumps, and sensors. A thorough review of a large number
of different microfluidic devices for nucleic acid analysis (for example, chemical
amplification, hybridization, separation, and detection) is presented in [20].

These microfluidic devices can implement a dataflow-like architecture for
the processing of DNA (see [11] and [17]) and could be a good support for
the distributed biomolecular computing model called tissue P systems [16]. The
underlying computational structure of tissue P systems are graphs or networks
of connected processors that could be easily translated to microchambers (cells
or processors) connected with microchannels.

There are several previous works on DNA computing with microfluidic sys-
tems. In one of them, Gehani and Reif [11] study the potential of microflow
biomolecular computation, describe methods to efficiently route strands between
chambers, and determine theoretical lower bounds on the quantities of DNA and
the time needed to solve a problem in the microflow biomolecular model. Other
two works [5,17] solve the Maximum Clique Problem with microfluidic devices.
This is an NP-complete problem. McCaskill [17] takes a brute-force approach
codifying every possible subgraph in a DNA strand. The algorithm uses the
so-called Selection Transfer Modules (STM) to retain all possible cliques of the
graph. The second step of McCaskill’s algorithm is a sorting procedure to deter-
mine the maximum clique. By contrast, Whitesides group [5] describes a novel
approach that uses neither DNA strands nor selection procedures. Subgraphs
and edges of the graph are hard codified with wells and reservoirs, respectively,
connected by channels and containing fluorescent beads. The readout is a mea-
sure of the fluorescence intensities associated with each subgraph. The weakness
of this approach is an exponential increase in the hardware needed with the
number of vertices of the graph.

2 A DNA Algorithm for the HPP

2.1 A Tissue P System for the HPP

We briefly and informally review the bioinspired computational model called
tissue P systems (tP systems, for short). A detailed description can be found in
[16].

A tissue P system is a network of finite-automata-like processors, dealing with
multisets of symbols, according to local states (available in a finite number for

A DNA Algorithm for the Hamiltonian Path Problem 291

each “cell”), communicating through these symbols, along channels (“axons”)
specified in advance. Each cell has a state from a given finite set and can process
multisets of objects, represented by symbols from a given alphabet. The standard
evolution rules are of the form sM → s′M ′, where s, s′ are states and M,M ′

are multisets of symbols. We can apply such a rule only to one occurrence of
M (that is, in a sequential, minimal way), or to all possible occurrences of M
(a parallel way), or, moreover, we can apply a maximal package of rules of the
form sMi → s′M ′

i , 1 ≤ i ≤ k, that is, involving the same states s, s′, which can
be applied to the current multiset (the maximal mode). Some of the elements of
M ′ may be marked with the indication “go”, and this means that they have to
immediately leave the cell and pass to the cells to which there are direct links
through synapses. This communication (transfer of symbol-objects) can be done
in a replicative manner (the same symbol is sent to all adjacent cells), or in a
non-replicative manner; in the second case, we can send all the symbols to only
one adjacent cell, or we can distribute them non-deterministically.

One way to use such a computing device is to start from a given initial con-
figuration and to let the system proceed until it reaches a halting configuration
and to associate a result with this configuration. In these generative tP systems
the output will be defined by sending symbols out of the system. To this end,
one cell will be designated as the output cell.

Within this model, authors in [16] present a tP system (working in the maxi-
mal mode and using the replicative communication mode) to solve the Hamilto-
nian Path Problem (HPP). This problem involves determining whether or not, in
a given directed graph G = (V,A) (where V = {v1, . . . , vn} is the set of vertices,
and A ⊆ V × V is the set of arcs) there is a path starting at some vertex vin,
ending at some vertex vout, and visiting all vertices exactly once. It is known
that the HPP is an NP-complete problem.

This tP system has one cell, σi, associated with each vertex, Vi, of the graph
and the cells are communicating following the edges of the graph. The output cell
is σn. The system works as follows (we refer to [16] for a detailed explanation).
In all cells in parallel, the paths z ∈ V ∗ in G grow simultaneously with the
following restriction: each cell σi appends the vertex vi to the path z if and only
if vi �∈ z. The cell σn can work only after n − 1 steps and a symbol is sent out
of the net at step n. Thus, it is enough to watch the tP system at step n and
if any symbol is sent out, then HPP has a solution; otherwise, we know that no
such solution exists. (Note that the symbol z sent out describes a Hamiltonian
path in G.)

2.2 The DNA Algorithm

The tP system for the HPP described above can be easily translated to a paral-
lel and distributed DNA algorithm to be implemented in a microfluidic system.
Remember we have a directed graph G = (V,A) with n vertices. Our algorithm
checks for the presence of Hamiltonian paths in the graph in linear time; more-
over, it not only checks for a unique pair of special vertices vin and vout, but for

292 Lucas Ledesma, Juan Pazos, and Alfonso Rodŕıguez-Patón

all possible choices of the pair (vin, vout) from V × V . Firstly, we describe the
overall operations of the algorithm:

– Coding: Each vertex vi has a short single strand associated. Each of these
single strands must be carefully selected to avoid mismatch hybridizations
along the run of the algorithm (see [3] for DNA words design criteria).

– In parallel, in (n − 1) steps and starting from each vertex of the graph
the algorithm grows paths with non-repeated vertices (searching the graph
breadth-first and starting from each vertex vi).

– Time t = n − 1. Read the outputs of the system (empty or paths with n
vertices non-repeated). If there are no output strands, then the graph has no
Hamiltonian paths; otherwise, there are Hamiltonian paths (for some pair of
vertices vin and vout).

The hardware of our system for a graph G = (V,A) with n vertices is com-
posed of one planar layer with 2n + 1 chambers: n filtering chambers Fi, n
append/concatenation chambers Ci, and one DNA sequencing microchip for
reading the Hamiltonian paths.

Chamber Fi. Inputs: DNA strands z ∈ V ∗ from chambers Cj such that
(j, i) ∈ A. Function: Retains the strands that contain the substrand associated
with vertex vi. Output: Strands that do not contain the substrand associated
with vi.

Chamber Ci. Inputs: DNA strands z ∈ V ∗ from the output of Fi. Function:
Appends to every strand z in its input the substrand associated to vertex vi.
Output: zvi.

Pattern of connectivity (layout). The output of each chamber Fi is connected
to the input of the associated chamber Ci. For all (i, j) ∈ A, there is a channel
from chamber Ci to chamber Fj and there is a pump that forces the flow of
liquid from Ci to Fj .

In this way, the chambers and the channels of the microfluidic system codify
the vertices and edges of the graph G. The orientation of the edges is codified with
the direction of the flow in the associated channel. The graph is hard codified
as opposed to Adleman’s soft/DNA codification. One microfluidic system of this
type with 2n chambers can be reprogrammed (open/close microchannels) to
codify the edges of any other graph with n vertices.

Implementation. It is beyond the scope of this paper to give details of the
possible implementation of these microsystems. We merely indicate that filter-
ing and append operations are widely used in DNA computing and a detailed
description of microfluidic devices is given in [11,20].

Working (dynamics) of the system. We assume that filtering and append
operations take one time unit and that in each time unit, the output of each Fi

is available as input to each Ci.

A DNA Algorithm for the Hamiltonian Path Problem 293

– Step 0: (t = 0) (pre-loading). Put into each chamber Fj , enough copies of the
strands associated with vertices vi for which there exists an edge (i, j) ∈ A.

– Steps 1 to (n− 1): (from t = 1 to t = (n− 1)).

• Computations: In each time unit, for all 1 ≤ i ≤ n, in parallel a filtering
in all Fi and an append operation in all Ci is performed.

• Movement (pumping) of strands from step t to step t+1. Input(Fj(t+1)) =⋃
Output(Ci(t)) for all (i, j) ∈ A. The inlet of each chamber Fj in time

t + 1 is the union of the outlets of chambers Ci in time t such that
(i, j) ∈ A.

– Readout: After step (n−1) collects the strands in the output of chambers Ci.
If there are no output strands, the graph has no Hamiltonian paths. If there
are output strands in chamber Ci, there are Hamiltonian paths ending with
vertex vi; we need yet to determine the initial vertex of the strands in the
output of each chamber Ci. The initial vertex of each Hamiltonian path and
the exact sequence of vertices could be determined with a DNA sequencing
microchip.

2.3 Example

We show an example of the execution of the algorithm for a graph with four ver-
tices. This graph has 3 Hamiltonian paths: 2143, 2134 and 1234. Figure 1 shows
the graph and the associated microfluidic device. Table 1 shows the contents of
each chamber in each step. Remember that Input(Fj(t+1)) =

⋃
Output(Ci(t)) for

all (i, j) ∈ A. In step 3 (time t = 3 = n−1), we must check if there is any output
in any chamber Ci. In this case, for this graph, there are outputs in chambers
C3 and C4 so we know there are Hamiltonian paths ending at vertices v3 and v4

respectively. To find out the first vertex and the exact order of the other vertices
in each path, we need to sequence these strands: paths 2143, 2134, and 1234 are
found.

t = 1 t = 2 t = 3 t = 4

F1 = {2} F1 = {12} F1 = {−} F1 = {−}
C1 = {21} C1 = {−} C1 = {−} C1 = {−}
F2 = {1} F2 = {21} F2 = {−} F2 = {−}
C2 = {12} C2 = {−} C2 = {−} C2 = {−}
F3 = {1, 2, 4} F3 = {21, 12} F3 = {214, 134, 234} F3 = {2134, 1234}
C3 = {13, 23, 43} C3 = {213, 123} C3 = {2143} C3 = {−}
F4 = {1, 3} F4 = {21, 13, 23, 43} F4 = {213, 123, 143} F4 = {2143}
C4 = {14, 34} C4 = {214, 134, 234} C4 = {2134, 1234} C4 = {−}

Table 1. Running of the algorithm. In time t = 3 we must readout the output
of the chambers Ci. In bold, strands codifying Hamiltonian paths.

294 Lucas Ledesma, Juan Pazos, and Alfonso Rodŕıguez-Patón

1 2

3 4

F1 C1 F2 C2

F3 C3 F4 C4

a) b)

Fig. 1. a) Graph with 4 vertices and b) microfluidic system associated with this
graph.

3 Final Remarks

This article describes a preliminary work on a DNA algorithm for HPP, which,
like many others in the field of DNA computing (see [1,14]) has a linear execution
time but an exponential consumption of DNA molecules. However, this algorithm
runs autonomously in parallel without manual external intervention and does not
include complex operations with high error rates (PCR, electrophoresis, enzyme
restrictions, etc.). Additionally, we believe that it could be easily implemented in
microfluidic systems bearing in mind the actual state of this technology. Another
notable feature of the proposed bioalgorithm is that it follows a constructive
problem-solving strategy (like [18] but without complex operations), pruning the
unfeasible solutions (it only generates paths that do not have repeated vertices).
The details of a possible implementation of this algorithm will be examined in
a future paper.

However, we believe that other problem types (like sequence problems or
so-called DNA2DNA computation) are more appropriate and of greater biolog-
ical interest. With this in mind, we are working on designing an autonomous
and distributed DNA algorithm for solving the Shortest Common Superstring
(known NP-complete problem only solved in the DNA computing field in [12]
with a brute-force approach) using a conditional version of the parallel overlap-
ping assembly operation.

Another variant of the algorithm proposed here for the HPP can be used
to generate in linear time all the permutations of the n integers 1, 2, . . . , n.
Each number i is codified with a different single strand and has two associated
chambers Fi and Ci. The pattern of connectivity is a complete graph, so, from
every chamber Ci, there is a channel to every chamber Fj , for all 1 ≤ i, j ≤ n. In
n−1 steps, the microsystem generates DNA strands codifying all permutations.
Again, our system generates only the correct strings because the algorithm fails

A DNA Algorithm for the Hamiltonian Path Problem 295

to extend strings with the same integer in at least two locations. This problem
is presented in [2] as a useful subprocedure for the DNA solution of several
NP-complete problems.

This paper also poses theoretical questions, as the parallel and distributed
computing model on which it relies, as well as the operations it uses—conditional
concatenation or filtering plus concatenation—are already present in theoretical
distributed DNA computing models, like test tubes distributed systems, gram-
mar systems theory, parallel finite automata systems and also tissue P systems.

In particular, the redistribution of the contents of the test tubes according to
specific filtering conditions (presence or absence of given subsequences) is present
in the Test Tube Distributed Systems model [7,8] and, similarly, in Parallel
Communicating (PC) Automata Systems [4] or [19]. However, our algorithm
defines no master chamber. It also differs from PC grammar systems [6] because
communication is not performed on request but is enacted automatically.

The generative power of this new system with distributed conditional con-
catenation remains to be examined. Only a few preliminary comments. In the
HPP algorithm we use a very simple conditional concatenation: a symbol a is
concatenated to a sequence w if and only if a �∈ w. In a similar way, we could
extend the restrictions to check the presence of specific suffixes, prefixes or sub-
words as in [9]. This distributed conditional concatenation is a combination of
restricted evolution and communication (append restricted by filtering) that im-
plicitly assumes the existence of regular/finite filters between the concatenation
chambers. A similar study [10] was conducted for the test tube systems model
but with context-free productions and regular filters. Looking at these results,
we think our model probably needs a more powerful operation than conditional
concatenation to be able to achieve computational completeness (like splicing
[13] in the grammar systems area).

Microfluidic systems seem to be an interesting and promising future support
for many distributed DNA computing models (shift from Adleman/Lipton man-
ual wet test tubes to DNA computing on surfaces to microflow DNA computing),
and its full potential (the underlying computational paths could be a graph with
cycles that will allow, for example, the iterative construction and selection of the
solutions) needs to be thoroughly examined.

References

1. L.M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266 (1994), 1021–1024.

2. M. Amos, A. Gibbons, and D. Hodgson. Error-resistant implementation of DNA
computation. In Proceedings of the Second Annual Meeting on DNA Based Com-
puters, held at Princeton University, June 10-12, 1996.

3. M. Andronescu, D. Dees, L. Slaybaugh, Y Zhao, A. Condon, B. Cohen, and S.
Skiena. Algorithms for testing that DNA word designs avoid unwanted secondary
structure. In DNA Computing, 8th international Workshop on DNA-Based Com-
puters, DNA 2002, Sapporo, Japan, 10-13 June 2002. Hokkaido University, 2002.
Also in LNCS 2568. M. Hagiya and A. Ohuchi, editors, pages 92–104.

296 Lucas Ledesma, Juan Pazos, and Alfonso Rodŕıguez-Patón

4. J. Castellanos, C. Mart́ın-Vide, V. Mitrana, and J. Sempere. Solving NP-complete
problems with networks of evolutionary processors. In Proc. of the 6th Inter-
national Work-Conference on Artificial and Natural Neural Networks, IWANN
(2001), LNCS 2048, pages 621–628.

5. D.T. Chiu, E. Pezzoli, H. Wu, A.D. Stroock, and G. M. Whitesides. Using three-
dimensional microfluidic networks for solving computationally hard problems.
PNAS, 98, 6 (March 13, 2001), 2961–2966.

6. E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Gh. Păun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach, Lon-
don, 1994.

7. E. Csuhaj-Varju, L. Kari, and Gh. Păun. Test tube distributed systems based on
splicing. Computers and AI, 15, 2-3 (1996), 211–232.

8. E. Csuhaj-Varju, R. Freund, L. Kari, and Gh. Păun. DNA computing based on
splicing: universality results. Proc. First Annual Pacific Symp. on Biocomputing,
Hawaii, (1996), 179–190.

9. J. Dassow, C. Mart́ın-Vide, Gh. Păun, and A. Rodŕıguez-Patón. Conditional con-
catenation, Fundamenta Informaticae, 44(4), (2000), 353–372.

10. R. Freund and F. Freund. Test tube systems or how to bake a DNA cake. Acta
Cybernetica, 12, 4 (1996), 445–459.

11. A. Gehani and J.H. Reif. Microflow bio-molecular computation. Biosystems, 52,
1-3 (1999), 197–216.

12. G. Gloor, L. Kari, M. Gaasenbeek, and S. Yu. Towards a DNA solution to the
shortest common superstring problem. In 4th Int. Meeting on DNA-Based Com-
puting, Baltimore, Penns., June, 1998.

13. T. Head. Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biology, 49 (1987), 737–759.

14. T. Head. Hamiltonian Paths and Double Stranded DNA. In Computing with Bio-
Molecules. Theory and Experiments (Gh. Păun, ed.), World Scientific, (1998), 80–
92.

15. A. Manz, D. J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Ludi,
and H. M. Widmer. Planar chips technology for miniaturization and integration
of separation techniques into monitoring systems: “Capillary electrophoresis on a
chip”. J. Chromatogr., 593 (1992), 253–258.

16. C. Mart́ın-Vide, Gh. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P systems.
Theoretical Computer Science, 296, 2 (2003), 295–326.

17. J.S. McCaskill. Optically programming DNA computing in microflow reactors.
Biosystems, 59, 2 (2001), 125–138.

18. N. Morimoto, M. Arita, and A. Suyama. Solid phase DNA solution to the Hamil-
tonian path problem. In Proceedings of the 3rd DIMACS Workshop on DNA Based
Computers, held at the University of Pennsylvania, June (1997), 83–92.

19. Gh. Păun and G. Thierrin. Multiset processing by means of systems of finite state
transducers. In Proc. of Workshop on implementing automata WIA99, Lecture
Notes in Computer Science 2213, Springer-Verlag, (2001), 140–157.

20. P.R. Selvaganapathy, E.T. Carlen, and C.H. Mastrangelo. Recent Progress in Mi-
crofluidic Devices for Nucleic Acid and Antibody Assays. Proceedings of the IEEE,
91, 6 (2003), 954–973.

21. E. Verpoorte and N.F. De Rooij. Microfluidics Meets MEMS. Proceedings of the
IEEE, 91, 6 (2003), 930–953.

Formal Languages Arising from Gene Repeated

Duplication

Peter Leupold1, Victor Mitrana2, and José M. Sempere3

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pça. Imperial Tàrraco 1, 43005 Tarragona, Spain
pl.doc@estudiants.urv.es

2 Faculty of Mathematics and Computer Science, Bucharest University
Str. Academiei 14, 70109 Bucureşti, Romania

and
Research Group on Mathematical Linguistics

Rovira i Virgili University
Pça. Imperial Tàrraco 1, 43005 Tarragona, Spain

vmi@fll.urv.es
3 Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

jsempere@dsic.upv.es

Abstract. We consider two types of languages defined by a string
through iterative factor duplications, inspired by the process of tandem
repeats production in the evolution of DNA. We investigate some de-
cidability matters concerning the unbounded duplication languages and
then fix the place of bounded duplication languages in the Chomsky hier-
archy by showing that all these languages are context-free. We give some
conditions for the non-regularity of these languages. Finally, we discuss
some open problems and directions for further research.

1 Introduction

In the last years there have been introduced some operations and generat-
ing devices based on duplication operations, motivated by considerations from
molecular genetics. It is widely accepted that DNA and RNA structures may
be viewed to a certain extent as strings; for instance, a DNA strand can be
presented as a string over the alphabet of the complementary pairs of symbols
(A, T), (T,A), (C,G), (G,C). Consequently, point mutations as well as large scale
rearrangements occurring in the evolution of genomes may be modeled as oper-
ations on strings.

One of the most frequent and less well understood mutations among the
genome rearrangements is the gene duplication or the duplication of a segment
of a chromosome. Chromosomal rearrangements include pericentric and para-
centric inversions, intrachromosomal as well as interchromosomal transpositions,

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 297–308, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

298 Peter Leupold, Victor Mitrana, and José M. Sempere

translocations, etc. Crossover results in recombination of genes in a pair of ho-
mologous chromosomes by exchanging segments between parental chromatides.
We refer to [3], [4], [5] and [19] for discussions on different formal operations on
strings related to the language of nucleic acids. This feature is also known in
natural languages. For motivations coming from linguistics, we refer to [11] and
[17].

In the process of duplication, a stretch of DNA is duplicated to produce two
or more adjacent copies, resulting in a tandem repeat. An interesting property
of tandem repeats is that they make it possible to do “phylogenetic analysis” on
a single sequence which might be useful to determine a minimal or most likely
duplication history.

Several mathematical models have been proposed for the production of tan-
dem repeats including replication, slippage and unequal crossing over [10,24,18].
These models have been supported by biological studies [20,?].

The so-called crossing over between “sister” chromatides is considered to be
the main way of producing tandem repeats or block deletions in chromosomes. In
[2], modeling and simulation suggests that very low recombination rates (unequal
crossing over) can result in very large copy number and higher order repeats.
A model of this type of crossing over has been considered in [6]. It is assumed
that every initial string is replicated so that two identical copies of every initial
string are available. The first copy is cut somewhere within it, say between the
segments α and β, and the other one is cut between γ and δ (see Figure 1). Now,
the last segment of the second string gets attached to the first segment of the
first string, and a new string is obtained. More generally, another string is also
generated, by linking the first segment of the second string to the last segment
of the first string.

�
�

�
��� �

tδγ

Figure 1: A scheme for gene duplication

z

w

w

x α β y

It is easily seen that one obtains the insertion of a substring of w in w; this has
the potential for inducing duplications of genes within a chromosome. We note
here that, despite this model is inspired from recombination in vivo, it actually
makes use of splicing rules in the sense of [8], where a computational model based
on the DNA recombination under the influence of restriction enzymes and ligases
essentially in vitro is introduced. This model turned out to be very attractive
for computer scientists, see, e.g., the chapter [9] in [16] and [15].

Formal Languages Arising from Gene Repeated Duplication 299

Based on [3], Mart́ın-Vide and Păun introduced in [12] a generative mecha-
nism (similar to the one considered in [4]) based only on duplication: one starts
with a given finite set of strings and produces new strings by copying specified
substrings to certain places in a string, according to a finite set of duplication
rules. This mechanism is studied in [12] from the generative power point of view.
In [14] one considers the context-free versions of duplication grammars, solves
some problems left open in [12], proves new results concerning the generative
power of context-sensitive and context-free duplication grammars, and compares
the two classes of grammars. Context-free duplication grammars formalize the
hypothesis that duplications appear more or less at random within the genome
in the course of its evolution.

In [7] one considers a string and constructs the language obtained by iter-
atively duplicating any of its substrings. One proves that when starting from
strings over two-letter alphabets, the obtained languages are regular; an answer
for the case of arbitrary alphabets is given in [13], where it is proved that each
string over a three-letter alphabet generates a non-regular language by duplica-
tion.

This paper continues this line of investigation. Many questions are still un-
solved; we list some of them, which appear more attractive to us – some of then
will be investigated in this work:

- Is the boundary of the duplication unique, is it confined to a few locations
or it is seemingly unrestricted?

- Is the duplication unit size unique, does it vary in a small range or is it
unrestricted?

- Does pattern size affect the variability of duplication unit size?
- Does duplication occur preferentially at certain sites?
In [7] the duplication unit size is considered to be unrestricted. We continue

here with a few properties of the languages defined by unbounded duplication
unit size and then investigate the effect of restricting this size within a given
range.

The paper is organized as follows: in the next section we give the basic
definitions and notations used throughout the paper. Then we present some
properties of the unbounded duplication languages based essentially on [7,13].
The fourth section is dedicated to bounded duplication languages. The main
results of this section are: 1. Each bounded duplication language is context-free.
2. Any square-free word over an at least three-letter alphabet defines a k-bounded
duplication languages which is not regular for any k ≥ 4. The papers ends with
a discussion on several open problems and directions for further research.

2 Preliminaries

Now, we give the basic notions and notations needed in the sequel. For basic for-
mal language theory we refer to [15] or [16]. We use the following basic notation.
For sets X and Y , X \ Y denotes the set-theoretic difference of X and Y . If X
is finite, then card(X) denotes its cardinality; ∅ denotes the empty set. The set

300 Peter Leupold, Victor Mitrana, and José M. Sempere

of all strings (words) over an alphabet V is denoted by V ∗ and V + = V ∗ \ {ε},
where ε denotes the empty string. The length of a string x is denoted by |x|,
hence |ε| = 0, while the number of all occurrences of a letter a in x is denoted
by |x|a . For an alphabet V = {a1, a2, . . . , ak} (we consider an ordering on V),
the Parikh mapping associated with V is a homomorphism ΨV from V ∗ into
the monoid of vector addition on INk, defined by ΨV (s) = (|s|a1 , |s|a2 , . . . , |s|ak

);
moreover, given a language L over V , we define its image through the Parikh
mapping as the set ΨV (L) = {ΨV (x) | x ∈ L}. A subset X of INk is said to be
linear if there are the vectors c0, c1, c2, . . . , cn ∈ INk, for some n ≥ 0 such that
X = {c0 +

∑n
i=1 xici | xi ∈ IN, 1 ≤ i ≤ n}. A finite union of linear sets is called

semilinear. For any positive integer n we write [n] for the set {1, 2, . . . , n}.
Let V be an alphabet and X ∈ {IN}∪ {[k] | k ≥ 1}. For a string w ∈ V +, we

set
DX(w) = {uxxv | w = uxv, u, v ∈ V ∗, x ∈ V +, |x| ∈ X}.

We now define recursively the languages:

D0
X(w) = {w}, Di

X(w) =
⋃

x∈Di−1
X (w)

DX(x), i ≥ 1,

D∗
X(w) =

⋃
i≥0

Di
X(w).

The languages D∗
IN(w) and D∗

[k](w), k ≥ 1, are called the unbounded duplication
language and the k-bounded duplication language, respectively, defined by w. In
other words, for any X ∈ {IN} ∪ {[k] | k ≥ 1}, D∗

X(w) is the smallest language
L′ ⊆ V ∗ such that w ∈ L′ and whenever uxv ∈ L′, uxxv ∈ L′ holds for all
u, v ∈ V ∗, x ∈ V +, and |x| ∈ X .

A natural question concerns the place of unbounded duplication languages
in the Chomsky hierarchy. In [7] it is shown that the unbounded duplication
language defined by any word over a two-letter alphabet is regular, while [13]
shows that these are the only cases when the unbounded language defined by a
word is regular. By combining these results we have:

Theorem 1. [7,13] The unbounded duplication language defined by a word w is
regular if and only if w contains at most two different letters.

3 Unbounded Duplication Languages

We do not know whether or not all unbounded duplication languages are context-
free. A straightforward observation leads to the fact that all these languages are
linear sets, that is, the image of each unbounded duplication language through
the Parikh mapping is linear. Indeed, if w ∈ V +, V = {a1, a2, . . . , an}, then one
can easily infer that

ΨV (D∗
IN(w)) = {ΨV (w) +

n∑
i=1

xie
(n)
i | xi ∈ IN, 1 ≤ i ≤ n},

Formal Languages Arising from Gene Repeated Duplication 301

where e
(n)
i is the vector of size n having the ith entry equal to 1 and all the other

entries equal to 0.

Theorem 2. Given a regular language L one can algorithmically decide whether
or not L is an unbounded duplication language.

Proof. We denote by alph(x) the smallest alphabet such that x ∈ (alph(x))∗.
The algorithm works as follows:

(i) We find the shortest string z ∈ L (this can be done algorithmically). If there
are more strings in L of the same length as z, then L is not an unbounded
duplication language.

(ii) We now compute the cardinality of alph(z).
(iii) If card(alph(z)) ≥ 3, then there is no x such that L = D∗

IN(x).
(iv) If card(alph(z)) = 1, then L is an unbounded duplication language if and

only if L = {a|z|+m | m ≥ 0}, where alph(z) = a.
(v) If k = 2, z = z1z2 . . . zn, zi ∈ alph(z), 1 ≤ i ≤ n, then L is an unbounded

duplication language if and only if

L = z+
1 e1z2e2 . . . en−1z

+
n , (1)

where

ei =
{

z∗i+1, if zi = zi+1

{zi + zi+1}∗, if zi �= zi+1

for all 1 ≤ i ≤ n−1. Note that one can easily construct a deterministic finite
automaton recognizing the language in the right-hand side of equation (1).

�

Theorem 3. 1. The following problems are algorithmically decidable for un-
bounded duplication languages:

Membership: Given x and y, is x in D∗
IN(y)?

Inclusion: Given x and y, does D∗
IN(x) ⊆ D∗

IN(y) hold?
2. The following problems are algorithmically decidable in linear time:

Equivalence: Given x and y, does D∗
IN(x) = D∗

IN(y) hold?
Regularity: Given x, is D∗

IN(x) a regular language?

Proof. Clearly, the membership problem is decidable and

D∗
IN(x) ⊆ D∗

IN(y) iff x ∈ D∗
IN(y).

For D∗
IN(x) = D∗

IN(y), it follows that |x| = |y|, hence x = y. In conclusion, x = y
iff D∗

IN(x) = D∗
IN(y). This implies that the equivalence problem is decidable in

linear time.
The regularity can be decided in linear time by Theorem 1. �

302 Peter Leupold, Victor Mitrana, and José M. Sempere

4 Bounded Duplication Languages

Unlike the case of unbounded duplication languages, we are able to determine
the place of bounded duplication languages in the Chomsky hierarchy. This is
the main result of this section.

Theorem 4. For any word r and any integer n ≥ 1, the n-bounded duplication
language defined by r is context-free.

Proof. For our alphabet V = alph(r) we define the extended alphabet Ve by
Ve := V ∪ {〈a〉 | a ∈ V }. Further we define L≤l := {w ∈ L | |w| ≤ l} for any
language L and integer l. We now define the pushdown automaton

Ar
n =

(
Q, V, Γ, δ,

[
ε
ε
r

]
,⊥,

{[
ε
ε
ε

]})
,

where Q =
{[

μ
v
w

]
| μ ∈ (V ∗

e · V ∗ ∪ V ∗ · V ∗
e)≤n, v ∈ (V ∗)≤n, w ∈ (V ∗)≤|r|

}
,

and Γ = {⊥} ∪
{

μ |
[

μ
v
w

]
∈ Q, v ∈ (V ∗)≤n, w ∈ (V ∗)≤|r|

}
.

Here we call the three strings occurring in a state from bottom to top pat-
tern, memory, and guess, respectively. Now we proceed to define an intermedi-
ate deterministic transition function δ′. In this definition the following variables
are always quantified universally over the following domains: u, v ∈ (V ∗)≤n,
w ∈ (V ∗)≤|r|, μ ∈ (V ∗

e)≤n, η ∈ (V ∗
e · V ∗ ∪ V ∗ · V ∗

e)≤n, γ ∈ Γ , x ∈ V and Y ∈ Ve.

(i) δ′
([

ε
ε

xw

]
, x,⊥

)
=
([

ε
ε
w

]
,⊥
)

and δ′
([

ε
xu
xw

]
, ε,⊥

)
=
([

ε
u
w

]
,⊥
)

(ii) δ′
([

μxu
ε
w

]
, x, γ

)
=
([

μ〈x〉u
ε
w

]
, γ

)
and δ′

([
μxu

xv
w

]
, ε, γ

)
=
([

μ〈x〉u
v
w

]
, γ

)
(iii) δ′

([
u〈x〉Y μ

ε
w

]
, x, γ

)
=
([

uxY μ
ε
w

]
, γ

)
and

δ′
([

u〈x〉Y μ
xv
w

]
, ε, γ

)
=
([

uxY μ
v
w

]
, γ

)
(iv) δ′

([
u〈x〉

ε
w

]
, x, η

)
=
([

η
ux
w

]
, ε

)
, δ′

([
u〈x〉

xv
w

]
, ε, η

)
=
([

η
uxv

w

]
, ε

)
.

For all triples (q, x, γ) ∈ Q×(V ∪{ε})×Γ not listed above, we put δ′(q, x, γ) = ∅.
To ensure that our finite state set suffices, we take a closer look at the memory

of the states – since after every reduction the reduced word is put there (see
transition set (iv)), there is a danger of this being unbounded. However, during
any reduction of a duplication, which in the end puts k ≤ n letters into the
memory, either 2k letters from the memory or all letters of the memory (provided
the memory is shorter than 2k) have been read, since reading from memory has
priority (note that the tape is read in states with empty memory only). This
gives us a bound on the length of words in the memory which is n. It is worth
noting that the transitions of δ′ actually match either the original word r or the

Formal Languages Arising from Gene Repeated Duplication 303

guess against the input or memory. To obtain the transition function δ of our
automaton, we add the possibility to interrupt in any point the computation of
δ′ and change into a state that starts the reduction of another duplication. To

this end we define for all
[

η
v
w

]
∈ Q \ F , and γ ∈ Γ

δ

([
η
v
w

]
, ε, γ

)
= δ′

([
η
v
w

]
, ε, γ

)
∪
{([

z
v
w

]
, ηγ

)
| z ∈ (Σ+)≤n

}
.

Such a transition guesses that at the current position a duplication of the
form zz can be reduced (note that also here the bound of the length of the
memory is not violated). For the sake of understandability we first describe also
the function of the sets of transitions of δ′. Transitions (i) match the input word
and r; this is only done on empty guess and stack, which ensures that every letter
is matched only after all duplications affecting it have been reduced. Sets (ii) and
(iii) check whether the guess, which is the segment of a guessed duplication, does
indeed occur twice adjacently in the memory followed by the input. This is done
by converting first guess letters from letters in V to the corresponding letters in
Ve (set (ii)) exactly if the respective letter is read from either memory or input.
Then set (iii) recovers the original letters. Finally the transitions in (iv) check
the last letter; if it also matches, then the duplication is reduced by putting only
one copy (two have been read) of the guess in the memory, and the computation
is continued by putting the string encoded in the topmost stack symbol back
into the guess. Now we can state an important property of Ar

n which allows us
to conclude that it accepts exactly the language D∗

[n](r).

Property. If there is an accepting computation in Ar
n starting from the config-

uration
([

η
ε
w

]
, v, α

)
, then there is also an accepting computation starting from

any configuration
([

η
v1
w

]
, v2, α

)
where v = v1v2, |v1| ≤ n.

Proof of the property. The statement is trivially true for v1 = ε, therefore in the
rest of the proof we consider v1 �= ε. We prove the statement by induction on the
length of the computation. First we note that there exists an unique accepting

configuration that is
([

ε
ε
ε

]
, ε,⊥

)
. Let Π be an accepting computation in Ar

n

starting from the configuration
([

η
ε
w

]
, v, α

)
.

If the length of Π is one, then η = ε, α = ⊥, and v = w ∈ V which makes
the statement obviously true. Let us assume that the statement is true for any
computation of length at most p and consider a computation Π of length p + 1
where we emphasize the first step. We distinguish three cases:

Case 1. ([
η
ε
w

]
, v, α

)
�
([

z
ε
w

]
, v, ηα

)
�∗
([

ε
ε
ε

]
, ε,⊥

)
.

304 Peter Leupold, Victor Mitrana, and José M. Sempere

Clearly, we have also
([

η
v1
w

]
, v2, α

)
�
([

z
v1
w

]
, v2, ηα

)
for any v1v2 = v, |v1| ≤ n.

By the induction hypothesis,
([

z
v1
w

]
, v2, ηα

)
�∗
([

ε
ε
ε

]
, ε,⊥

)
holds as well.

Case 2. ([
η
ε
w

]
, xv′, α

)
�
([

η′

ε
w

]
, v′, α

)
�∗
([

ε
ε
ε

]
, ε,⊥

)
,

where v = xv′ and the first step is based on a transition in the first part of the

sets (i–iii). We have also
([

η
xv′

1
w

]
, v2, α

)
�
([

η′

v′
1
w

]
, v2, α

)
based on one of the

corresponding transitions in the second part of the sets (i–iii). Since v1 = xv′1,
by the induction hypothesis we are done in the second case.

Case 3. ([
η
ε
w

]
, xv′, σα′

)
�
([

σ
y
w

]
, v′, α′

)
�∗
([

ε
ε
ε

]
, ε,⊥

)
,

where the first step is based on a transition in the first part of the set (iv). Since
reading from memory has priority, there exist w′, τ , and β such that([

σ
y
w

]
, v′, α′

)
�∗
([

τ
ε

w′

]
, v′, β

)
�∗
([

ε
ε
ε

]
, ε,⊥

)
.

We have
([

η
xv′

1
w

]
, v2, σα′

)
�
([

σ
yv′

1
w

]
, v2, α

′
)

for any v1v2 = v, |v1| ≤ n.

Further, following the same transitions as above, we get
([

σ
yv′

1
w

]
, v2, α

′
)
�∗([

τ
v′
1

w′

]
, v2, β

)
, and by the induction hypothesis we conclude the proof of the

third case, and thus the proof of the property.

After the elaborate definition of our pushdown automaton, the proof for
L(Ar

n) = D∗
[n](r) by induction on the number of duplications used to create

a word in D∗
[n](r) is now rather straightforward. We start by noting that the

original word r is obviously accepted. Now we suppose that all words reached
from r by m−1 duplications are also accepted and look at a word s reached by m
duplications. Clearly there is a word s′ reached from r by m−1 duplications such
that s is the result of duplicating one part of s′. By the induction hypothesis,
s′ is accepted by Ar

n, which means that there is a computation, we call it Ξ,
which accepts s′. Let s′[l . . . k] (the subword of s′ which starts at the position l
and ends at the position k in s′, l ≤ k) be the segment of s′ which is duplicated
at the final stage of producing s. Therefore

s = s′[1 . . . k]s′[l . . . |s′|] = s′[1 . . . l − 1]s′[l . . . k]s′[l . . . k]s′[k + 1 . . . |s′|].
Because Ak

n reads in an accepting computation every input letter exactly once,

there is exactly one step in Ξ, where s′[l] is read. Let this happen in a state
[

μ
ε
w

]

Formal Languages Arising from Gene Repeated Duplication 305

with s′[l . . . |s′|] = s[k + 1 . . . |s|] left on the input tape and α the stack contents.

Now we go without reading the input tape to state
[

s′[l . . . k]
ε
w

]
and push μ onto

the stack. Then we reduce the duplication of the subword s′[l . . . k] of s, which is
the guess of the current state, by matching it twice against the letters read on the
input tape. After reducing this duplication, we arrive at a configuration having
a state containing μ in the guess, s′[l . . . k] in the memory, and w in the pattern,
s[k + 1 . . . |s| left on the tape, and the stack contents as before. By the property
above, there exists an accepting computation starting with this configuration,
hence s is accepted. Since all words accepted by Ar

n are clearly in D∗
[n](r), and

we are done. �

Clearly, any language D∗
[1](w) is regular. The same is true for any language

D∗
[2](w). Indeed, it is an easy exercise (we leave it to the reader) to check that

D∗
[2](w) = (w[1]+w[2]+)∗(w[2]+w[3]+)∗ . . . (w[|w − 1|]+w[|w|]+)∗.

The following question appears in a natural way: Which are the minimal k and
n such that there are words w over an n-letter alphabet such that D∗

[k](w) is not
regular?

Theorem 5. 1. D∗
[k](w) is always regular for any word w over a two-letter al-

phabet and any k ≥ 1.
2. For any word w of the form w = xabcy with a �= b �= c �= a, D∗

[k](w) is not
regular for any k ≥ 4.

Proof. 1. The equality D∗
IN(w) = D∗

[k](w) holds for any k ≥ 2 and any word w
over a two-letter alphabet, hence the first item is proved.

2. Our reasoning for proving the second item, restricted without loss of gen-
erality to the word w = abc, is based on a similar idea to that used in [13]. So,
let w = abc, V = {a, b, c}, and k ≥ 4. First we prove that for any u ∈ V + such
that wu is square-free, there exists v ∈ V ∗ such that wuv ∈ D∗

[k](w). We give
a recursive method for constructing wuv starting from w; at any moment we
have a string wu′v′ where u′ is a prefix of u and v′ is a suffix of v. Initially,
the current string is w which satisfies these conditions. Let us assume that we
reached x = wu[1]u[2] . . . u[i− 1]v′ and we want to get y = wu[1]u[2] . . . u[i]v′′.
To this end, we duplicate the shortest factor of x which begins with u[i] and
ends on the position 2 + i in x. Because wu[1]u[2] . . . u[i− 1] is square-free and
any factor of a square-free word is square-free as well, the length of this factor
which is to be duplicated is at most 4. Now we note that, given u such that wu
is square free and v is the shortest word such that wuv ∈ D∗

[k](w), we have on
the one hand k|u| + 3 ≥ |wuv| (each duplication produces at least one symbol
of u), and on the other hand (k− 1)|v| ≥ |u| (each duplication produces at least
one symbol of v since wu is always square-free). Therefore,

(k − 1)|u| ≥ |v| ≥ |u|
k − 1

. (2)

306 Peter Leupold, Victor Mitrana, and José M. Sempere

We are ready now to prove that D∗
[k](w) is not regular using the Myhill-Nerode

characterization of regular languages. We construct an infinite sequence of square-
free words w1, w2, . . . ,, each of them being in a different equivalence class:

w1 = w and wi+1 = wu such that wu is square-free and (k − 1)|wi| < |u|
k − 1

.

Clearly, we can construct such an infinite sequence of square-free words since
there are arbitrarily long square-free words having the prefix abc [21,22,1]. For
instance, all words hn(a), n ≥ 1, are square-free and begin with abc, where h is
an endomorphism on V ∗ defined by h(a) = abcab, h(b) = acacb, h(c) = acbcacb.
Let vi be the shortest word such that wivi ∈ D∗

[k](w), i ≥ 1. By relation (2),
wi+1vj /∈ D∗

[k](w) for any 1 ≤ j ≤ i. Consequently, D∗
[k](w) is not regular. �

Since each square-free word over an at least three-letter alphabet has the
form required by the previous theorem, the next corollary directly follows.

Corollary 1. D∗
[k](w) is not regular for any square-free word w over an alphabet

of at least three letters and any k ≥ 4.

5 Open Problems and Further Work

We list here some open problems which will be in our focus of interest in the
near future:

1. Is any unbounded duplication language context-free? A way for attacking
this question, in the aim of an affirmative answer, could be to prove that for
any word w there exists a natural kw such that D∗

IN(w) = D∗
[kw](w). Note that a

similar result holds for words w over alphabets with at most two letters.
2. What is the complexity of the membership problem for unbounded du-

plication languages? Does the particular case when y is square-free make any
difference?

3. We define the X-duplication distance between two strings x and y, denoted
by DupdX(x, y), as follows:

DupdX(x, y) = min{k | x ∈ Dk
X(y) or y ∈ Dk

X(x)}, X ∈ {IN} ∪ {[n] | n ≥ 2}.

Clearly, Dupd is a distance. Are there polynomial algorithms for computing
this distance? What about the particular case when one of the input strings is
square-free?

4. An X-duplication root, X ∈ {IN} ∪ {[n] | n ≥ 2}, of a string x is an X-
square-free string y such that x ∈ D∗

X(y). A string y is X-square-free if it does
not contain any factor of the form zz with |z| ∈ X . It is known that there are
words having more than one IN-duplication root. Then the following question is
natural: If x and y have a common duplication root and X is as above, then
D∗

X(x) ∩ D∗
X(y) �= ∅? We strongly suspect an affirmative answer. Again, the

case of at most two-letter alphabets is quite simple: Assume that x and y are
two strings over the alphabet V = {a, b} which have the same duplication root,

Formal Languages Arising from Gene Repeated Duplication 307

say aba (the other cases are identical). Then x = ak1bp1ak2 . . . aknbpnakn+1 and
y = aj1bq1aj2 . . . ajmbqmajm+1 for some n,m ≥ 1. It is an easy exercise to get
by duplication starting from x and y, respectively, the string (aibi)sai, where
s = max(n,m) and i = max(A), with

A = {kt | 1 ≤ t ≤ n + 1} ∪ {pt | 1 ≤ t ≤ n}
∪ {jt | 1 ≤ t ≤ m + 1} ∪ {qt | 1 ≤ t ≤ m}.

What is the maximum number of X-duplication roots of a string? How hard
is it to compute this number? Given n and X ∈ {IN} ∪ {[n] | n ≥ 2}, are there
words having more than n X-duplication roots? (the non-triviality property)
Given n, are there words having exactly n X-duplication roots? (the connec-
tivity property) Going further, one can define the X-duplication root of a given
language. What kind of language is the X-duplication root of a regular language?
Clearly, if it is infinite, then it is not context-free.

References

1. Bean, D.R., Ehrenfeucht, A., Mc Nulty, G.F. (1979) Avoidable patterns in strings
of symbols, Pacific J. of Math. 85:261–294.

2. Charlesworth, B., Sniegowski, P., Stephan, W. (1994) The evolutionary dynamics
of repetitive DNA in eukaryotes, Nature 371:215–220.

3. Dassow, J., Mitrana, V. (1997) On some operations suggested by the genome evo-
lution. In: Altman, R., Dunker, K., Hunter, L., Klein, T. (eds.) Pacific Symposium
on Biocomputing’97, 97–108.

4. Dassow, J., Mitrana, V. (1997) Evolutionary grammars: a grammatical model for
genome evolution. In: Hofestädt, R., Lengauer, T., Löffler, M., Schomburg, D.
(eds.) Proceedings of the German Conference in Bioinformatics GCB’96, LNCS
1278, Springer, Berlin, 199–209.

5. Dassow, J., Mitrana, V., Salomaa, A. (1997) Context-free evolutionary grammars
and the language of nucleic acids. BioSystems 4:169–177.

6. Dassow, J., Mitrana, V. (1998) Self cross-over systems. In: Păun, G. (ed.) Com-
puting with Bio-Molecules, Springer, Singapore, 283–294.

7. Dassow, J., Mitrana, V., Păun, G. (1999) On the regularity of duplication closure,
Bull. EATCS, 69:133–136.

8. Head, T. (1987) Formal language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviours, Bull. Math. Biology 49:737–759.

9. Head, T., Păun, G., Pixton, D. (1997) Language theory and molecular genetics.
Generative mechanisms suggested by DNA recombination. In: [16]

10. Levinson, G., Gutman, G. (1987) Slipped-strand mispairing: a major mechanism
for DNA sequence evolution, Molec. Biol. Evol. 4:203–221.

11. Manaster Ramer, A. (1999) Some uses and misuses of mathematics in linguistics.
In: Mart́ın-Vide, C. (ed.) Issues from Mathematical Linguistics: A Workshop, John
Benjamins, Amsterdam, 70–130.

12. Mart́ın-Vide, C., Păun, G. (1999) Duplication grammars, Acta Cybernetica
14:101–113.

13. Ming-wei, W. (2000) On the irregularity of the duplication closure, Bull. EATCS,
70:162–163.

308 Peter Leupold, Victor Mitrana, and José M. Sempere

14. Mitrana, V., Rozenberg, G. (1999) Some properties of duplication grammars, Acta
Cybernetica, 14:165–177.

15. Păun, G., Rozenberg, G., Salomaa, A. (1998) DNA Computing. New Computing
Paradigms, Springer, Berlin.

16. Rozenberg, G., Salomaa, A. (eds.) (1997) Handbook of Formal Languages, vol.
I-III, Springer, Berlin.

17. Rounds, W.C., Manaster Ramer, A., Friedman, J. (1987) Finding natural lan-
guages a home in formal language theory. In: Manaster Ramer, A. (ed.) Mathe-
matics of Language, John Benjamins, Amsterdam, 349–360.

18. Schlotterer, C., Tautz, D. (1992) Slippage synthesis of simple sequence DNA,
Nucleic Acids Res. 20:211-215.

19. Searls, D.B. (1993) The computational linguistics of biological sequences. In:
Hunter, L. (ed.) Artificial Intelligence and Molecular Biology, AAAI Press/MIT
Press, Menlo Park, CA/Cambridge, MA, 47–120.

20. Strand, M., Prolla, T., Liskay, R., Petes, T. (1993) Destabilization of tracts of
simple repetitive DNA in yeast by mutations affecting DNA mismatch repair,
Nature 365:274–276.

21. Thue, A. (1906) Uber unendliche Zeichenreihen, Norske Videnskabers Selskabs
Skrifter Mat.-Nat. Kl. (Kristiania), 7:1–22.

22. Thue, A (1912) Uber die gegenseitige Lage gleicher Teile gewiisser Zeichenreihen,
Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania), 1:1–67.

23. Weitzmann, M., Woodford, K., Usdin, K. (1997) DNA secondary structures
and the evolution of hyper-variable tandem arrays, J. of Biological Chemistry
272:9517–9523.

24. Wells, R. (1996) Molecular basis of genetic instability of triplet repeats, J. of
Biological Chemistry 271:2875–2878.

A Proof of Regularity for Finite Splicing

Vincenzo Manca

Università di Verona
Dipartimento di Informatica

Ca’ Vignal 2 - Strada Le Grazie 15, 37134 Verona, Italy
vincenzo.manca@univr.it

Abstract. We present a new proof that languages generated by (non
extended) H systems with finite sets of axioms and rules are regular.

1 Introduction

Splicing is the basic combinatorial operation which DNA Computing [8] is based
on. It was introduced in [4] as a formal representation of DNA recombinant
behavior and opened new perspectives in the combinatorial analysis of strings,
languages, grammars, and automata. Indeed, biochemical interpretations were
found for concepts and results in formal language theory [11,8] and Molecular
Computing emerged as a new field covering these subjects, where synergy be-
tween Mathematics, Computer Science and Biology yields an exceptional stimu-
lus for developing new theories and applications based on discrete formalizations
of biological processes. In this paper we express the combinatorial form of splic-
ing by four cooperating combinatorial rules: two cut rules (suffix and prefix dele-
tion), one paste rule, and one (internal) deletion rule. This natural translation
of splicing allows us to prove in a new manner the regularity of (non extended)
splicing with finite sets of axioms and of rules.

2 Preliminaries

Consider an alphabet V and two symbols #, $ not in V . A splicing rule over V
is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗. For a rule r and for any
x1, x2, y1, y2 ∈ V ∗ we define the (ternary) splicing relation =⇒r such that:

x1u1u2x2 , y1u3u4y2 =⇒r x1u1u4y2.

In this case we say that x1u1u4y2 is obtained by a splicing step, according to
the rule r, from the left argument x1u1u2x2 and the right argument y1u3u4y2.
The strings u1u2 and u3u4 are respectively the left and right splicing points or
splicing sites of the rule r. An H system, according to [8], can be defined by a
structure Γ = (V,A,R) where V is an alphabet, that is, a finite set of elements
called symbols, A is a set of strings over this alphabet, called axioms of the
system, and R is a set of splicing rules over this alphabet.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 309–317, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

310 Vincenzo Manca

L0(Γ) consists of the axioms of Γ . For n ≥ 0, Ln+1(Γ) consists of Ln(Γ) as
well as the strings generated by one splicing step from strings of Ln(Γ), by apply-
ing all the rules in R that can be applied. The language L(Γ) generated by Γ is
the union of all languages Ln(Γ) for n ≥ 0. If a terminal alphabet T ⊂ V is con-
sidered, and L(Γ) consists of the strings over T ∗ generated by Γ , then we obtain
an extended H system Γ = (V, T,A,R). H systems are usually classified by means
of two classes of languages FL1, FL2: a H system is of type H(FL1, FL2) when
its axioms form a language in the class FL1 and its rules, which are strings of
(V ∪{#, $})∗, form a language in the class FL2; EH(FL1, FL2) is the subtype of
extended H systems of type H(FL1, FL2). We identify a type C = H(FL1, FL2)
of H systems with the class of languages generated by C. Let FIN, REG, RE
indicate the classes of finite, regular, and recursively enumerable languages re-
spectively. It is known that: H(FIN, FIN) ⊂ REG, H(REG,FIN) = REG,
EH(FIN, FIN) = REG, EH(FIN,REG) = RE. Comprehensive details can
be found in [8]. We refer to [11] and [8] for definitions and notations in formal
language theory.

3 Cut-and-Paste Splicing

A most important mathematical property of splicing is that the class of languages
generated by a finite splicing, that is, by a finite number of splicing rules, from
a finite initial set of strings, is a subclass of regular languages: H(FIN, FIN) ⊂
REG and, more generally, H(REG,FIN) = REG. The proof of this result has a
long history. It originates in [1,2] and was developed in [9], in terms of a complex
inductive construction of a finite automaton. In [8] Pixton’s proof is presented
(referred to as Regularity preserving Lemma). More general proofs, in terms of
closure properties of abstract families of languages, are given in [5,10]. In [6] a
direct proof was obtained by using ω-splicing. In this section we give another and
more direct proof of this lemma, as a natural consequence of a representation of
splicing rules.

Let Γ be a H system of alphabet V , with a finite number of splicing rules.
The language L(Γ) generated by a H system Γ can be obtained in the following
way. Replace every splicing rule

ri = u1#u2$u3#u4

of Γ by the following four rules (two cut rules, a paste rule, a deletion rule) where
•i and $i are symbols that do not belong to V , and variables x1, x2, y1, y2, x, y,
w, z range over the strings on V .

1. x1u1u2x2 =⇒ri x1u1•i right cut rule
2. y1u3u4y2 =⇒ri $iu4y2 left cut rule
3. xu1•i, $iu4y =⇒ri xu1 •i $iu4y paste rule
4. w •i $iz =⇒ri wz deletion rule

A Proof of Regularity for Finite Splicing 311

If we apply these rules in all possible ways, starting from the axioms of Γ ,
then the set of strings so generated that also belong to V ∗ and coincides with
the language L(Γ).

This representation of splicing has a very natural biochemical reading [3].
Actually, the first two rules are an abstract formulation of the action of restric-
tion enzymes, where the symbols •i and $i correspond to the sticky ends (here
complementarity is between •i and $i). The third rule is essentially the an-
nealing process that joins strands with matching sticky ends but leaves a hole
(represented by the string •i$i) in the fosphodiesteric bond between the 5’ and
3’ loci. The final rules express the hole repair performed by a ligase enzyme. The
proof that will follow is inspired by this analysis of the splicing mechanism and
develops an informal idea already considered in [7].

Theorem 1. If Γ is an H system with a finite number of axioms and rules, then
L(Γ) is regular.

Proof. Let r1, r2, . . . , rn be the rules of Γ . For each rule ri = u1#u2$u3#u4,
introduce two new symbols •i and $i, for i = 1, . . . n, which we call bullet and
antibullet of the rule ri. If u1u2 and u3u4 are the left and the right splicing sites
of ri, then symbols •i and $i can be used in order to highlight the left and right
splicing sites that occur in a string. More formally, let h be the morphism

h : (V ∪ {•i | i = 1, . . . n} ∪ {$i | i = 1, . . . n})∗ → V ∗

that coincides with the identity on V and erases all the symbols that do not
belong to V , that is, associates the empty string λ to them. In the following
V ′ will abbreviate (V ∪ {•i | i = 1, . . . n} ∪ {$i | i = 1, . . . n})∗. For any rule
ri = u1#u2$u3#u4, with i = 1, . . . , n, we say that a string of V ′ is •i-factorizable
if it includes a substring u′

1u
′
2 ∈ V ′ such that h(u′

1) = u1, h(u′
2) = u2. In this

case the relative •i-factorization of the string is obtained by replacing u′
1u

′
2 with

u′
1 •i u′

2. Analogously, a string of V ′ is $i-factorizable if it includes a substring
u′

3u
′
4 ∈ V ′ such that h(u′

3) = u3, h(u′
4) = u4. In this case the relative $i-

factorization of the string is obtained by replacing u′
3u

′
4 with u′

3$i u
′
4. A string α

is a maximal factorization of a string η if α is a factorization such that h(α) = η,
α contains no two consecutive occurrences of the same bullet or antibullet, while
any further factorization of α contains two consecutive occurrences of the same
bullet or antibullet. It is easy to verify that the maximal factorization of a string
is unique.

Now, given an H system, we factorize its axioms in a maximal way. Let
α1, α2, . . . , αm be these factorizations and let $α1$, $α2$, . . . , $αm$ be their ex-
tensions with a symbol marking the start and the end of these factorizations.
From the set Φ of these factorization strings we construct the following labeled
directed graph G0, which we call axiom factorization graph of the system, where:

1. A node is associated to each occurrence of a bullet or antibullet that occurs
in a strings of Φ, while a unique entering node $• is associated to all the
occurrences of symbol $ at beginning of the strings of Φ, and a unique exiting

312 Vincenzo Manca

node •$ is associated to all the occurrences of symbol $ at end of the strings
of Φ.

2. From any node n there is an arc to the node m if the occurrence to which
m is associated is immediately after the occurrence to which n is associated;
this arc is labeled with the string between these two occurrences.

3. Each bullet is linked by an arc with the empty label to the antibullet of the
same index.

As an example, let us apply this procedure to the following H system speci-
fied by:

Alphabet: {a, b, c, d},
Axioms: {dbab , cc},
Rules: {r1 : a#b$λ#ab , r2 : baa#aaa$λ#c}.

2

�� c��

c

� 1
�

1

�� ��badb
��� � �

�
�

�
� ��

2

�
�
�
��

Fig. 1. An Axiom Factorization Graph

In Figure 1 the graph G0 of our example is depicted. Hereafter, unless it is
differently specified, by a path we understand a path going from the entering
node to the exiting node. If one concatenates the labels along a path, one gets
a string generated by the given H system. However, there are strings generated
by the system that are not generated as (concatenation of labels of) paths of
this graph. For example, the strings dbaac, dbaacc do not correspond to any path
of the graph above. In order to overcome this inadequacy, we extend the graph
that factorizes the axioms by adding new possibilities of factorizations, where
the strings u1 and u4 of the rules are included and other paths with these labels
are possible.

Before going on, let us sketch the main intuition underlying the proof, that
should appear completely clear when the formal details are developed. The axiom
factorization graph suggests that all the strings generated by a given H system
are combinations of: i) strings that are labels of the axiom factorization graph,
and ii) strings u1 and u4 of splicing rules of the system. Some combinations of
these pieces can be iterated, but, although paths may include cycles, there is only
a finite number of ways to combine these pieces in paths going from the entering
node to the exiting node. An upper bound on this number is determined by: i)
the number of substrings of the axioms and of the rules, and ii) the number of

A Proof of Regularity for Finite Splicing 313

factorization nodes that can be inserted in a factorization graph when extending
the axiom factorization with the rules, as it will be shown in the proof.

The detailed construction of the proof is based on two procedures that expand
the axiom factorization graph G0. We call the first procedure Rule expansion
and the second one Cross bullet expansion. In the following, for the sake of
brevity, we identify paths with factorization strings.

3.1 Rule Expansion

Let G0 be the graph of the maximal factorizations of the axioms of Γ . Starting
from G0, we generate a new graph Ge which we call rule expansion of G0.
Consider a symbol ⊗ which we call cross bullet. For this symbol h is assumed
to be a deleting function, that is, h(⊗) = λ. For every rule ri = u1#u2$u3#u4

of Γ , add to G0 two rule components: the u1 component that consists of a pair
of nodes ⊗ and •i, with an arc from ⊗ to •i labeled by the string u1, and the
u4 component that consists of a pair of nodes ⊗,$i with an arc from $i to ⊗
labeled by the string u4.

Then, add arcs with the empty label from the new node •i to the correspond-
ing antibullet nodes $i that were already in the graph. Analogously, add arcs
with the empty label from the nodes •i that were already in the graph to the
new antibullet node $i.

---�

⊗
u4�

i
 !
i

⊗

�
u1

�

�---

Fig. 2. Rule i Expansion Components

In the case of the graph in Figure 1, if we add the rule expansions of the two
rules of the system, then we get the graph of Figure 2.

3.2 Cross Bullet Expansion

Now we define the cross bullet expansion procedure. Consider a symbol ◦, which
we call empty bullet. For this symbol, h is assumed to be a deleting function,
that is, h(◦) = λ. Suppose that in Ge there is a cycle $j−•j. A cycle introduces
new factorization possibilities that are not explicitly present in the graph, but
that appear when we go around the cycle a certain number of times. Let us
assume that, by iterating this cycle, a path θ is obtained that generates a new
splicing site for some rule. We distinguish two cases. In the first case, which

314 Vincenzo Manca

�

�
2

!
!

!
!!"

##########$

c

⊗

22

⊗

"�
�

����ab

⊗

1

1

�
a

�

1

"
⊗

baa

�
�
�
��

��
�
�
�
��

�"� � �
db

a b "��� "
1�

c

� �c��
2

Fig. 3. The Rule Expansion of the Graph of Figure 1

we call 1-cross bullet expansion, the path θ, considered as a string, includes the
splicing site u1u2 of a rule

θ = ηξβ

for some ξ beginning with a symbol of V such that h(ξ) = u1u2. In the second
case, which we call 4-cross bullet expansion, the path θ, considered as a string,
includes the splicing site u3u4 of a rule

θ = ηξβ

for some ξ ending with a symbol of V such that h(ξ) = u3u4. As it is illustrated
in the following pictures, the positions where the beginning of ξ or the end of ξ
are respectively located could be either external to the cycle or internal to it. In
both cases we insert an empty bullet in the path θ.

– In the case of a 1-cross bullet expansion, we insert an empty bullet ◦, exactly
before ξ, with an arrow going from this empty bullet to the cross bullet of the
u1 expansion component of ri. Let 1/i be the type of this empty bullet. This
expansion is performed unless η does not already include an empty bullet of
type 1/i after its last symbol of V .

– In the cases of a 4-cross bullet expansion, we insert an empty bullet ◦, exactly
after ξ, with an arrow, entering this empty bullet and coming from the cross
bullet of the u4 expansion component of ri. Let 4/i be the type of this
empty bullet. This expansion is performed unless β does not already include
an empty bullet of type 4/i before its first symbol of V .

The two cases are illustrated in the following pictures (in 1-cross bullet expansion
the beginning of the splicing site is external to the cycle, in the 4-cross bullet
expansion the end of the splicing point is internal to the cycle).

The general situation of cross bullet expansion is illustrated in Figure 3.

A Proof of Regularity for Finite Splicing 315

�

◦

i

�

i

�⊗

jj

cycle! �� �
�

��
α

!
u1

γ

--- ---

� ---

Fig. 4. 1-Cross bullet Expansion: γαn includes a string of h−1(u1u2) as its prefix

�
�

�
◦

⊗

--- � �

u4

--- � ! � �
cycle

j j

α

�
i

 !
i

--- ---

Fig. 5. 4-Cross bullet Expansion: αn includes a string of h−1(u3u4) as its suffix

If we apply cross bullet expansion to the graph of Figure 3 we get the graph
of Figure 7 where only one 1-cross bullet expansion was applied. The following
lemma establishes the termination of the cross bullet expansion procedure.

Lemma 1. If, starting from Ge, we apply again and again the cross bullet ex-
pansion procedure, then the resulting process eventually terminates, that is, after
a finite number of steps we get a final graph where no new cycles can be intro-
duced.

Proof. This holds because in any cross bullet expansion we insert an empty bul-
let ◦ and an arc with the empty label connecting it to a cross node, but empty
bullets, at most one for each type, are always inserted between two symbols of
V starting from the graph Ge, which is fixed at beginning of the cross bullet
expansion process. Therefore, only a finite number of empty bullets can be in-
serted. This ensures that the expansion process starting from Ge will eventually
stop.

Let G be the completely expanded graph. The cross bullet expansion procedure
is performed by a (finite) sequence of steps. At each step an empty bullet is
inserted and an arc is added that connects the empty bullet with a cross bullet.

316 Vincenzo Manca

�
�

�
�

�
�

�
���

�

%
%

%
%

%
%%&

�

'
'

'
'

''(

)))))*

+++,
�

+++,
�

#��������

� � ��$#!
i

u4u1

i
!##

i

i

�

�

$

Fig. 6. Cross bullet Expansions of rule i

�

�
2

!
!

!
!"

##########$

c

⊗

22

⊗

��
�

����ab

⊗

1

�
a

�

1

�
⊗

baa

�
�
�
��

��
�
�
�
�

��◦�
d b

-
-

-
-

-
-

-
-

-
--.

�� � �a b ����
1

�
1�

c

� �c��
2

Fig. 7. Cross bullet Expansion of the Graph of Figure 3

Let L(G) be the language of the strings generated by paths of G. The inclusion
L(G) ⊆ L(Γ) can be easily shown by induction on the number of cross bullet
expansion steps: obviously L(G0) ⊆ L(Γ), thus, assume that all the paths of
the graph at step i generate strings of L(Γ). Then the paths in the expanded
graph at step i+ 1 generate strings spliced from paths which are present at step
i. Therefore, the inclusion holds for the completely expanded graph.

For the inverse inclusion we need the following lemma which follows directly
from the method of the cross bullet expansion procedure.

Lemma 2. In the completely expanded graph G, when there is a path ηθσρ where
h(θ) = u1, h(σ) = u2 and u1u2 is the splicing site of the rule ri, then also a path
ηθ′•i occurs in G with h(θ) = h(θ′). Analogously, if in G there is a path ηθσρ
where h(θ) = u3, h(σ) = u4 and u3u4 is the splicing site of the rule ri, then also
a path $iσ

′ρ occurs in G with h(σ) = h(σ′).

A Proof of Regularity for Finite Splicing 317

The inclusion L(Γ) ⊆ L(G) can be shown by induction on the number of
splicing steps. If η is an axiom, the condition trivially holds. Assume that η
derives, by means of a rule ri, from two strings. This means that these strings
can be factored as:

α •i β

γ $i δ

and, by the induction hypothesis, in G there are two paths θ, ρ generating αβ
and γδ, respectively. These paths include as sub-paths h−1(u1u2), h−1(u3u4),
respectively, therefore, according to the previous lemma, a path σ•i is in G
where h(σ) = α and a path $iπ is in G where h(π) = δ. This means that the
path σ •i $iπ is in G, but h(σ •i $iπ) = η, therefore η is generated by a path
of the completely expanded graph. In conclusion, L(Γ) = L(G). The language
L(G) is regular because it is easy to define it by means of a regular expression
deduced from G.

Acknowledgments. I want to express my gratitude to Giuditta Franco, Tom
Head, Victor Mitrana, Gheorghe Păun, and Giuseppe Scollo for their suggestions
that were essential in improving some previous versions of this paper.

References

1. Culik II K., Harju T., The regularity of splicing systems and DNA, in Proc. ICALP
1989, LNCS 372, pp. 222-233, 1989.

2. Culik II K., Harju T., Splicing semigroups of dominoes and DNA, Discrete Applied
Mathematics, 31, pp. 261-277, 1991.

3. Garret R.H., Grisham C.M., Biochemistry, Saunders College Publishing, Harcourt,
1997.

4. Head T., Formal language theory and DNA: an analysis of the generative capacity
of recombinant behaviors, Bulletin of Mathematical Biology, 49, pp. 737-759, 1987.

5. Head T., Păun G., Pixton D., Language theory and molecular genetics, Chapter 7
in: [11], pp. 295-360, 1997.

6. Manca V., Splicing normalization and regularity, in: C. Calude, Gh. Păun, eds.,
Finite versus Infinite. Contributions to an Eternal Dilemma, Springer-Verlag, Lon-
don, 2000.

7. Manca V., On some forms of splicing, in: C. Martin-Vide, V. Mitrana eds., Words,
Sequences, Grammars, Languages: Where Biology, Computer Science, Linguistics
and Mathematics Meet, Kluwer, Dordrecht, 2000.

8. Păun G., Rozenberg G., Salomaa A., DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

9. Pixton D., Regularity of splicing languages, Discrete Applied Mathematics (69)1-2,
pp. 101-124, 1996.

10. Pixton D., Splicing in abstract families of languages, Theoretical Computer Sci-
ence, 234:135–166, 2000.

11. Rozenberg G., Salomaa A. (eds.), Handbook of Formal Languages, 3 Vols.,
Springer-Verlag, Berlin, Heidelberg, 1997.

The Duality of Patterning in Molecular Genetics

Solomon Marcus

Romanian Academy, Mathematics
Calea Victoriei 125
Bucuresti, Romania

solomon.marcus@imar.ro

The first time I met Professor Tom Head, just in the year 1971, was when
I became interested in the triangle linguistics-molecular genetics-mathematics.
Tom Head is a pioneer in the theory of splicing, which became an important
component of the new domain of DNA computing ([5,14,7]). It is nice for me to
remember that in December 1971 I had the chance to be invited by Professor
Head at the University of Alaska, where I gave a series of lectures. A few months
earlier, in July-August 1971, I organized within the framework of the Linguistic
Institute of America (at State University of New York at Buffalo, under the
direction of Professor David Hays) a research seminar on the above mentioned
triangle. My starting point for the seminar was a book by Professor Z. Pawlak,
a famous Polish computer scientist, and the writings of Roman Jakobson on the
link between linguistics and molecular genetics. One of the participants at this
Seminar was Bernard Vauquois, one of the initiators of ALGOL 60. As a result of
this seminar, I published the article [10] and much later [11], where the interplay
nucleotide bases-codons-amino acids-proteins is analyzed in the perspective of
structural linguistics and of formal language theory.

In a retrospect, the notion of splicing was in the immediate neighbourhood
of the ideas investigated there, but we were not able to invent it and to give it an
explicit status. It was the privilege of Tom Head [5,6] to identify it and to show its
generative capacity. In a further steps, [14,7,16,4] developed a comprehensive the-
ory of DNA computing, based on the splicing operation. However, concomitantly
there was another line of development where splicing was not involved, although
potentially it is implied and its relevance can be shown: the Human Genome
Project (HGP). It started around 1990 and was directed towards sequencing the
DNA, identifying the genes and establishing the gene-protein function correla-
tion. This line of research brings to the center of attention the analytic aspects
related to DNA, genes and codons. Obviously, in the context of Watson-Crick
double strand organization, splicing, as a purely combinatorial-sequential op-
eration related to DNA, finds its natural place and should be involved in the
gene-protein interaction. But the aim of this note is more modest and of a very
preliminary nature in respect to the problem we just mentioned. We have in
view the so-called duality of patterning principle and its possible relevance for
molecular genetics. This aspect is not without relation with the gene-protein
interaction, because the duality is in strong relation with the arbitrariness of the
genetic sign, a genetic equivalent of the problem of arbitrariness of the linguistic
sign, discussed by Ferdinand de Saussure.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 318–321, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Duality of Patterning in Molecular Genetics 319

The duality of patterning principle (shortly: duality), discussed for the first
time by Martinet [12,13] and called in French ‘principe de la double articulation’
asserts the existence in language of two levels of structural organization, phono-
logical and grammatical, such that the segments of the latter level are composed
of segments of the former level, called phonemes (see also [9] pages 71-76). There
is here no reference to meaning and no reference to the quantitative aspect of
the units involved in the respective levels. However, phonemes are meaningless
units while forms of the higher level are meaningful units (the meaning may be
lexical or grammatical). Moreover, there is a discrepancy between the relatively
small number of units involved in the lower level and the relatively large number
of units involved in the higher level. As in many other situations, the principle
of least effort seems to be involved here too: try to obtain as many as possible
lexical and grammatical forms by using as few as possible elements of the lower
level (the higher level corresponds to the first articulation, while the lower level
corresponds to the second articulation). Indeed, the number of phonemes is usu-
ally between ten and hundred, while the number of words (or of morphemes) is
usually larger than ten thousands.

When Martinet [12,13] claims that duality is a specific feature of natural
languages, things become very provocative. In other words, no other semiotic
system, particularly no artificial language is endowed with the duality of pat-
terning. In contrast with this claim, researchers in molecular genetics who trusted
the language status of DNA, RNA and proteins claimed just the opposite: du-
ality is an important aspect of molecular genetics or, how Ji calls it [8], of the
cell language.

In [10,11], I gave a detailed presentation of various proposals of interpreta-
tion of duality in molecular genetics and also I gave my interpretation, arguing
in its favor and against other interpretations. In the meantime, other proposals
were published, for instance, those of Collado-Vides [2,3], of Bel-Enguix [1] and
of Ji [8]. Our interpretation was to assimilate the first articulation with the level
of codons and the second articulation with the level of nucleotide bases. This
means that the former are the morphemes of the genetic language, while the
latter are its phonemes. The genetic phonemes are endowed with chemical sig-
nificance, while the genetic morphemes are endowed with biological significance
(because they encode, via the genetic dictionary, some amino acids or some ‘orto-
graphic’ indication, such as ‘start’ or ‘stop’). Ji ([8] page 155) proposes a unique
framework for what he calls “human and cell languages” 1 under the form of a
6-tuple L = (A,W, S,G, P,M), where A is the alphabet, W is the vocabulary
or lexicon (i.e., a set of words), S is an arbitrary set of sentences, G is a set of
rules governing the formation of sentences from words (the first articulation, in
Ji’s interpretation), as well as the formation of words from letters (the second
articulation), P is a set of mechanisms realizing and implementing a language,
and finally M is a set of objects (both mental and material) or processes referred
to by words and sentences. For Ji, the first articulation of the cell language is

1 As a matter of fact, for natural and genetic languages; there are many human lan-
guages other than the natural ones, for instance all artificial languages.

320 Solomon Marcus

identified with the spatio-temporal organization of gene expressions through the
control of DNA folding patterns via conformational (or noncovalent) interac-
tions, while the second articulation is identified with the linear arrangement of
nucleotides to form structural genes through covalent (or configurational) inter-
actions. Ji rediscovers another duality at the level of proteins, where the second
articulation is identified with covalent structures, while the first articulation is
identified with the three-dimensional structures of polypeptides formed through
conformational (or noncovalent) interactions. As it can be seen, for Ji there are
a total of four articulations of the genetic language and the condition of linearity
and sequentiality of a language structure is no longer satisfied. The concept of a
language as a special sign system is in question, and it is no longer clear where
is the border, if there exists such a border, between an arbitrary sign-system
and a language-like sign system. Both Martinet [13] and Lyons ([9] page 74-76)
stress the link between duality and arbitrariness. Duality points out to some
limits of the arbitrariness of the linguistic sign. Can we speak, equivalently, of
the arbitrariness of the “genetic sign”? To what extent is heredity the result of
the combinatorial game expressed by the first articulation, under the limits and
the freedom imposed by the second articulation?

References

1. Bel-Enguix, G. Molecular Computing Methods for Natural Language Syntax, PhD
Thesis, 2000, Univ. of Tarragona, Spain.

2. Collado-Vides, J. A syntactic representation of units of genetic information. J.
Theor. Biol. 148 (1991) 401–429.

3. Collado-Vides, J. The elements for a classification of units of genetic information
with a combinatorial component. J. Theor. Biol., 163 (1993) 527–548.

4. Freund, R., Kari, L., Păun, Gh. DNA computing based on splicing: the existence
of universal computers. Theory of Computing Systems, 32 (1999) 69–112.

5. Head, T. Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biol. 49 (1987) 737–739.

6. Head, T. Splicing schemes and DNA, in Lindenmayer Systems: Impact on Theo-
retical Computer Science and Developmental Biology (G. Rozenberg, A. Salomaa,
eds.) Springer-Verlag, Berlin, (1992) 371–383.

7. Head, T., Păun, Gh., Pixton, D. Language theory and molecular genetics, Chapter
7 in Handbook of Formal Languages (G. Rozenberg, A. Salomaa, eds.), vol. 2 (1997)
295–360.

8. Ji, S. The Bhopalator: an information/energy dual model of the living cell (II).
Fumndamenta Informaticae, 49 1/3 (2002) 147–165.

9. Lyons, J. Semantics I. Cambridge Univ. Press, 1997.
10. Marcus, S. Linguistic structures and generative devices in molecular genetics.

Cahiers de Ling. Theor. et Appl., 11 1 (1974) 77–104.
11. Marcus, S. Language at the crossroad of computation and biology. In Computing

with Bio-molecules: Theory and Experiments (Păun, Gh., ed.), Springer-Verlag,
Singapore, (1998) 1–35.

12. Martinet, A. La double articulation linguistique. Travaux du Cercle Linguistique
de Copenhague, 5 (1949) 30–37.

The Duality of Patterning in Molecular Genetics 321

13. Martinet, A. Arbitraire linguistique et double articulation. Cahiers Ferdinand de
Saussure, 15 (1957)105–116.

14. Păun, Gh. Splicing: a challenge to formal language theorists. Bull. EATCS 57
(1995) 183–194.

15. Păun, Gh. On the splicing operation. Discrete Applied Mathematics, 70 (1996)
57–79.

16. Păun, Gh., Rozenberg, G., Salomaa, A. DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

Membrane Computing:

Some Non-standard Ideas

Gheorghe Păun1,2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania,

george.paun@imar.ro
2 Research Group on Mathematical Linguistics

Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

gp@astor.urv.es

Abstract. We introduce four new variants of P systems, which we call
non-standard because they look rather “exotic” in comparison with sys-
tems investigated so far in the membrane computing area: (1) systems
where the rules are moved across membranes rather than the objects
processed by these rules, (2) systems with reversed division rules (hence
entailing the elimination of a membrane when a membrane with an iden-
tical contents is present nearby), (3) systems with accelerated rules (or
components), where any step except the first one takes half of the time
needed by the previous step, and (4) reliable systems, where, roughly
speaking, all possible events actually happen, providing that “enough”
resources exist. We only briefly investigate these types of P systems, the
main goal of this note being to formulate several related open problems
and research topics.

1 Introduction

This paper is addressed to readers who are already familiar with membrane
computing – or who are determined to become familiar from sources other than
a standard prerequisites section – which will not be present in this paper. Still,
we repeat here a many times used phrase: “A friendly introduction to membrane
computing can be found in [5], while comprehensive details are provided by [4],
or can be found at the web address http://psystems.disco.unimib.it.”

Of course, calling “exotic” the classes of P systems we are considering here is a
matter of taste. This is especially true for the first type, where the objects never
change the regions, but, instead, the rules have associated target indications
and can leave the region where they are used. Considering migratory rules can
remind of the fact that in a cell the reactions are catalyzed/driven/controlled
by chemicals which can move through membranes like any other chemicals – the
difference is that here the “other chemicals” are not moving at all. Actually, P
systems with moving rules were already investigated, by Rudi Freund and his
co-workers, in a much more general and flexible setup, where both the objects

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 322–337, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Membrane Computing: Some Non-standard Ideas 323

and the rules can move (and where universality results are obtained – references
can be found in [4]).

We find the functioning of such systems pretty tricky (not to say difficult),
and only a way to generate the Parikh sets of matrix languages (generated by
grammars without appearance checking) is provided here. Maybe the reader will
prove – or, hopefully, disprove – that these systems are universal.

The second type of “exotic” systems starts from the many-times-formulated
suggestion to consider P systems where for each rule u → v one also uses the
rule v → u. This looks strange in the case of membrane dividing rules, [ia] i →
[ib] i[ic] i, where we have to use the reversed rule [ib] i[ic] i → [ia] i, with the
meaning that if the two copies of membrane i differ only in the objects b, c, then
we can remove one of them, replacing the distinguished object of the remaining
membrane by a. This is a very powerful operation – actually, we have no precise
estimation of “very powerful”, but only the observation that in this way we can
compute in an easy manner the intersection of two sets of numbers/vectors which
are computable by means of P systems with active membranes.

The third idea is to imagine P systems where the rules “learn from experi-
ence”, so that the application of any given rule takes one time unit at the first
application, half of this time at the second application, and so on – the (i+1)th
application of the rule takes half of the time requested by the ith application.
In this way, arbitrarily many applications of a rule – even infinitely many! –
take at most two time units. . . Even a system which never stops (that is, is able
to continuously apply rules) provides a result after a known number of external
time units. Note this important difference, between the external time, measured
in “physical” units of equal length, and the computational time, dealing with
the number of rules used. When the rules are to be used in parallel, delicate
synchronization problems can appear, because of the different time interval each
rule can request, depending on how many times each rule has already been used
in the computation.

However, characterizations of Turing computable numbers are found by
means of both cooperative multiset rewriting-like rules and by antiport rules of
weight 2 where the rules are accelerated. Clearly, the computation of infinite sets
is done in a finite time. Universality reasons show that all Turing computable
sets of numbers can be computed in a time bounded in advance. A concrete
value of this bound remains to be found, and this seems to be an interesting
(mathematical) question.

Of course, the acceleration can be considered not only at the level of rules, but
also at the level of separate membranes (the first transition in such a membrane
takes one time unit, the second one takes half of this time, and so on), or directly
at the level of the whole system. These cases are only mentioned and left as a
possible research topic (for instance, as a possible way to compute “beyond
Turing” – as it happens wuth accelerated Turing machines, see [1], [2], [3]).

The same happens with the idea to play a similar game with the space
instead of the time. What about space compression (whatever this could mean)
or expansion (idem)? The universe itself is expanding, so let us imagine that in

324 Gheorghe Păun

some regions of a P system the objects (and membranes) are doubled from time
to time, just like that, without applying individual rules – still, some rules for
controlling this global doubling should be considered. Any quantum computing
links? Especially: any application in “solving” hard problems in a fast way?

Finally, the fourth idea originates in the observation that there is a striking
difference between classic computer science (complexity theory included), based
on (assumed) deterministic functioning of computers, and bio-computations, as
carried in DNA computing and as imagined in membrane computing: if we have
“enough” molecules in a test tube, then all possible reactions will actually hap-
pen. This is far from a mathematical assertion, but many DNA computing ex-
periments, including the history-making one by Adleman, are based on such
assumptions (and on the mathematical fact that a positive solution can be ef-
fectively checked in a feasible time). The belief is that reality arranges things
around the average, it does not deal with worst cases; probabilistically stated,
“the frequency tends to the probability”. If something has a non-zero probability,
then eventually it will happen. We just have to provide “enough” possibilities
to happen (attempts, resources, etc).

Here, we formulate this optimistic principle in the following way: if we have
“enough” objects in a membrane, then all rules are applied in each transition.
The problem is to define “enough”. . . and we take again an optimistic decision:
if each combination of rules has polynomially many chances with respect to the
number of combinations itself, then each combination is applied. This is espe-
cially suitable (and clear) for the case of string-objects: if we have n combinations
of rules which can be applied to an existing string, then each combination will
be applied to at least one string, providing that we have at least n · p(n) copies
of the string available, for some polynomial p(x) specific to the system we deal
with. A P system having this property is said to be reliable.

Clearly, a deterministic system is reliable, and the polynomial p(x) is the
constant, p(n) = 1, so of more interest is to assume this property for nondeter-
ministic P systems. Such systems are able to solve NP-complete problems in
polynomial time. We illustrate this possibility for SAT, which is solved in linear
time by means of reliable systems with string-objects able to replicate strings of
length one (in some sense, we start with symbol-objects processed by rules of
the form a → bb, we pass to strings by rules b → w, and then we process the
string-objects w and the strings derived from them, as usual in P systems, with
string-objects).

2 Moving Rules, Not Objects

We consider here only the symbol-object case, with multiset rewriting-like rules.
After being applied, the rules are supposed to move through membranes; this
migration is governed by a metarules of the form (r, tar), existing in all regions,
with the meaning that the multiset-processing rule r, if present in the region,
after being used has to go to the region indicated by tar; as usual, tar can be
one of here, out, in.

Membrane Computing: Some Non-standard Ideas 325

More formally, a P system with migrating rules is a construct

Π = (O,C, T,R, μ, w1, . . . , wm, R1, . . . , Rm, D1, . . . , Dm, io),

where:

1. O is the alphabet of objects;
2. C ⊆ O is the set of catalysts;
3. T ⊆ (O − C) is the set of terminal objects;
4. R is a finite set of rules of the form u → v, where u ∈ O+, v ∈ O∗; the

catalytic rules are of the form ca→ cu for c ∈ C, a ∈ O−C, and u ∈ (O−C)∗;

5. μ is a membrane structure of degree m, with the membranes labeled in a
one to one manner with 1, 2, . . . ,m;

6. w1, . . . , wm are strings over O specifying the multisets of objects present in
the m regions of μ at the beginning of the computation;

7. R1, . . . , Rm are subsets of R, specifying the rules available at the beginning
of the computation in the m regions of μ;

8. D1, . . . , Dm are sets of pairs – we call them metarules – of the form (r, tar),
with r ∈ R and tar ∈ {here, out, in} associated with the m regions of μ;

9. 1 ≤ io ≤ m is the output membrane of the system, an elementary one in μ.

Note that the objects from regions are present in the multiset sense (their
multiplicity matters), but the rules are present in the set sense – if present, a
rule is present in principle, as a possibility to be used. For instance, if at some
step of a computation we have a rule r in a region i and the same rule r is sent
in i from an inner or outer region to i, then we will continue to have the rule r
present, not two or more copies of it.

However, if a rule r is present in a region i, then it is applied in the nondeter-
ministic maximally parallel manner as usual in P systems: we nondeterministi-
cally assign the available objects to the available rules, such that the assignment
is exhaustive, no further object can evolve by means of the existing rules. Objects
have no target indication in the rules of R, hence all objects obtained by apply-
ing rules remain in the same region. However, the applied rules move according
to the pairs (r, tar) from Di.

Specifically, we assume that we apply pairs (r, tar), not simply rules r. For in-
stance, if in a region i we have two copies of a and two metarules (r, here), (r, out)
for some r : a → b which is present in region i, then the two copies of a can
evolve both by means of (r, here), or one by (r, here) and one by (r, out), or both
by means of (r, out). In the first case, the rule r remains in the same region, in
the second case the rule will be available both in the same region and outside
it, while in the third case the rule r will be available only in the region outside
membrane i (if this is the environment, then the rule might be “lost”, because
we cannot take it back from the environment). Anyway, both copies of a should
evolve (the maximality of the parallelism). If r is not present, then a remains un-
changed; if a is not present, then the rule is not used, hence it remains available
for the next step.

326 Gheorghe Păun

Thus, a rule can be used an arbitrarily large number of times in a region,
and for each different target tar from pairs (r, tar) used, a different region of the
system will have the rule available in the next step.

The sets Di, 1 ≤ i ≤ m, are not necessarily “R-complete”, that is, not each
rule r ∈ R has a metarule (r, tar) in each region; if a rule r arrives in a region i
for which no metarule (r, tar) is provided by Di, then the rule cannot be used, it
is ignored from that step on (in region i). Thus, in each set Di we can have none,
one, two, or three different pairs (r, tar) for each r, with different tar ∈ {here,
out, in}.

The computation starts from the initial configuration of the system, that
described by w1, . . . , wm, R1, . . . , Rm, and evolves according to the metarules
from D1, . . . , Dm. With a halting computation we associate a result, in the form
of the vector ΨT (w) describing the multiplicity of elements from T present in the
output membrane io in the halting configuration (thus, w ∈ T ∗, the objects from
O − T are ignored). We denote by Ps(Π) the set of vectors of natural numbers
computed in this way by Π .

As usual, the rules from R can be cooperative, catalytic, or noncooperative.
We denote by PsRMPm(α) the family of sets of vectors Ps(Π) computed as
above by P systems with rule migration using at most m ≥ 1 membranes, with
rules of type α ∈ {coo, cat, ncoo}.

The systems from the proof of the next theorem illustrate the previous defi-
nition – and also shed some light on the power of P systems with migrating rules.
We conjecture (actually, we mainly hope) that these systems are not universal.
(In the theorem below, PsMAT is the family of Parikh images of languages
generated by matrix grammars without appearance checking.)

Theorem 1. PsMAT ⊂ PsRMP2(cat).

Proof. Let us consider a matrix grammar without appearance checking G =
(N,T, S,M) in the binary normal form, that is, with N = N1 ∪ N2 ∪ {S} and
the matrices from M of the forms (1) (S → XA), X ∈ N1, A ∈ N2, (2) (X →
Y,A → x), X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, and (3) (X → λ,A → x), X ∈
N1, A ∈ N2, x ∈ T ∗; the sets N1, N2, {S} are mutually disjoint and there is only
one matrix of type (1). We assume all matrices of types (2) and (3) from M
labeled in a one to one manner with elements of a set H . Without any loss of
generality we may assume that for each symbol X ∈ N1 there is at least one
matrix of the form (X → α,A → x) in M (if a symbol X does not appear in such
a matrix, then it can be removed, together with all matrices which introduce it
by means of rules of the form Z → X).

We construct the P system with migrating rules

Π = (O, {c}, T, R, [1[2]2]1, w1, w2, R1, R2, D1, D2, 1),

Membrane Computing: Some Non-standard Ideas 327

where:

O = N1 ∪N2 ∪ T ∪ {A′ | A ∈ N2} ∪ {h, h′, h′′, h′′′ | h ∈ H} ∪ {c,#},
R = {r1,h : X → h,

r2,h : h→ h′,
r3,h : h′ → h′′,
r4,h : h′′ → h′′′,
r5,h : ch′′′ → c#,

r6,h : h′′′ → α,

r7,h : h→ Ah′′,
r8,h : cA→ cx′ | for all h : (X → α,A→ x) ∈M,

X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, x ∈ (N2 ∪ T)∗}
∪ {rB : B′ → B,

r′B : B → B | for all B ∈ N2}
∪ {rX : X → XX,

r′X : X → λ | for all X ∈ N1}
∪ {r∞ : #→ #},

where x′ is the string obtained by priming all symbols
from N2 which appear in x ∈ (N2 ∪ T)∗ and
leaving unchanged the symbols from T,

w1 = cX1 . . . Xs, for N1 = {X1, X2, . . . , Xs}, s ≥ 1,
w2 = cXA, for (X → XA) being the initial matrix of G,

R1 = {r4,h, r6,h, r7,h, r8,h | h ∈ H}
∪ {rX , r′X | X ∈ N1},

R2 = {r1,h, r2,h, r3,h, r4,h, r5,h | h ∈ H}
∪ {rB, r′B | B ∈ N2}
∪ {r∞},

and with the following sets of metarules:

D1 contains the pair (r, here) for all rules r ∈ R with the exception of the rules
from the next pairs
(r1,h, out), (r6,h, out), (r8,h, out), for all h ∈ H , which are in D1, too;

D2 contains the pair (r, here) for all rules r ∈ R with the exception of the rules
from the next pairs
(r1,h, in), (r6,h, in), (r8,h, in), for all h ∈ H , which are in D2, too.

Note that the metarules are “deterministic”, in the sense that for each r ∈ R
there is only one pair (r, tar) in each of D1 and D2, and that the only migrating
rules are r1,h, r6,h, r8,h, for each h ∈ H . Initially, r1,h is in region 2 and r6,h, r8,h

are in region 1.

328 Gheorghe Păun

For the reader convenience, the initial configuration of the system, includ-
ing the metarules different from (r, here) from the two regions, is pictorially
represented in Figure 1.

Figure 1: The P systems with migrating rules from Theorem 1.

�

	

�

�

	

�

1

2

cX1X2 . . . Xs

r4,h : h′′ → h′′′

r6,h : h′′′ → α
r7,h : h→ Ah′′

r8,h : cA→ cx′

rX : X → XX
r′X : X → λ

(r1,h, in)

(r6,h, in)

(r8,h, in)

cXA

r1,h : X → h
r2,h : h→ h′

r3,h : h′ → h′′

r4,h : h′′ → h′′′

r5,h : ch′′′ → c#
rB : B′ → B
r′B : B → B
r∞ : #→ #

(r1,h, out)
(r6,h, out)
(r8,h, out)

The skin region contains the rules X → XX and X → λ for each X ∈ N1;
they can produce any necessary copy of symbols from N1 and can also remove
all such symbols in the end of a computation. The inner region contains a rule
B → B for each B ∈ N2, hence the computation will continue as long as any
symbol from N2 is present.

Assume that we start with a multiset cXw, X ∈ N1, w ∈ (N2∪T)∗ in region
2 – initially, we have here cXA, for XA introduced by the initial matrix of G.
The only possibility (besides rules r′B : B → B which we will ignore from now
on) is to use a rule of the form r1,h for some matrix h : (X → α,A → x). We
obtain the object h in region 2, and the rule r1,h goes to region 1.

Assume that in region 1 we have available a copy of X , moreover, we use it
for applying the rule r1,h; thus, the rule r1,h returns to the inner region. At the
same time, in region 2 we use the rule r2,h : h → h′. Now we have h in region
1 and h′ in region 2; no nonterminal from N1 is available in region 2, so no rule
of type r1,g, g ∈ H , can be used. Simultaneously, we use now r3,h : h′ → h′′ in

Membrane Computing: Some Non-standard Ideas 329

region 2 and r7,h : h → Ah′′ in region 1. Both rules remain in the respective
regions.

We continue with r4,h : h′′ → h′′′ in region 2, and with both r4,h : h′′ → h′′′

and r8,h : cA → cx′ in region 1. The first two rules remain in the respective
regions, the last one goes to region 2. In region 2 we have available both rules
r5,h : ch′′′ → c# and r8,h : cA → cx′ (but not also r6,h : h′′′ → α, which is still
in region 1). If the rule rr,5 : ch′′′ → c# is used, then the computation will never
finish. Thus, we have to use the rule r8,h : cA→ cx′, which simulates the second
rule of the matrix h, with the nonterminals of x primed. In parallel, in region 1
we have to use the rule r6,h : h′′′ → α, which has then to enter region 2. In this
way, at the next step in region 2 we can avoid using the rule r5,h : ch′′′ → c#
and use the rule r6,h : h′′′ → α, which completes the simulation of the matrix h
(in parallel, the rules rB – always available – return x′ to x).

If X is not present in region 1, or only one copy of X is present and we do not
apply to it the rule X → h, then the rule r7,h is not used in the next step, hence
neither r6,h and r8,h after that, and then the use of the rule r5,h : ch′′′ → c#
cannot be avoided, and # is intoduced in membrane 2, making the computation
never halt.

In the case when α ∈ N1, the process can be iterated: after simulating any
matrix, the rules r1,h, r6,h, r8,h are back in the regions where they were placed
in the beginning; note that the symbols from N2 present in region 1 are primed,
hence the rules r8,h cannot use them, while the possible symbol Y introduced in
region 1 is just one further copy of such symbols already present here.

In the case when α = λ, hence h was a terminal matrix, the computation
stops if no symbol B ∈ N2 is present in region 2 (hence the derivation in G
is terminal), or continue forever otherwise. Consequently, Ps(N) = ΨT (L(G)),
which shows that we have the inclusion PsMAT ⊆ PsRMP2(cat).

This is a proper inclusion. In fact, we have the stronger assertion
PsRMP1(ncoo)−PsMAT �= ∅, which is proved by the fact that one-membrane
P systems can compute one-letter non-semilinear sets of numbers (such sets
cannot be Parikh sets of one-letter matrix languages). This is the case with the
following system

Π = ({a}, ∅, {a}, {h : a→ aa}, [1]1, a, {h}, {(h, here), (h, out)}, 1).

In each step we double the number of copies of a existing in the system; if we
use at least once the metarule (h, here), then the computation continues, oth-
erwise the rule is “lost” in the environment and the computation halts. Clearly,
Ps(Π) = {(2n) | n ≥ 1}, which is not in PsMAT . �

We do not know whether the result in Theorem 1 can be improved, by com-
puting all Parikh images of recursively enumerable languages, or – especially
interesting – by using only non-cooperative rules.

The system constructed at the beginning of the previous proof has never
replicated a rule, because in each region each rule had only one target associ-
ated by the local metarules. In the case when the metarules specify different

330 Gheorghe Păun

targets for the same rule, we can either proceed as in the definition given above,
or we can restrict the use of metarules so that only one target is used. On the
other hand, we can complicate the matter by adding further features, such as the
possibility to dissolve a membrane (then both the objects and the rules should
remain free in the immediately upper membrane), or the possibility to also move
objects through membranes. Furthermore, we can take as the result of a compu-
tation the trace of a designated rule in its passage through membranes, in the
same way as the trace of a traveller-object was considered in “standard” (sym-
port/antiport) P systems. Then, we can pass to systems with symport/antiport
rules; in such a case, out will mean that the rule moves up and gets associ-
ated with the membrane immediately above the membrane with which the rule
was associated (and applied), while in will mean going one step down in the
membrane structure. Otherwise stated, the targets are, in fact, here, up, down.

Plenty of problems, but we switch to another “exotic” idea.

3 Counter-Dividing Membranes

The problem to consider reversible P systems was formulated several times –
with “reversible” meaning both the possibility to reverse computations, like in
dynamic systems, and local/strong reversibility, at the level of rules: considering
v → u at the same time with u → v. For multiset rewriting-like rules this does
not seems very spectacular (although most proofs from the membrane computing
literature, if not all proofs, will get ruined by imposing this restriction to the
existing sets of rules, at least because the synchronization is lost). The case
of membrane division rules looks different/strange. A rule [ia] i → [ib] i[ic] i
produces two identical copies of the membrane i, replicating the contents of the
divided membrane, the only difference between the two copies being that objects
b and c replace the former object a. Moreover, generalizations can be considered,
with division into more than two new membranes, with new membranes having
(the same contents but) different labels. Also, we can divide both elementary
and non-elementary membranes.

Let us stay at the simplest level, of rules [ia] i → [ib] i[ic] i which deal with
elementary membranes only, 2 division, and the same label for the new mem-
branes. Reversing such a rule, hence considering a rule [

i
b]

i
[
i
c]

i
→ [

i
a]

i
, will

mean to pass from two membranes with the label i and identical contents up to
the two objects b and c present in them to a single membrane, with the same
contents and with the objects b, c replaced by a new object, a. This operation
looks rather powerful, as in only one step it compares the contents of two mem-
branes, irrespective how large they are, and removes one of them, also changing
one object.

How to use this presumed power, for instance, for obtaining solutions to
computationally hard problems, remains to be investigated. Here we are only
mentioning the fact that this counter-division operation can be used in order to
build a system which computes the intersection of the sets of numbers/vectors
computed by two given systems. The idea is suggested in Figure 2. Consider two

Membrane Computing: Some Non-standard Ideas 331

P systems, Π1 and Π2. Associate with each of them one membrane with label
i. Embed one of the systems, say Π2, together with the associated membrane
i, in a further membrane, with label 2, and then all these membranes into a
skin membrane (1, in Figure 2). Let the systems Π1, Π2 work and halt; the
objects defining the results are moved out of the two systems and then into
the corresponding membranes with label i. At some (suitable) moment, dissolve
membrane 2. Now, by a rule [ib] i[ic] i → [ia] i we check whether or not the
two systems have produced the same number (or vector of numbers), and, in
the affirmative case, we stop. (For instance, each membrane i can evolve forever
by means of suitable rules applied to b and c, respectively; after removing one
of the membranes, the object a newly introduced will not evolve, hence the
computation can stop.) Of course, several details are to be completed, depending
on the type of the systems we work with.

Figure 2: Computing the intersection.

�

	

�

�

	

�

�
�

�
�

�
�

�
�

�

	

�
�
�

�
�

1
2

Π1

Π2

i i

b c

���

� � �

�� �

���

Now, again the question arises: is this way to compute the intersection of any
usefulness? We avoid addressing this issue, and pass to the third new type of P
systems.

4 Rules (and Membranes) Acceleration

A new type of P systems, but not a new idea: accelerated Turing machines were
considered since many years, see [1], [2], [3] and their references. Assume that
our machine is so clever that it can learn from its own functioning, and this
happens at the spectacular level of always halving the time needed to perform a
step; the first step takes, as usual, one time unit. Then, in 1+ 1

2 + 1
4 + . . .+ 1

2n +
. . . = 2 time units the machine performs an infinity of steps, hence finishing the
computation. . . Beautiful, but exotic. . .

Let us consider P systems using similarly clever rules, each one learning
from its own previous applications and halving the time needed at the next

332 Gheorghe Păun

application. Because at the same time we can have several rules used in parallel,
in the same region or in separate regions, a problem appears with the cooperation
of rules, with the objects some rules are producing for other rules to use. As it
is natural to assume, such objects are available only after completing the use of
a rule. Because the rules have now different “speeds” of application, we have to
take care of the times when they can take objects produced by other rules.

How long – in terms of time units, not of computational steps (of used rules)
– lasts a computation? For Turing machines, two time units are sufficient for
carrying out any computation. In our case, each rule can take two time units,
so a system with n rules, not necessarily used in paralel, will compute for at
most 2n time units. Thus, if we were able to find accelerated P systems able to
compute all Turing computable sets of numbers/vectors, then an upper bound
can be obtained on the time needed for all these computations, by considering
a universal P system (hence with a given number of rules). The only problem
is to find P systems (of various types) able to compute all computable sets of
numbers/vectors in the accelerated mode.

It is relatively easy to find such systems – the trick is to ensure that no two
rules are used in parallel, and then no synchronization problem appears.

Consider first the case of symbol-object P systems with multiset rewriting-
like rules of a cooperative type. It is easy to see that the P system constructed
in the proof of Theorem 3.3.3 from [4] computes the same set of numbers with
or without having accelerated rules (with the exception of rules dealing with the
trap symbol #, which anyway make the computation to never stop, all other
rules are not used in parallel).

The same assertion is obtained also for P systems with symport/antiport
rules – specifically, for systems with antiport rules of weight 2 and no symport
rule. Because of the technical interest in the proof of this assertion, we give it in
some details. Let N(Π) be the set of numbers computed by a P system Π and
let NOPm(acc, symr, antis) be the family of sets N(Π) computed by systems
with at most m membranes, using accelerated symport rules of weight at most r
and antiport rules of weight at most s. By NRE we denote the family of Turing
computable sets of natural numbers (the length sets of recursively enumerable
languages).

Theorem 2. NRE ⊆ NOP1(acc, sym0, anti2).

Proof. Consider a matrix grammar with appearance checking G =
(N,T, S,M,F) in the Z-binary normal form. Therefore, we have N = N1 ∪
N2 ∪ {S,Z,#}, with these three sets mutually disjoint, and the matrices in M
are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y,A→ #), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules
A → # appearing in matrices of type 3, and if a sentential form generated by

Membrane Computing: Some Non-standard Ideas 333

G contains the object Z, then it is of the form Zw, for some w ∈ (T ∪ {#})∗
(that is, the appearance of Z makes sure that, except for Z and, possibly, #, all
objects which are present in the system are terminal); # is a trap-object, and
the (unique) matrix of type 4 is used only once, in the last step of a derivation.

We construct the following P system with accelerated antiport rules:

Π = (O, T, [1]1, XA,O,R1, 1),
O = N1 ∪N2 ∪ T ∪ {A′, YA, Y ′

A | Y ∈ N1, A ∈ N2 ∪ {Z}}
∪ {〈Y α〉 | Y ∈ N1, α ∈ N2 ∪ T ∪ {λ}} ∪ {Z,#},

R1 = {(XA, out; 〈Y α1〉α2, in),
(〈Y α1〉, out;Y α1, in) | for (X → Y,A→ α1α2) ∈M,

with X,Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ T ∪ {λ}}
∪ {(X, out;YAA′, in),

(A′A, out; #, in),
(YA, out;Y ′

A, in),
(Y ′

AA′, out;Y, in) | for (X → Y,A→ #) ∈M,

with X ∈ N1, Y ∈ N2 ∪ {Z}, A ∈ N2}
∪ {(#, out; #, in)}
∪ {(X, out;X, in) | X ∈ N1}.

The equality N(Π) = {|w| | w ∈ L(G)} can easily be checked, even for
the accelerated way of working. Indeed, never two rules are used in parallel,
hence the acceleration makes no trouble. Now, the matrices (X → Y,A→ α1α2)
without appearance checking rules can be directly simulated by means of rules
(XA, out; 〈Y α1〉α2, in), (〈Y α1〉, out;Y α1, in). A matrix (X → Y,A→ #) is sim-
ulated as follows. First, we use (X, out;YAA′, in), hence X is sent to the envi-
ronment and YA, A′ enter the system (note that all objects are available in the
environment in arbitrarily many copies). If any copy of A is present in the sys-
tem, then the rule (A′A, out; #, in) must be used and the computation will never
halt. If A is not present, then the object A′ waits in the system for the object Y ′

A,
which is introduced by the rule (YA, out;Y ′

A, in). By the rule (Y ′
AA′, out;Y, in)

we then send out the auxiliary objects Y ′
A, A′ and bring in the object Y , thus

completing the simulation of the matrix. As long as any symbol X ∈ N1 is
present, the computation continues, at least by the rule (X, out;X, in). Because
always we have at most one object X ∈ N1 in the system, no synchronization
problem appears. When the symbol Z is introduced, this means that the deriva-
tion in G is concluded. No rule processes the object Z in the system Π . If the
object # is present, then the computation will continue forever, otherwise also
the computation in Π stops. Thus, we stops if and only if the obtained multiset
– minus the object Z – corresponds to a terminal string generated by G, and
this concludes the proof. �

Several research topics remain to be investigated also in this case. One of
them was already mentioned: find a constant U such that each set H ∈ NRE

334 Gheorghe Păun

can be computed in at most U time units by a P system of a given type (for
instance, corresponding to the family NOP1(acc, sym0, anti2)). To this aim, it is
first necessary to find a universal matrix grammar with appearance checking in
the Z-normal form (or to start the proof from other universal devices equivalent
with Turing machines).

Then, it is natural to consider P systems where certain components are accel-
erated. In two time units, such a component finishes its work, possibly producing
an element from a set from NRE. Can this be used by the other membranes of
the system in order to speed-up computations or even to go beyond Turing, com-
puting sets of numbers which are not Turing computable? This speculation has
been made from time to time with respect to bio-computing models, membrane
systems included, but no biologically inspired idea was reported able to reach
such a goal. The acceleration of rules and/or of membranes can be a solution –
though not necessarily biologically inspired.

Indeed, accelerated Turing machines can solve Turing undecidable problems,
for instance, the halting problem, in the following sense. Consider a Turing ma-
chine M and an input w for it. Construct an accelerated Turing machine M ′,
obtained by accelerating M and also providing M ′ with a way to output a signal
s if and only if M halts when starting with w on its tape. Letting M ′ work, in
two time units we have the answer to the question whether or not M halts on w:
if M halts, then also M ′ halts and provides the sugnal s; if M does not halt, then
neither M ′ halts, but its computation, though infinite, lasts only two time units.
So, M halts on w if and only if M ′ outputs s after two time units. Again, it is
important to note the difference between the external time (measured in “time
units”), and the internal duration of a computation, measured by the number
of rules used by the machine. Also important is the fact that M ′ is not a proper
Turing machine, because “providing a signal s” is not an instruction in a Turing
machine. (This way to get an information about a computation reminds of the
way of solving decision problems by P systems, by sending into the environment
a special object yes. The difference is that sending objects outside the system
is a “standard instruction” in P systems.) Further discussions about accelerated
Turing machines and their relation with “so-called Turing-Church thesis” can
be found, e.g., in [2].

It is now natural to use acceleration for constructing P systems which can
compute Turing non-computable sets of numbers (or functions, or languages,
etc). In the string-objects case with cooperative rules this task is trivial: just
take a Turing machine and simulate it by a P system; an accelerated Turing
machine able of non-Turing computations will lead to a P system with the same
property.

The symbol-object case does not look similarly simple. On the one hand, we
do not know such a thing like an accelerated deterministic register machine (or
matrix grammar with appearance checking). On the other hand, we have to make
sure that the simulation of such a machine by means of a P system of a given
type faithfully corresponds to the functioning of the machine: the system has to
stop if and only if the machine stops. This is not the case, for instance, with the

Membrane Computing: Some Non-standard Ideas 335

system from the proof of Theorem 2, because of the intrinsically nondeterministic
behavior of Π : the trap symbol # can be introduced because of the attempt to
simulate a “wrong” matrix, the derivation in G could correctly continue and
eventually correctly halt, but the system fails to simulate it. It seems to be a
challenging task to find an accelerated symport/antiport system which can avoid
this difficulty (and hence can compute Turing non-computable sets of numbers).

Actually, in [3] one discusses ten possibilities of changing a Turing machine
in such a way to obtain “hypercomputations” (computations which cannot be
carried out by usual Turing machines); we do not recall these possibilities here,
but we only point out them to the reader interested in “going beyond Turing”.

5 Reliable P Systems

As suggested in the Introduction, the intention behind the definition of reliable
P systems is to make use of the following observation. Assume that we have some
copies of an object a and two rules, a→ b and a→ c, in the same region. Then,
some copies of a will evolve by means of the first rule and some others by means
of the second rule. All combinations are possible, from “all copies of a go to b”
to “all copies of a go to c”. In biology and chemistry the range of possibilities is
not so large: if we have “enough” copies of a, then “for sure” part of them will
become b and “for sure” the other part will become c. What “enough” can mean
depends on the circumstances. At our symbolic level, if we have two copies of
a we cannot expect that “for sure” one will become b and one c, but starting
from, say, some dozens of copies can ensure that both rules are applied.

We formulate this observation for string rewriting. Assume that a string w
can be rewritten by n rules (each of them can be applied to w). The system we
work with is reliable if all the n rules are used as soon as we have at least n · nk

copies of w, for a given constant k depending on the system. If we work with
parallel rewriting and n possible derivations w =⇒ wi, 1 ≤ i ≤ n, are possible,
then each one happens as soon as we have at least n · nk copies of w.

We consider here polynomially many opportunities for each of the n alterna-
tives, but other functions than polynomials can be considered; constant functions
would correspond to a “very optimistic” approach, while exponential functions
would indicate a much less optimistic approach.

Instead of elaborating more at the general level (although many topics arise
here: give a fuzzy sets, rough sets, or probabilistic definition of reliability; provide
some sufficient conditions for it, a sort of axioms entailing reliability; investigate
its usefulness at the theoretical level and its adequacy/limits in practical appli-
cations/experiments), we pass directly to show a way to use the idea of reliability
in solving SAT in linear time.

Consider a propositional formula C in the conjunctive normal form, consist-
ing of m clauses Cj , 1 ≤ j ≤ m, involving n variables xi, 1 ≤ i ≤ n. We
construct the following P system (with string-objects, and both replicated and
parallel rewriting – but the rules which replicate strings always applicable to
strings of length one only) of degree m:

336 Gheorghe Păun

Π = (V, μ, b0, λ, . . . , λ, R1, . . . , Rm),
V = {bi | 0 ≤ i ≤ r} ∪ {ai, ti, fi | 1 ≤ i ≤ n},
μ = [1[2 . . . [m−1[m]m]m−1 . . .]2]1,

Rm = {bi → bi+1||bi+1 | 0 ≤ i ≤ r − 1}
∪ {br → a1a2 . . . an}
∪ {ai → ti, ai → fi | 1 ≤ i ≤ n}
∪ {(ti → ti, out) | if xi appears in Cm, 1 ≤ i ≤ n}
∪ {(fi → fi, out) | if ∼ xi appears in Cm, 1 ≤ i ≤ n},

Rj = {(ti → ti, out) | if xi appears in Cj , 1 ≤ i ≤ n}
∪ {(fi → fi, out) | if ∼ xi appears in Cj , 1 ≤ i ≤ n},

for all j = 1, 2, . . . ,m− 1.

The parameter r from this construction depends on the polynomial which
ensures the reliability of the system – see immediately bellow what this means.

The work of the system starts in the central membrane, the one with the
label m. In the first r steps, by means of replicating rules of the form bi →
bi+1||bi+1, we generate 2r strings br (of length one; this phase can be considered
as using symbol objects, and then the rules are usual multiset rewriting rules,
bi → b2

i+1). In the next step, each br is replaced by the string a1a2 . . . , an. No
parallel rewriting was used up to now, but in the next step each ai is replaced
either by ti or by fi. We have 2n possibilities of combining the rules ai → ti, ai →
fi, 1 ≤ i ≤ n. If 2r is “large enough” with respect to 2n, then we may assume
that all the 2n combinations really happen. This is the crucial reliability-based
step. For each of the 2n possibilities we need (2n)k opportunities to happen.
This means that we need to have a large enough r such that 2r ≥ 2n · (2n)k,
for a constant k (depending on the form of rules, hence on SAT). This means
r ≥ n(k + 1) – hence this is the number of steps we need to perform before
introducing the strings a1a2 . . . an in order to ensure that we have “enough”
copies of these strings.

After having all truth-assignments generated in membrane m, we check
whether or not there is at least one truth-assignment which satisfies clause Cm;
all truth-assignments for which Cm is true exit membrane m. In membrane m−1
we check the satisfiability of clause Cm−1, and again we pass one level up all
truth-assignments which satisfy Cm−1. We continue in this way until reaching
the skin region, where we check the satisfiability of C1. This means that after
the r + 3 steps in membrane m we perform further m − 1 steps; in total, this
means r + m + 2 steps.

The formula C is satisfiable if and only if at least one string is sent out of
the system in step r + m + 2. Because r is linearly bounded with respect to n,
the problem was solved in a linear time (with respect to both n and m).

Note that the system is of a polynomial size with respect to n and m, hence
it can be constructed in polynomial time by a Turing machine starting from C.
If we start from a formula in the 3-normal form (at most three variables in each
clause), then the system will be of a linear size in terms of n and m.

Membrane Computing: Some Non-standard Ideas 337

Reliability seems to be both a well motivated property, closely related to
the biochemical reality, and a very useful one from a theoretical point of view;
further investigations in this area are worth pursuing.

References

1. B.J. Copeland, Even Turing machines can compute uncomputable functions, in
Unconventional Models of Computation (C.S. Calude, J. Casti, M.J. Dinneen, eds.),
Springer-Verlag, Singapore, 1998, 150–164.

2. B.J. Copeland, R. Sylvan, Beyond the universal Turing machine, Australasian Jour-
nal of Phylosophy, 77 (1999), 46–66.

3. T. Ord, Hypercomputation: compute more than the Turing machine, Honorary The-
sis, Department of Computer Science, Univ. of Melbourne, Australia, 2002 (available
at http://arxiv.org/ftp/math/papers/0209/0209332.pdf).

4. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. Gh. Păun, G. Rozenberg, A guide to membrane computing, Theoretical Computer

Science, 287 (2002), 73–100.

The P Versus NP Problem Through Cellular

Computing with Membranes

Mario J. Pérez-Jiménez, Alvaro Romero-Jiménez, and
Fernando Sancho-Caparrini

Dpt. Computer Science and Artificial Intelligence
E.T.S. Ingenieŕıa Informática. University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{Mario.Perez, Alvaro.Romero, Fernando.Sancho}@cs.us.es

Abstract. We study the P versus NP problem through membrane sys-
tems. Language accepting P systems are introduced as a framework al-
lowing us to obtain a characterization of the P �= NP relation by the
polynomial time unsolvability of an NP–complete problem by means of
a P system.

1 Introduction

The P versus NP problem [2] is the problem of determining whether every
language accepted by some non-deterministic algorithm in polynomial time is
also accepted by some deterministic algorithm in polynomial time. To define
the above problem precisely we must have a formal definition for the concept
of an algorithm. The theoretical model to be used as a computing machine in
this work is the Turing machine, introduced by Alan Turing in 1936 [10], several
years before the invention of modern computers.

A deterministic Turing machine has a transition function providing a func-
tional relation between configurations; so, for every input there exists only one
computation (finite or infinite), allowing us to define in a natural way when an
input is accepted (through an accepting computation).

In a non-deterministic Turing machine, for a given configuration several suc-
cessor configurations can exist. Therefore, it could happen that for a given input
different computations exist. In these machines, an input is accepted if there
exists at least one finite accepting computation associated with it.

The class P is the class of languages accepted by some deterministic Turing
machine in a time bounded by a polynomial on the length (size) of the input.
From an informal point of view, the languages in the class P are identified with
the problems having an efficient algorithm that gives an answer in a feasible
time; the problems in P are also known as tractable problems.

The class NP is the class of languages accepted by some non-deterministic
Turing machine where for every accepted input there exists at least one accepting
computation taking an amount of steps bounded by a polynomial on the length
of the input.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 338–352, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The P Versus NP Problem Through Cellular Computing with Membranes 339

Every deterministic Turing machine can be considered as a non-deterministic
one, so we have P ⊆NP. In terms of the previously defined classes, the P versus
NP problem can be expressed as follows: is it verified the relation NP ⊆ P?

The P ?= NP question is one of the outstanding open problems in theoret-
ical computer science. The relevance of this question does not lie only in the
inherent pleasure of solving a mathematical problem, but in this case an an-
swer to it could provide an information of a high practical interest. For instance,
a negative answer to this question would confirm that the majority of current
cryptographic systems are secure from a practical point of view. On the other
hand, a positive answer could not only entail the vulnerability of cryptographic
systems, but this kind of answer is expected to come together with a general pro-
cedure which will provide a deterministic algorithm solving any NP-complete
problem in polynomial time.

Moreover, the problems known to be in the class NP but not known to be
in P are varied and of highest practical interest. An NP–complete problem is a
hardest (in certain sense) problem in NP; that is, any problem in NP could be
efficiently solved using an efficient algorithm which solves a fixed NP–complete
problem. These problems are the suitable candidates to attack the P versus NP
problem.

In the last years several computing models using powerful and inherent tools
inspired from nature have been developed (because of this reason, they are known
as bio-inspired models) and several solutions in polynomial time to problems
from the class NP have been presented, making use of non-determinism or of
an exponential amount of space. This is the reason why a practical implemen-
tation of such models (in biological, electronic, or other media) could provide a
quantitative improvement for the resolution of NP-complete problems.

In this work we focus on one of these models, the cellular computing model
with membranes, specifically, on one of its variants, the language accepting P
systems, in order to develop a computational complexity theory allowing us to
attack the P versus NP problem from other point of view than the classical
one.

The paper is structured as follows. The next section is devoted to the def-
inition of language accepting P systems. In section 3 a polynomial complexity
class for the above model is introduced. Sections 4 and 5 provides simulations of
deterministic Turing machines by P systems and language accepting P systems
by deterministic Turing machines. Finally, in section 6 we establish a character-
ization of the P versus NP problem through P systems.

2 Language Accepting P Systems

Until the end of 90’s decade several natural computing models have been in-
troduced simulating the way nature computes at the genetic level (genetic al-
gorithms and DNA based molecular computing) and at the neural level (neural
networks). In 1998, Gh. Păun [5] suggests a new level of computation: the cellular
level.

340 Mario J. Pérez-Jiménez et al.

Cells can be considered as machines performing certain computing processes;
in the distributed framework of the hierarchical arrangement of internal vesicles,
the communication and alteration of the chemical components of the cell are
carried out. Of course, the processes taking place in the cell are complex enough
for not attempting to completely model them. The goal is to create an abstract
cell-like computing model allowing to obtain alternative solutions to problems
which are intractable from a classical point of view.

The first characteristic to point out from the internal structure of the cell is
the fact that the different units composing the cell are delimited by several types
of membranes (in a broad sense): from the membrane that separates the cell
from the environment into which the cell is placed, to those delimiting the inner
vesicles. Also, with regard to the functionality of these membranes in nature, it
has to be emphasized the fact that they do not generate isolated compartments,
but they allow the chemical compounds to flow between them, sometimes in
selective forms and even in only one direction. Similar ideas were previously
considered, for instance, in [1] and [3].

P systems are described in [4] as follows: a membrane structure consists of
several membranes arranged in a hierarchical structure inside a main membrane
(called the skin) and delimiting regions (each region is bounded by a mem-
brane and the immediately lower membranes, if there are any). Regions contain
multisets of objects, that is, sets of objects with multiplicities associated with
the elements. The objects are represented by symbols from a given alphabet.
They evolve according to given evolution rules, which are also associated with
the regions. The rules are applied non-deterministically, in a maximally parallel
manner (in each step, all objects which can evolve must do so). The objects
can also be moved (communicated) between regions. In this way, we get tran-
sitions from one configuration of the system to the next one. This process is
synchronized: a global clock is assumed, marking the time units common to all
compartments of the system. A sequence (finite or infinite) of transitions be-
tween configurations constitutes a computation; a computation which reaches
a configuration where no rule is applicable to the existing objects is a halting
computation. With each halting computation we associate a result, by taking
into consideration the objects collected in a specified output membrane or in the
environment.

For an exhaustive overview of transition P systems and of their variants and
properties, see [4].

Throughout this paper, we will study the capacity of cellular systems with
membranes to attack the efficient solvability of presumably intractable decision
problems. We will focus on a specific variant of transition P systems: language
accepting P systems. These systems have an input membrane, and work in such
a way that when introducing in the input membrane a properly encoded string,
a “message” is sent to the environment, encoding whether this string belongs or
not to a specified language.

The P Versus NP Problem Through Cellular Computing with Membranes 341

Definition 1. A membrane structure is a rooted tree, where the nodes are called
membranes, the root is called skin, and the leaves are called elementary mem-
branes.

Definition 2. Let μ = (V (μ), E(μ)) be a membrane structure. The membrane
structure with external environment associated with μ is the rooted tree such
that: (a) the root of the tree is a new node that we denote by env; (b) the set of
nodes is V (μ) ∪ {env}; and (c) the set of edges is E(μ) ∪ {{env, skin}}.
The node env is called environment of the structure μ. So, every membrane
structure has associated in a natural way an environment.

Definition 3. A language accepting P system (with input membrane and ex-
ternal output) is a tuple

Π = (Σ,Γ, Λ,#, μ
Π
,M1, ...,Mp, (R1, ρ1), ..., (Rp, ρp), iΠ)

verifying the following properties:

– The input alphabet of Π is Σ.
– The working alphabet of Π is Γ , with Σ � Γ and # ∈ Γ −Σ.
– μ

Π
is a membrane structure consisting of p membranes, with the membranes

(and hence the regions) injectively labelled with 1, 2, . . . , p.
– iΠ is the label of the input membrane.
– The output alphabet of Π is Λ = {Y es,No}.
– M1, ...,Mp are multisets over Γ −Σ, representing the initial contents of the

regions of 1, 2, . . . , p of μ
Π
.

– R1, ..., Rp are finite sets of evolution rules over Γ associated with the regions
1, 2, . . . , p of μ

Π
.

– ρi, 1 ≤ i ≤ p, are partial order relations over Ri specifying a priority relation
among rules of Ri.

An evolution rule is a pair (u, v), usually represented u→ v, where u is a string
over Γ and v = v′ or v = v′δ, with v′ a string over

Γ × ({here, out} ∪ {ini | i = 1, . . . , p}).
Consider a rule u → v from a set Ri. To apply this rule in membrane i means
to remove the multiset of objects specified by u from membrane i (the latter
must contain, therefore, sufficient objects so that the rule can be applied), and
to introduce the objects specified by v, in the membranes indicated by the target
commands associated with the objects from v.

Specifically, for each (a, out) ∈ v an object a will exit the membrane i and
will become an element of the membrane immediately outside it (that is, the
father membrane of membrane i), or will leave the system and will go to the en-
vironment if the membrane i is the skin membrane. If v contains a pair (a, here),
then the object a will remain in the same membrane i where the rule is applied

342 Mario J. Pérez-Jiménez et al.

(when specifying rules, pairs (a, here) are simply written a, the indication here
is omitted). For each (a, inj) ∈ v an object a should be moved in the membrane
with label j, providing that this membrane is immediately inside membrane i
(that is, membrane i is the father of membrane j); if membrane j is not directly
accesible from membrane i (that is, if membrane j is not a child membrane of
membrane i), then the rule cannot be applied. Finally, if δ appears in v, then
membrane i is dissolved; that is, membrane i is removed from the membrane
structure, and all objects and membranes previously present in it become el-
ements of the immediately upper membrane (the father membrane) while the
evolution rules and the priority relations of the dissolved membrane are removed.
The skin membrane is never dissolved; that is, no rule of the form u → v′δ is
applicable in the skin membrane.

All these operations are done in parallel, for all possible applicable rules
u → v, for all occurrences of multisets u in the membrane associated with the
rules, and for all membranes at the same time.

The rules from the set Ri, 1 ≤ i ≤ p, are applied to objects from membrane
i synchronously, in a non-deterministic maximally parallel manner; that is, we
assign objects to rules, non-deterministically choosing the rules and the objects
assigned to each rule, but in such a way that after this assignation no further
rule can be applied to the remaining objects. Therefore, a rule can be applied in
the same step as many times as the number of copies of objects allows it.

On the other hand, we interpret the priority relations between the rules in
a strong sense: a rule u → v in a set Ri can be used only if no rule of a higher
priority exists in Ri and can be applied at the same time with u→ v.

A configuration of Π is a tuple (μ,ME ,Mi1 , . . . ,Miq), where μ is a membrane
structure obtained by removing from μ

Π
all membranes different from i1, . . . , iq

(of course, the skin membrane cannot be removed), ME is the multiset of objects
contained in the environment of μ, and Mij is the multiset of objects contained
in the region ij .

For every multiset m over Σ (the input alphabet of the P system), the initial
configuration of Π with input m is the tuple (μ

Π
, ∅,M1, ...,MiΠ ∪m, ...,Mp).

That is, in any initial configuration of Π the environment is empty. We will
denote by IΠ the collection of possible inputs for the system Π .

Given a configuration C of a P system Π , applying properly the evolution
rules as described above, we obtain, in a non-deterministic way, a new configu-
ration C′. We denote by C ⇒

Π
C′, and we say that we have a transition from C

to C′. A halting configuration is a configuration in which no evolution rule can
be applied.

A computation C of a P system is a sequence of configurations, {Ci}i<r,
where: C0 is an initial configuration of the system; Ci ⇒

Π
Ci+1, for every i < r;

and, either r ∈ N+ (that is, it is a non-zero natural number) and Cr−1 is a
halting configuration, or r =∞, in which case it is said that C is not halting.

For a computation C = {Ci}i<r we will denote by M j
E the content of the

environment in the configuration Cj . Next we define the output of the P system.

The P Versus NP Problem Through Cellular Computing with Membranes 343

Definition 4. The output of a computation C = {Ci}i<r is:

Output(C) =

⎧⎪⎨⎪⎩
Yes, if C is halting, Y es ∈M r−1

E and No �∈M r−1
E ,

No, if C is halting, No ∈M r−1
E and Y es �∈M r−1

E ,
not defined, otherwise.

If C satisfies any of the two first conditions, then we say that it is a successful
computation.

Definition 5. A language accepting P system is said to be valid if every halting
computation is a successful computation and every halting computation, and only
them, sends out the symbol # (and only in the last step).

We denote by LA the class of valid language accepting P systems.
Next we define what it means that such P systems accept or decide a lan-

guage.

Definition 6. Let L be a language over an alphabet Ω. We say that the system
Π ∈ LA accepts the language L if the following properties are verified:

– There exists a total function, cod : Ω∗ → IΠ , computable and injective,
encoding strings over Ω by means of multisets over the input alphabet of Π.

– For every string w ∈ Ω∗ it is verified that:
• If w ∈ L, then there exists a computation C of Π with input cod(w) such

that C is halting and Output(C) = Y es.
• If there exists a computation C of Π with input cod(w) such that C is

halting and Output(C) = Y es, then w ∈ L.

Definition 7. Let L be a language over an alphabet Ω. We say that the system
Π ∈ LA decides the language L if the following properties are verified:

– Every computation of Π is halting.
– There exists a total function, cod : Ω∗ → IΠ , computable and injective,

encoding strings over Ω by means of multisets over the input alphabet of Π.
– For every string w ∈ Ω∗ it is verified that:

• If w ∈ L, then for every computation C of Π with input cod(w) it is
verified that Output(C) = Y es.

• If w �∈ L, then for every computation C of Π with input cod(w) it is
verified that Output(C) = No.

3 A Polynomial Complexity Class in Cellular Systems

In order to give a formal definition of computational complexity classes in this
model, we have to first specify what we mean by a decision problem.

344 Mario J. Pérez-Jiménez et al.

Definition 8. A decision problem, X, is a pair (IX , θX) such that IX is a lan-
guage (over a finite alphabet) whose elements are called instances of the problem
and θX is a total Boolean function over IX .

A decision problem X is solvable by a Turing machine TM if IX is the set
of inputs of TM , for any w ∈ IX the Turing machine halts over w, and w is
accepted if and only if θX(w) = 1.

To solve a problem by means of P systems, we usually construct a family of
such devices so that each element decides the instances of equivalent size, in a
certain sense which will be specified below.

Definition 9. Let g : N+ → N+ be a total computable function. We say that a
decision problem X is solvable by a family of valid language accepting P systems,
in a time bounded by g, and we denote this by X ∈ MCLA(g), if there exists a
family of P systems, Π =

(
Π(n)

)
n∈N+ , with the following properties:

1. For every n ∈ N it is verified that Π(n) ∈ LA.
2. There exists a Turing machine constructing Π(n) from n in polynomial time

(we say that Π is polynomially uniform by Turing machines).
3. There exist two functions, cod : IX → ⋃

n∈N+ IΠ(n) and s : IX → N+,
computable in polynomial time, such that:
– For every w ∈ IX , cod(w) ∈ IΠ(s(w)).
– The family Π is bounded, with regard to (X, cod, s, g); that is, for each

w ∈ IX every computation of the system Π(s(w)) with input cod(w) is
halting and, moreover, it performs at most g(|w|) steps.

– The family Π is sound, with regard to (X, cod, s); that is, for each w ∈ IX

if there exists an accepting computation of the system Π(s(w)) with input
cod(w), then θX(w) = 1.

– The family Π is complete, with regard to (X, cod, s); that is, for each
w ∈ IX if θX(w) = 1, then every computation of the system Π(s(w))
with input cod(w) is an accepting computation.

Note that we impose a certain kind of confluence of the systems, in the sense
that every computation with the same input must return the same output.

As usual, the polynomial complexity class is obtained using as bounds the
polynomial functions.

Definition 10. The class of decision problems solvable in polynomial time by a
family of cellular computing systems belonging to the class LA, is

PMCLA =
⋃

g poly.

MCLA(g).

This complexity class is closed under polynomial-time reducibility.

Proposition 1. Let X and Y be two decision problems such that X is poly-
nomial-time reducible to Y . If Y ∈ PMCLA, then X ∈ PMCLA.

The P Versus NP Problem Through Cellular Computing with Membranes 345

4 Simulating Deterministic Turing Machines by P
Systems

In this section we consider deterministic Turing machines as language decision
devices. That is, the machines halt over any string on the input alphabet, with
the halting state equal to the accepting state, in the case that the string belongs
to the decided language, and with the halting state equal to the rejecting state
in the case that the string does not belong to the language.

It is possible to associate with a Turing machine a decision problem, and
this will permit us to define what means that such a machine is simulated by a
family of P systems.

Definition 11. Let TM be a Turing machine with input alphabet ΣTM . The
decision problem associated with TM is the problem XTM = (I, θ), where I =
Σ∗

TM , and for every w ∈ Σ∗
TM , θ(w) = 1 if and only if TM accepts w.

Obviously, the decision problem XTM is solvable by the Turing machine TM .

Definition 12. We say that a Turing machine TM is simulated in polynomial
time by a family of systems of the class LA, if XTM ∈ PMCLA.

Next we state that every deterministic Turing machine can be simulated in
polynomial time by a family of systems of the class LA.

Proposition 2. Let TM be a deterministic Turing machine working in polyno-
mial time. Then XTM ∈ PMCLA.

See chapter 9 of [8], which follows ideas from [9], for details of the proof.

5 Simulating Language Accepting P Systems by
Deterministic Turing Machines

In this section we are going to prove that if a decision problem can be solved in
polynomial time by a family of language accepting P systems, then it can also
be solved in polynomial time by a deterministic Turing machine.

For the design of the Turing machine we were inspired by the work of C.
Zandron, C. Ferretti and G. Mauri [11], with the difference that the mentioned
paper deals with P systems with active membranes.

Proposition 3. For every decision problem solvable in polynomial time by a
family of valid language accepting P systems, there exists a Turing machine
solving the problem in polynomial time.

Proof. Let X be a decision problem such that X ∈ PMCLA. Then, there exists
a family of valid language accepting P systems Π =

(
Π(n)

)
n∈N+ such that:

346 Mario J. Pérez-Jiménez et al.

1. The family Π is polynomially uniform by Turing machines.
2. There exist two functions cod : IX → ⋃

n∈N+ IΠ(n) and s : IX → N+,
computable in polynomial time, such that:
– For every w ∈ IX , cod(w) ∈ IΠ(s(w)).
– The family Π is polynomially bounded, with regard to (X, cod, s).
– The family Π is sound and complete, with regard to (X, cod, s).

Given n ∈ N+, let An be the number of symbols in the input alphabet of
Π(n), Bn the number of symbols in the working alphabet, Cn the number of
symbols in the output alphabet, Dn the number of membranes, En the maximum
size of the multisets initially associated with them, Fn the total number of rules
of the system, and Gn the maximum length of them. Since the family Π is
polynomially uniform by Turing machines, these numbers are polynomial with
respect to n.

Let m be an input multiset of the system Π(n). Given a computation C of
Π(n) with input m, we denote by Hn(m) the maximum number of digits, in
base 2, of the multiplicities of the objects contained in the multisets associated
with the membranes of the systems and with the environment, in any step of C.
Naturally, this number depends on C, but what we are interested in, and we will
prove at the end of the proof, is that any computation of the system Π(s(w))
with input cod(w) verifies that Hs(w)(cod(w)) is polynomial in the size of the
string w.

Next, we associate with the system Π(n) a deterministic Turing machine,
TM(n), with multiple tapes, such that, given an input multiset m of Π(n), the
machine reproduces a specific computation of Π(n) over m.

The input alphabet of the machine TM(n) coincides with that of the system
Π(n). On the other hand, the working alphabet contains, besides the symbols
of the input alphabet of Π(n) the following symbols: a symbol for each label as-
signed to the membranes of Π(n); the symbols 0 and 1, that will allow to operate
with numbers represented in base 2; three symbols indicating if a membrane has
not been dissolved, has to be dissolved or has been dissolved; and three symbols
that will indicate if a rule is awaiting, is applicable or is not applicable.

Subsequently, we specify the tapes of this machine.

– We have one input tape, that keeps a string representing the input multiset
received.

– For each membrane of the system we have:
• One structure tape, that keeps in the second cell the label of the father

membrane, and in the third cell one of the three symbols that indicate if
the membrane has not been dissolved, if the membrane has to dissolve,
or if the membrane has been dissolved.

• For each object of the working alphabet of the system:
∗ One main tape, that keeps the multiplicity of the object, in base 2,

in the multiset contained in the membrane.
∗ One auxiliary tape, that keeps temporary results, also in base 2, of

applying the rules associated with the membrane.

The P Versus NP Problem Through Cellular Computing with Membranes 347

• One rules tape, in which each cell starting with the second one corre-
sponds to a rule associated with the membrane (we suppose that the set
of those rules is ordered), and keeps one of the three symbols that indi-
cate whether the rule is awaiting, it is applicable, or it is not applicable.

– For each object of the output alphabet we have:
• One environment tape, that keeps the multiplicity of the object, in base

2, in the multiset associated with the environment.

Next we describe the steps performed by the Turing machine in order to
simulate the P system. Take into account that, making a breadth first search
traversal (with the skin as source) on the initial membrane structure of the
system Π(n), we obtain a natural order between the membranes of Π(n). In the
algorithms that we specify below we consider that they always traverse all the
membranes of the original membrane structure and that, moreover, they do it
in the order induced by the breadth traversal of that structure.

I. Initialization of the system. In the first phase of the simulation process fol-
lowed by the Turing machine the symbols needed to reflect the initial configura-
tion of the computation with input m that is going to be simulated are included
in the corresponding tapes.

for all membrane mb of the system do
if mb is not the skin membrane then

– Write in the second cell of the structure tape of mb the label corres-
ponding to the father of mb

end if
– Mark mb as non-dissolved membrane in the third cell of the structure

tape of mb
for all symbol ob of the working alphabet do

– Write in the main tape of mb for ob the multiplicity, in base 2, of ob
in the multiset initially associated with mb

end for
end for
for all symbol ob of the input alphabet do

– Read the multiplicity, in base 2, of ob in the input tape
– Add that multiplicity to the main tape of the input membrane for ob

end for

II. Determine the applicable rules. To simulate a step of the cellular computing
system, what the machine has to do first is to determine the set of rules that are
applicable (each of them independently) to the configuration considered in the
membranes they are associated with.

for all membrane mb of the system do
if mb has not been dissolved then

for all rule r associated with mb do
– Mark r as awaiting rule

end for

348 Mario J. Pérez-Jiménez et al.

for all rule r associated with mb do
if – r is awaiting and

– mb contains the antecedent of r and
– r only sends objects to child membranes of mb that have not been

dissolved and
– r does not try to dissolve the skin membrane

then
– Mark r as applicable rule
for all rule r′ associated with mb of lower priority than r do

– Mark r′ as non-applicable rule
end for

else
– Mark r as non-applicable rule

end if
end for

end if
end for

III. Apply the rules. Once the applicable rules are determined, they are applied
in a maximal manner to the membranes they are associated with. The fact
that the rules are considered in a certain order (using local maximality for each
rule, according to that order) determines a specific applicable multiset of rules,
thus fixing the computation of the system that the Turing machine simulates.
However, from Definition 9 of complexity class it will follow that the chosen
computation is not relevant for the proof, due to the confluence of the system.

for all membrane mb of the system do
if mb has not been dissolved then

for all rule r associated with mb that is applicable do
for all object ob in the antecedent of r do

–Compute the integer quotient that results from dividing the mul-
tiplicity of ob in the main tape of mb by the multiplicity of ob in
the antecedent of r

end for
– Compute the minimum of the values obtained in the previous loop

(that minimum is the maximum number of times that the rule r
can be applied to membrane mb). Let us call it index of the rule r.

for all object ob in the antecedent of r do
– Multiply the multiplicity of ob in the antecedent of r by the index

of r
– Erase the result obtained from the main tape of mb for the

object ob
end for
for all object ob in the consequent of r do

– Multiply the multiplicity of ob in the consequent of r by the index
of r

The P Versus NP Problem Through Cellular Computing with Membranes 349

– Add the result obtained to the auxiliary tape for ob in the corre-
sponding membrane

end for
if r dissolves mb then

– Mark mb as membrane to dissolve in the third cell of the structure
tape of mb

end if
end for

end if
end for

IV. Update the multisets. After applying the rules, the auxiliary tapes keep the
results obtained, and then these results have to be moved to the corresponding
main tapes.

for all membrane mb of the system do
if mb has not been dissolved then

– Copy the content of the auxiliary tapes of mb into the corresponding
main tapes

end if
end for

V. Dissolve the membranes. To finish the simulation of one step of the computa-
tion of the P system it is necessary to dissolve the membranes according to the
rules that have been applied in the previous phase and to rearrange accordingly
the structure of membranes.

for all membrane mb of the system do
if – mb has not been dissolved and

– the father of mb is marked as membrane to dissolve
then

– Make the father of mb equal to the father of the father of mb
end if

end for
for all membrane mb of the system do

if mb is marked as membrane to dissolve then
– Copy the contents of the main tapes of mb into the main tapes of

the (possibly new) father of mb
– Mark mb as dissolved membrane in the third cell of the structure

tape of mb
end if

end for

VI. Check if the simulation has ended. Finally, after finishing the simulation of
one transition step of the computation of Π(n), the Turing machine has to check
if a halting configuration has been reached and, in that case, if the computation
is an accepting or a rejecting one.

350 Mario J. Pérez-Jiménez et al.

if the environment tape contains the symbol # then
if the environment tape contains the symbol Y es then

– Halt and accept the multiset m

else
– Halt and reject the multiset m

end if
else

– Simulate again a step of the computation of the P system
end if

It is easy to check that the family
(
TM(n)

)
n∈N+ can be constructed in an

uniform way and in polynomial time from n ∈ N+.
Let us finally consider the deterministic Turing machine TMΠ that works as

follows:

Input: w ∈ IX

– Compute s(w)
– Construct TM(s(w))
– Compute cod(w)
– Simulate the functioning of TM(s(w)) with input cod(w)

Then, the following assertions are verified:

1. The machine TMΠ works in polynomial time over |w|.
Since the functions cod and s are polynomial in |w|, the numbers As(w),
Bs(w), Cs(w), Ds(w), Es(w), Fs(w), and Gs(w) are polynomial in |w|.
On the other hand, the family Π is polynomially bounded, with regard
to (X, cod, s). Therefore, every computation of the system Π(s(w)) with
input cod(w) performs a polynomial number of steps on |w|. Consequently,
the number of steps, Pw, performed by the computation simulated by the
machine TM(s(w)) over cod(w) is polynomial in |w|.
Hence, the maximal multiplicity of the objects contained in the multisets
associated with the membranes is in the order of O(Es(w) · GPw

s(w)). This
implies that Hs(w)(cod(w)) is in the order of O(Pw · log2(Es(w) ·Gs(w))); that
is, polynomial in |w|.
It follows that the total time spent by TMΠ when receiving w as input is
polynomial in |w|.

2. Let us suppose that TMΠ accepts the string w. Then the computation of
Π(s(w)) with input cod(w) simulated by TM(s(w)) is an accepting compu-
tation. Therefore θX(w) = 1.

3. Let us suppose that θX(w) = 1. Then every computation of Π(s(w)) with
input cod(w) is an accepting computation. Therefore, it is also the compu-
tation simulated by TM(s(w)). Hence TMΠ accepts the string w.

Consequently, we have proved that TMΠ solves X in polynomial time.

The P Versus NP Problem Through Cellular Computing with Membranes 351

6 Characterizing the P �= NP Relation Through P
Systems

Next, we establish characterizations of the P �= NP relation by means of the
polynomial time unsolvability of NP–complete problems by families of language
accepting P systems.

Theorem 1. The following propositions are equivalent:

1. P �= NP.
2. ∃X(X is an NP–complete decision problem ∧X �∈ PMCLA

)
.

3. ∀X(X is an NP–complete decision problem → X �∈ PMCLA
)
.

Proof. To prove the implication 1⇒ 3, let us suppose that there exists an NP–
complete problem X such that X ∈ PMCLA. Then, from Proposition 3 there
exists a deterministic Turing machine solving the problem X in polynomial time.
Hence, X ∈ P. Therefore, P = NP, which leads to a contradiction.

The implication 3⇒ 2 is trivial, because the class of NP–complete problems
is non empty.

Finally, to prove the implication 2 ⇒ 1, let X be an NP–complete problem
such that X �∈ PMCLA. Let us suppose that P = NP. Then X ∈ P. Therefore
there exists a deterministic Turing machine TM that solves the problem X in
polynomial time.

By Proposition 2, the problem XTM is in PMCLA. Then there exists a family
ΠTM =

(
ΠTM (k)

)
k∈N+ of valid language accepting P systems simulating TM

in polynomial time (with associated functions codTM and sTM).
We consider the function codX : IX → ⋃k∈N+ IΠT M (k), given by codX(w) =

codTM (w), and the function sX : IX → N+, given by sX(w) = |w|. Then:

– The family ΠTM is polynomially uniform by Turing machine, and polyno-
mially bounded, with regard to (X, codX , sX).

– The family ΠTM is sound, with regard to (X, codX , sX). Indeed, let w ∈ IX

be such that there exists a computation of the system ΠTM (sX(w)) =
ΠTM (sTM (w)) with input codX(w) = codTM (w) that is an accepting com-
putation. Then θTM (w) = 1. Therefore θX(w) = 1.

– The family ΠTM is complete, with regard to (X, codX , sX). Indeed, let w ∈
IX be such that θX(w) = 1. Then TM accepts the string w. Therefore
θTM (w) = 1. Hence, every computation of the system ΠTM (sTM (w)) =
ΠTM (sX(w)) with input codTM (w) = codX(w) is an accepting computation.

Consequently, X ∈ PMCLA, and this leads to a contradiction.

Acknowledgement. The authors wish to acknowledge the support of the project
TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofi-
nanced by FEDER funds.

352 Mario J. Pérez-Jiménez et al.

References

1. Berry, G.; Boudol, G. The chemical abstract machine. Theoretical Computer Sci-
ence, 96, 1992, pp. 217–248.

2. Cook, S. The P versus NP problem. Manuscript prepared for the Clay Mathematics
Institute for the Millennium Prize Problems (revised November, 2000).

3. Manca, V. String rewriting and metabolism: A logical perspective. In Computing
with Bio-Molecules. Theory and Experiments (Gh. Păun, ed.), Springer-Verlag,
Singapore, 1998, pp. 36–60.

4. Păun, G. Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. Păun G. Computing with membranes, Journal of Computer and System Sciences,

61 (1), 2000, pp. 108–143, and Turku Center for Computer Science-TUCS Report
Nr. 208, 1998.

6. Păun, G.; Rozenberg, G. A guide to membrane computing, Theoretical Computer
Science, 287, 2002, pp. 73–100.

7. Pérez–Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. Teoŕıa de la Com-
plejidad en Modelos de Computación con Membranas, Ed. Kronos, Sevilla, 2002.

8. Romero-Jiménez, A. Complexity and Universality in Cellular Computing Models,
PhD. Thesis, University of Seville, Spain, 2003.

9. Romero-Jiménez, A.; Pérez Jiménez, M.J. Simulating Turing machines by P sys-
tems with external output. Fundamenta Informaticae, vol. 49 (1-3), 2002, pp. 273–
287.

10. Turing, A. On computable numbers with an application to the Entscheid-
nungsproblem. Proceeding London Mathematical Society, serie 2, 42, 1936-7, pp.
230–265.

11. Zandron, C.; Ferreti, C.; Mauri, G. Solving NP-complete problems using P systems
with active membranes. In Unconventional Models of Computation, UMC’2K (I.
Antoniou; C. Calude; M.J. Dinneen, eds.), Springer-Verlag, Berlin, 2000, pp. 289–
301.

Realizing Switching Functions Using

Peptide-Antibody Interactions�

M. Sakthi Balan and Kamala Krithivasan

Department of Computer Science and Engineering,
Indian Institute of Technology, Madras

Chennai - 600036, India
sakthi@cs.iitm.ernet.in

kamala@iitm.ernet.in

Abstract. We propose a theoretical model for performing gate opera-
tions – OR, AND, and NOT – using peptide-antibody interactions. The
idea is extended to further gates, such as XOR, NAND, and NOR.

1 Introduction

With unconventional models of computing holding a central stage in this modern
computing world, a lot of work is going on to define new bio-computing models
to perform computations efficiently.

Peptide-antibody interactions are very natural and systematic and they can
be used as a basis for a computational model. This way of computing using
antibodies which specifically recognize peptide sequences was introduced by H.
Hug et al in [3], where one solves the well-known NP Complete problem SAT.
In [2], it the computational completeness of peptide computing was proven and
it was shown how to solve other two well-known NP-complete problems, namely
the Hamiltonian path problem and the exact cover by 3-sets problem (a variation
of the set cover problem) using the interactions between peptides and antibodies.

A peptide is a sequence of aminoacids attached by covalent bonds called
peptide bonds. A peptide consists of recognition sites called epitopes for the
antibodies. A peptide can contain more than one epitope for the same or dif-
ferent antibodies. For each antibody which attaches to a specific epitope there
is a binding power associated with it called affinity. If more than one antibody
participate in recognition of its sites which overlap in the given peptide, then
the antibody with a greater affinity has a higher priority.

In the model proposed in [2,3] the peptides represent the sample space of a
given problem and antibodies are used to select certain subsets of this sample
space, which will eventually give the solution for the given problem. Similar
to DNA-computing, parallel interactions between the peptide sequences and the
antibodies should make it possible to solve NP-complete problems in polynomial
time.
� Financial support from Infosys Technologies Limited, India, is acknowledged

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 353–360, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

354 M. Sakthi Balan and Kamala Krithivasan

The specificity of an epitope recognition by an antibody need not be absolute.
Sometimes the antibody may recognize a different site which is very similar to
its own binding site. This issue is called cross-reactivity. This paper does not
address the issue of cross-reactivity between antibodies and peptides.

Using DNA strands H. Hug et al [4] propose a model to solve simple binary
addition in parallel. In [1] we propose a model to do simple arithmetic (addition
and subtraction) operations using peptides and antibodies.

The organization of the paper is as follows. In the next section we define our
proposed model of performing gate operations OR, AND and NOT . We explain
with some examples how the operations are carried out. In section 4 our method
is extended to do XOR, NAND and NOR gates. Our paper concludes with
some discussion on the bio-chemical implementation of our proposed model.

2 Proposed Model

The proposed model uses a peptide sequence and a set of antibodies. The peptide
sequence consists of five epitopes; if P denotes the peptide sequence, then P can
be represented as follows:

P = yx1xx2z,

where each y, x1, x, x2 and z are epitopes. We take six antibodies denoted by
A1, A2, B1, B2, Cinit and Cf . Basically,

1. the antibodies A1, A2, B1 and B2 denote the inputs,
2. Cinit denote the initial value of the result of the operation,
3. Cinit and Cf denote the output of the operation,
4. the epitopes x and y are the binding places for the antibodies denoting the

input,
5. the epitope x1xx2 is the place where the antibody representing the initial

output binds,
6. the epitopes x1x, xx2 and x are the binding places for the antibodies denoting

the output.

The peptide sequence P is given in Fig. 1. The peptide sequence with possible
antibodies binding on it is represented in Fig. 2. Note that at a time only one
antibody can be there in the overlapping epitopes. The figure is meant only to
show the binding sites of the antibodies pictorically.

x x xy z1 2

Fig. 1. Peptide sequence

Realizing Switching Functions Using Peptide-Antibody Interactions 355

x z

A A

B B

C
Cinit

x 1y x 2

f

1 2

1 2

Fig. 2. Peptide sequence with possible antibodies

3 Implementation of OR, AND, and NOT Gates

First we will discuss OR gate implementation. AND gate is very similar to the
OR gate implementation.

For the OR gate we follow the representation given in the sequel:

1. Input bits 0 and 1 are represented by the antibodies Ai and Bi respectively,
where 1 ≤ i ≤ 2.

2. The antibody Cinit denotes the bit 0.
3. The antibody Cf (labeled antibody) denotes the bit 1.
4. epitope(A1) = {y}, epitope(A2) = {z},
5. epitope(B1) = {yx1}, epitope(B2) = {x2z},
6. epitope(Cinit) = {x1xx2}, epitope(Cf) = {x}.
7. aff(Bi) > aff (Cinit) > aff (Cf), 1 ≤ i ≤ 2.

The simple idea used in the implementation of OR gate follows from the fact
that the output 1 occurs even if only one of the inputs is 1. So if we start with
an initial output of 0, which is done by getting the peptide sequence with the
antibody Cinit binding on it, then it should be toggled even if only one 1 comes as
an input. For this to be carried out we have made the epitopes for the antibody
Cinit and the antibody Bi, 1 ≤ i ≤ 2, overlapping. This facilitates toggle of the
output bit to 1. The algorithm is as follows:

1. Take the peptide sequence P in an aqueous solution.
2. Add the antibody Cinit.
3. Add antibodies corresponding to the input bits. For example, if the first bit

is 1 and the second bit is 0, then add antibodies B1 and A2.
4. Add antibody Cf .

In the above algorithm only if 1 occurs as an input bit the initial antibody
Cinit is removed (since aff(Bi) > aff (Cinit)), which facilitates the binding of the

356 M. Sakthi Balan and Kamala Krithivasan

antibody Cf . If both bits are 0, then the antibody Cinit is not removed. If the
output has to be seen, then the antibody Cf can be given some color so that at
the end of the algorithm if fluorescence is detected, then the output will be 1 or
else it will be 0.

The working of the OR gate model is depicted in Fig. 3.

x z

B B

x 1y x 2

C f

INPUT = 1 , 1

z

A

C init

x 1y x 2

z
x 1y x 2

x

x

A1 2

C f

A1

B2

INPUT = 0 , 0

INPUT = 0 , 1

1 2

Fig. 3. OR gate

Realizing Switching Functions Using Peptide-Antibody Interactions 357

AND Gate

In the same manner as above we can implement the AND gate. The details are
the following.

1. The antibody Cinit denotes the bit 1.
2. The antibody Cf (labeled antibody) denotes the bit 0.
3. epitope(B1) = {y}, epitope(B2) = {z},
4. epitope(A1) = {yx1}, epitope(A2) = {x2z},
5. epitope(Cinit) = {x1xx2}, epitope(Cf) = {x}.
6. aff(Ai) > aff (Cinit) > aff (Cf), 1 ≤ i ≤ 2.

The simple idea used in the implementation of the AND gate follows from
the fact that the output 0 occurs even if only one of the inputs is 0. The algorithm
for the AND gate is the same as for the OR gate. The working of the AND
gate should be easy to understand as it is very similar to the working of the OR
gate.

NOT Gate

Since the NOT gate requires only one input, we take the peptide sequence as

P = xx2z

and take only the antibodies A1 and B1. The model is as follows:

1. The antibody Cinit denotes the bit 0.
2. The antibody Cf (labeled antibody) denotes the bit 1.
3. epitope(B2) = {z},
4. epitope(A2) = {x2z},
5. epitope(Cinit) = {xx2}, epitope(Cf) = {x}.
6. aff(Ai) > aff (Cinit) > aff (Cf), 1 ≤ i ≤ 2.

The algorithm for NOT gate is as follows:

1. Take the peptide sequence P in an aqueous solution.
2. Add the antibody Cinit.
3. Add antibody corresponding to the input bit.
4. Add antibody Cf .

It can be noted that the initial bit denoting 0 is toggled only if the input bit
is 0.

4 Extension to XOR, NOR, and NAND Gates

The same idea used in the implementation of the OR and AND gates is extended
to XOR, NOR and NAND. First we take the XOR gate; the other two gates
follow from OR and AND gates very easily.

358 M. Sakthi Balan and Kamala Krithivasan

The model for the XOR gate requires little change in the proposed model
defined for other gates in the previous section. The peptide sequence is the same
but this gate requires one more antibody and the binding sites for the output
antibodies are different. It should be easy to follow from the picture in Fig. 4.

C0

x z

A A

B B

C init

x1y x2

Cf C f
1

1 2

2

Fig. 4. Peptide sequence with possible antibodies

The construction for the XOR gate is as follows:

1. Input bits 0 and 1 are represented by the antibodies Ai and Bi respectively
where 1 ≤ i ≤ 2.

2. The antibodies Cinit and C0 denotes the bit 0.
3. The antibody Cf (labeled antibody) denotes the bit 1.
4. epitope(A1) = {y}, epitope(A2) = {z},
5. epitope(B1) = {yx1}, epitope(B2) = {x2z},
6. epitope(Cinit) = {x1xx2}, epitope(Cf) = {x1x, xx2} and epitope(C0) =
{x},

7. aff(Bi) > aff (Cinit) > aff (Cf) > aff (C0), 1 ≤ i ≤ 2.

The simple idea used in the implementation of the XOR gate is that whenever
the inputs are the same, either the epitope x1xx2 is bounded by the antibody
Cinit or the epitope x will be free for the antibody C0 to come and bind to it.
This makes sure that the output is 0 whenever the inputs are not the same.
When the inputs are different either the epitope x1x or xx2 will be free. So that
the antibody Cf can bind to either of them. This will guarantee that the output
will be 1 when the inputs are different. The algorithm is given below:

1. Take the peptide sequence P in an aqueous solution.
2. Add the antibody Cinit.
3. Add antibodies corresponding to the input bits.
4. Add antibody Cf .
5. Add antibody C0.

Realizing Switching Functions Using Peptide-Antibody Interactions 359

NOR Gate

If we perform the following changes in the OR gate construction

1. Cinit denotes the bit 1 and
2. Cf denotes 0,

then it should be easy to note that the switching operation represents the NOR
function. The idea is that even if one 1 comes as an input, the output is 0. It
should be easy to check that the above construction works exactly as the NOR
gate.

NAND Gate

In the AND gate construction we perform the following changes:

1. The antibody Cinit denotes the bit 0.
2. The antibody Cf (labeled antibody) denotes the bit 0.

The idea is that even if one 0 comes as an input, the output is 1. It should be
easy to check that the above construction works exactly as NAND gate.

5 Remarks

In this work we have proposed a model to do simple switching operations. Basi-
cally there are two ways of getting the output. One way is just detection, and the
other is to decipher bio-chemically the output. For detection, we can give a label
to either of the output antibody, so that at the end of the process, depending
on whether the fluorescence is detected or not we can detect the answer.

There are many biochemical methods to decipher the interaction of peptides
with antibodies [5]. To extract the numbers from the peptide-antibody inter-
acting system, Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the
two powerful tools to map the binding regions of peptide and/or proteins, at
atomic level, during their interactions; the other tool is X-ray crystallography.
Depending upon the binding affinity of the peptide with antibody, there are sev-
eral NMR techniques which can be used for this purpose [7]. If the antibody is
spin labeled, then mapping of the peptide binding domain in antibody can also
be accomplished by Surface Activity relationship (SAR) technique [6].

It may be interesting to see whether this model can be implemented in a lab-
oratory. It may also be worthwhile to determine how this model can be extended
to switching operations on strings of bits with several strings.

References

1. M.S. Balan and K. Krithivasan, Parallel computation of simple arithmetic using
peptide-antibody interactions, Proceedings of International Workshop on Informa-
tion Processing in Cells and Tissues, Lausanne, Switzerland, 2003.

360 M. Sakthi Balan and Kamala Krithivasan

2. M.S. Balan, K. Krithivasan and Y. Sivasubramanyam, Peptide computing – Uni-
versality and complexity, Proceedings of Seventh International Conference on DNA
Based Computers - DNA7, LNCS 2340 (N. Jonoska, N, Seeman, eds.), Springer-
Verlag, 2002, 290–299.

3. H. Hug and R. Schuler, Strategies for the developement of a peptide computer,
Bioinformatics, 17 (2001), 364–368.

4. H. Hug and R. Schuler, DNA-based parallel computation of simple arithmetic, Pro-
ceedings of Seventh International Conference on DNA Based Computers - DNA7,
LNCS 2340, (N. Jonoska, N, Seeman, eds.), Springer-Verlag, 2002, 321–328.

5. E.M. Phizicky and S. Fields, Protein-protein interactions: methods for detection
and analysis, Microbiol. Rev.,59 (1995), 94–123.

6. S.B. Shuker, P.J. Hajduk, R.P. Meadows, and S.W. Fesik, SAR by NMR: A method
for discovering high affinity ligands for proteins, Science, 274 (1996), 1531–1534.

7. B.J. Stockman, NMR spectroscopy as a tool for structure-based drug design,
Progress in Nuclear Magnetic Resonance Spectroscopy, 33 (1998), 109–151.

Plasmids to Solve #3SAT

Rani Siromoney1 and Bireswar Das2

1 Madras Christian College
Chennai 600 059, India, and

Chennai Mathematical Institute
Chennai 600 017, India
ranisiro@sify.com

2 Institute of Mathematical Sciences
Chennai 600 113, India
bireswar@imsc.res.in

Abstract. Tom Head, [1] has given a simple and elegant method of
aqueous computing to solve 3SAT. The procedure makes use of Divide-
Delete-Drop operations performed on plasmids. In [4], a different set of
operations, Cut-Expand-Ligate, are used to solve several NP-Complete
problems. In this paper, we combine the features in the two procedures
and define Cut-Delete-Expand-Ligate which is powerful enough to solve
#3SAT, which is a counting version of 3SAT known to be in IP. The
solution obtained is advantageous to break the propositional logic based
cryptosystem introduced by J. Kari [5].

1 Plasmids for Aqueous Computing

DNA molecules occur in nature in both linear and circular form. Plasmids are
small circular double-stranded DNA molecules. They carry adequate informa-
tion encoded in their sequences necessary for their replication and this is used in
genetic engineering. The technique used is cut and paste – cutting by restriction
enzymes and pasting by a ligase. The sequential application of a set of restric-
tion enzymes acting at distinct non-overlapping, different sites in circular DNA
molecules is fundamental to the procedure suggested below.

2 Divide-Delete-Drop (D-D-D)

Tom Head [1] has given the following procedure which provides the correct
YES/NO answer for instances of 3-SAT in a number of steps linearly bounded
by the sum of the number of atomic propositional variables and the number of
triples that are disjoined.

The fundamental data structure for the computational work involved in D-
D-D is an artificial plasmid constructed as follows.

For a specified set of restriction enzymes {RE1, RE2, . . . , REn}, the plasmid
contains a segment of the form c1s1c1c2s2c2 . . . cisici . . . cn−1sn−1cn−1cnsncn;
the subsegments c1, c2, . . . , cn are sites at which the enzymes RE1, . . . , REn can

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 361–366, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

362 Rani Siromoney and Bireswar Das

cut the plasmid. These are the only places where the enzymes can cut the plas-
mid. The subsegments s1, s2, . . . , sn are of fixed length and are called stations.
The sequence for each station is to be chosen so that no other subsegment of the
plasmid has the same base pair sequence.

The key computational operation used in plasmids is the compound operation
consisting of the removal of one station from a (circular) plasmid followed by
recircularizing the linear molecule. This is a cut and paste process. The net
effect of the compound operation is the removing of the station. The compound
biochemical deletion process is Delete(Station-Name). Two further operations
used are Drop and Divide.

3 Procedure Cut-Expand-Light (C-E-L) to Solve
Satisfiability of Sets of Boolean Clauses

In Binghamton, Tom Head, S. Gal and M. Yamamura provided a prototype
solution of a three variables, four clauses satisfiability (SAT) problem as an
aqueous computation.

The memory register molecule was chosen to be a commercially available plas-
mid. Restriction enzyme sites were chosen in the Multiple Cloning Site (MCS)
of the plasmid, each of which serving as a station for the computation.

The computation begins with a test-tube of water (for appropriate buffer)
that contains a vast number of identical, n-station plasmids. During a compu-
tation, the plasmids are modified so as to be readable later. Modifications take
place only at the stations. Each station s, at any time during the computation, is
in one of the two stations representing one of the bits 1 or 0. Thus, each plasmid
plays a role corresponding to that of an n-bit data register in a conventional
computer.

The initial condition of a station (restriction enzyme site) represents the bit 1.
A zero is written at a station by altering the site making use of the following
steps:

1. Linearize the plasmid by cutting it at the station (site), with the restriction
enzyme associated with it.

2. Using a DNA polymerase, extend the 3′ ends of the strands lying under the
5′ overhangs to produce a linear molecule having blunt ends.

3. When a station is altered to represent the bit zero, the length of the station is
increased and the station no longer encodes a site for the originally associated
enzyme.

3.1 Satisfiability of Sets of Boolean Clauses

The SAT instance solved in the web lab was to find a truth assignment for the
variables p, q, r for which each of the four clauses

p ∧ q, ¬p ∧ q ∧ ¬r, ¬q ∧ ¬r, p ∧ r

evaluates to true.

Plasmids to Solve #3SAT 363

A commercially available cloning plasmid was used as memory register mol-
ecule. Six restriction enzyme sites in the multiple cloning site (MCS) of the
plasmid were chosen to serve as stations for the computation. The first step is
to remove contradictions. At the end, there are plasmids that represent only
logically consistent truth assignments for the variables and their negations.

The next step involves elimination. Molecules that do not encode truth as-
signments to each one of the clauses are eliminated, one clause after the other.
After the elimination phase, the remaining plasmids are consistent with truth
settings for which all the given clauses have the value true.

4 Cut-Delete-Expand-Ligate (C-D-E-L)

The features in Divide-Delete-Drop (D-D-D, [1]) and Cut-Expand-Ligate (C-
E-L, [2,3,4]) Tom Head procedures are combined to form Cut-Delete-Expand-
Ligate (C-D-E-L). This enables us to get an aqueous solution to #3SAT which
is a counting problem and known to in IP.

An algorithm for a counting problem takes as input an instance of a decision
problem and produces as output a non-negative integer that is the number of
solutions for that instance.

In the 3SAT problem, we are required to determine whether a given 3CNF is
satisfiable. Here we are interested in a counting versions of this problem called
#3SAT. Given a 3CNF formula F and an integer s, we need to verify that the
number of distinct satisfying truth assignments for F is s. Echivalently, we have
to find the number of truth assignments that satisfy F .

4.1 #3SAT

Instance: A propositional formula of the form F = C1 ∧ C2 ∧ . . . ∧ Cm, where
Ci, i = 1, 2, . . . ,m are clauses. Each Ci is of the form (li1 ∨ li2 ∨ li3), where
lij , j = 1, 2, 3, are literals for the set of variables {x1, x2, . . . , xn}.

Question: What is the number of truth assignments that satisfy F?
It is known that 3SAT is in IP and IP = PSPACE.
Computation: As in C-E-L, only one variety of plasmid is used, but trillions

of artificial plasmids containing multiple cloning sites (MCS) are provided for
the initial solution. MCS consists of a number of sites identified by different
restriction enzymes and determined by the number of variables. All bio-molecular
operations are done on MCS. As in D-D-D, the segment of plasmid used is of
the form

c1s1c1 . . . c2s2c2 . . . cnsncn,

where ci, i = 1, . . . , n, are the sites such that no other subsequence of the plasmid
matches with this sequence, si, i = 1, . . . , n, are the stations.

In D-D-D, the lengths of the stations were required to be the same, while
one of the main differences in C-D-E-L is that the lengths of the stations are all
required to be different. This is fundamental to solving #3SAT. Biomolecular
operations used in our C-D-E-L procedure are similar to those used in C-E-L.

364 Rani Siromoney and Bireswar Das

Design. Let x1, . . . , xn be the variables in F , ¬x1, . . . ,¬xn their negations,
ci a site associated with station si, ¬ci a site associated with station ¬si, ri the
length of the station associated with xi, i = 1, . . . , n, and rn+j the length of the
station associated with literal ¬xj , j = 1, . . . , n.

We chose stations in such a way that the sequence [r1, . . . , r2n] satisfies the
property

∑k
i=1 ri < rk+1, k = 1, . . . , 2n− 1, i.e., a super-increasing Easy Knap-

sack sequence.
From the sum, the subsequence can be efficiently recovered.

4.2 Operations in C-D-E-L to Solve #3SAT

The initial plasmid is represented by a binary string of length 2n, with all ones.
Writing a zero instead of a one is done by deleting a station from the plasmid; in
this way, the site is disabled so that the restriction enzyme cannot cut anymore.

This is done in 4 steps as follows:

1. Apply restriction enzyme R which corresponds to site c that flanks s. This
produces two linear DNA strands, a short one containing station s and a
portion of site c, and the other long, having sticky ends at both ends (the
sticky ends are portions of c).

2. Remove the short DNA strand containing the station s.
3. Using DNA polymerase, extend the DNA below the sticky ends of the long

strand to make blunt ends.
4. Apply ligase to recircularise the linear molecues ligating the blunt ends.

Step 1 of Procedure: Remove all contradictions If the initial plasmid
contains stations associated with both xi and ¬xi, i = 1, . . . , n, then these are
contradictions. To remove them for a variable xi, we proceed as follows. Divide
the solution into 2 test tubes T1 and T2. In T1, write zero for station si (cor-
responding to xi). In T2, write zero for station ¬si (corresponding to ¬xi). T1

and T2 are mixed together. Do this for all the variables in F , to remove all
contradictions.

Step 2 of Procedure: Suppose Ci = li1 ∨ li2 ∨ li3 is the ith clause in F ; cij

is the restriction enzyme site corresponding to the literal lij , j = 1, 2, 3. Divide
the solution into three test tubes L,M,R; in L apply restriction enzyme for
¬cli1 to linearise all strands that has 0 for li1 , i.e., 1 for ¬li1 . Then, remove all
linear strands from L. In M apply restriction enzyme ¬cli2

and remove all linear
strands to eliminate all strands in M that do not have 1 for literal li2 . In R do
this for li3 . Pour L,M , and R into a new test tube, to get the resultant solution.
Starting with clause c1, do this for all clauses ci by taking the resultant from
clause ci−1, i = 2, . . . , n. The resultant solution in test tube for clause cn encodes
all the satisfying assignments of F , if any. The resultant solution is analysed by
gel separation. If more than one satisfying assignment is present in the final
solution, the plasmids encoding the different assignments have different lengths.
Since they contain different sets of sequences they form distinct bands in the
gel platform. Any subsequence of an Easy Knapsack sequence has different sum

Plasmids to Solve #3SAT 365

from the sums of other subsequences. Since the sequences are chosen from Easy
Knapsack, the ri can be retrieved from the sum. From the sum, the subsequence
can be efficiently recovered.

5 Breaking the Propositional Logic-Based Cryptosystem

J. Kari [5] introduced a cryptosystem based on the propositional logic. He proved
that the system was optimal in the sense that any cryptanalytic attack against
this can be used to break any other system as well. He also showed that the
problem of cryptanalytic attack encountered by the eavesdropper is NPhard.

In [6] we had adapted the D-D-D procedure of T. Head [1] to give a method
of cryptanalytic attack against this cryptosystem. Now using the C-D-E-L pro-
cedure and the method explained above to solve #3SAT, we note that a more
efficient and better method of cryptanalytic attack against the propositional
logic-based cryptosystem of Kari can be given. This is done by applying #SAT
to F = ¬p0 ∧ p1, where p0 and p1 are the public keys.

The final solution wil give all those truth assignment that make p0 false and p1

true. There are several advantages over the earlier method. In the cryptanalytic
attack proposed in [6] modifying D-D-D, it was required to execute the DNA
algorithm for each bit in the cryptotext, while in the present C-D-E-L method
(combining features of D-D-D and C-D-E-L) the final solution gives all the truth
assignments.

6 Conclusion

In Adleman’s and Lipton’s methods, the construction of the exponential number
of all potential solutions is considered at the initial step. In Tom Head’s proce-
dure, this is replaced by initialization with one single circular molecular variety,
which is seen to be capable of providing representation of all solutions as com-
putation progresses. However, an exponential number of plasmids is necessary,
and this limits the size of problems which can be handled in the laboratory. We
hope to work on procedures which will overcome this difficulty.

References

1. T. Head, Circular Suggestions for DNA Computing, inPattern Formation in Biology,
Vision and Dynamics (A. Carbone, M Gromov, and P. Prusinkeiwicz, Eds.), World
Scientific, Singapore, 2000, 325–335.

2. T. Head, Splicing Systems, Aqueous Computing, and Beyond, in Unconventional
Models of Computation, UMC 2K (I. Antoniou, C.S. Calude, and M.J. Dinneen,
Eds.), Springer, Berlin, 2001, 68–84.

3. T. Head, G. Rozenberg, R.S. Bladergreen, C.K.D. Breek, P.H.M. Lommerse, and
H.P.S. Spaink, Computing with DNA by Operating on Plasmids, BioSystems, 57
(2000), 87–93.

366 Rani Siromoney and Bireswar Das

4. T. Head, M. Yamamura, and S.Gal, Aqueous Computing: Writing on Molecules, in
Proc. Congress on Evolutionary Computation 1999, IEEE Service Center, Piscat-
away, NJ, 1006–1010.

5. J. Kari, A Cryptosystem based on Propositional Logic, in Machines, Languages
and Complexity, 5th International Meeting of Young Computer Scientists, Czeck-
oslovakia, Nov. 14-18, 1989 (J. Dassow and J. Kelemen, Eds.), LNCS 381, Springer,
1989, 210–219.

6. R. Siromoney and D. Bireswar, DNA Algorithm for Breaking a Propositional Logic
Based Cryptosystem, Bulletin of the EATCS, 79 (February 2003), 170–176

Communicating Distributed H Systems with

Alternating Filters

Sergey Verlan

Laboratoire d’Informatique Théorique et Appliquée
Université de Metz, France

verlan@sciences.univ-metz.fr

Abstract. We present a variant of communicating distributed H sys-
tems where each filter is substituted by a tuple of filters. Such systems
behave like original ones with the difference that at each moment we use
one element of the tuple for the filtering process and this element is re-
placed after each use, periodically. We show that it suffices to use tuples
of two filters in order to generate any recursively enumerable language,
with two tubes only. We also show that it is possible to obtain the same
result having no rules in the second tube which acts as a garbage collec-
tor. Moreover, the two filters in a tuple differ only in one letter. We also
present different improvements and open questions.

1 Introduction

Splicing systems (H systems) were the first theoretical model of biomolecular
computing and they were introduced by T. Head. [5,6]. The molecules from
biology are replaced by words over a finite alphabet and the chemical reactions
are replaced by a splicing operation. An H system specifies a set of rules used to
perform a splicing and a set of initial words or axioms. The computation is done
by applying iteratively the rules to the set of words until no more new words
can be generated. This corresponds to a bio-chemical experiment where we have
enzymes (splicing rules) and initial molecules (axioms) which are put together
in a tube and we wait until the reaction stops.

Unfortunately, H systems are not very powerful and a lot of other models
introducing additional control elements were proposed (see [14] for an overview).
One of these well-known models are communicating distributed H systems (CDH
systems) or test tube systems (TT systems) introduced in [1]. This model intro-
duces tubes (or components). Each tube contains a set of strings and a set of
splicing rules and evolves as an H system. The result of its work can be redis-
tributed to other tubes according to a certain filter associated with each tube.
Each filter is an alphabet and a string will enter a tube only if it is composed
only by symbols present in the filter associated with the tube. After that these
strings form the new starting molecules for the corresponding tube.

In the same paper it was shown that the model can generate any recursively
enumerable language using a finite set of strings and a finite set of splicing rules.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 367–384, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

368 Sergey Verlan

The number of test tubes used in [1] to generate a language was dependent on
the language itself. It was also shown that only one tube generates the class of
regular languages.

A series of papers then showed how to create test tube systems able to
generate any recursively enumearble language using fewer and fewer test tubes.
In [2] this result is obtained with 9 test tubes, in [11] with 6, and in [15] with 3
tubes.

In [1], it is shown that test tube systems with two test tubes can generate
non regular languages, but the problem whether or not we can generate all
recursively enumerable languages with two test tubes is still open. Nevertheless,
in [3] R. and F. Freund showed that two test tubes are able to generate all
recursively enumerable languages if the filtering process is changed. In the variant
they propose, a filter is composed by a finite union of sets depending upon the
simulated system. In [4] P. Frisco and C. Zandron propose a variant which uses
two symbols filter, which is a set of single symbols and couples of symbols. A
string can pass the filter if it is made from single symbols or it contains both
elements from a couple. In the case of this variant two test tubes suffice to
generate any recursively enumerable language.

In this paper we propose a new variant of test tube systems which differs from
the original definition by the filtering process. Each filter is replaced by a tuple
of filters, each of them being an alphabet (i.e., like in the original definition),
and the current filter i (the one which shall be used) is replaced by the next
element of the tuple (i + 1) after its usage. When the last filter in the tuple is
reached the first filter is taken again and so on.

We show that systems with two tubes are enough to generate any recursively
enumerable language. We present different solutions depending on the number
of elements in the filter tuple. In Section 3 we describe a system having tuples
of two filters. Additionally both filters of the first tube coincide. In Section 4 we
present a system having tuples of four filters, but which contains no rules in the
second tube. In this case, all the work is done in the first tube and the second
one acts like a garbage collector. In the same section it is shown how to reduce
the number of filters to three. Finally, in Section 5 we present a system with two
filters which contains no rules in the second tube and for which the two filters
in a tuple differ only in one letter.

2 Basic Definitions

2.1 Grammars and Turing Machines

For definitions on Chomsky grammars and Turing machines we shall refer to [7].
In what follows we shall fix the notations that we use. We consider non-

stationary deterministic Turing machines, i.e., at each step the head shall move
to the left or right. We denote such machines by M = (Q, T, a0, q0, F, δ), where Q
is the set of states and T is the tape alphabet, a0 ∈ T is the blank symbol, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final (halting) states. By δ we denote the

Communicating Distributed H Systems with Alternating Filters 369

set of instructions of machine M . Each instruction is represented in the following
way: qiakDalqj . The meaning is the following: if the head of machine M being
in state qi is scanning a cell which contains ak then the contents of the scanned
cell is replaced by al, the head moves to the left (if D = L) or to the right (if
D = R) and its state changes to qj .

By a configuration of a Turing machine we shall understand the string w1qw2,
where w1, w2 ∈ T ∗ (w2 �∈ ε) and q ∈ Q. A configuration represents the contents
of non-empty cells of the working tape of the machine (i.e., all other cells to the
left and to the right are blank), its state and the position of the head on the
tape. The machine head is assumed to read the leftmost letter of w2. Initially
all cells on the tape are blank except finitely many cells.

2.2 The Splicing Operation

An (abstract) molecule is simply a word over some alphabet. A splicing rule (over
alphabet V), is a quadruple (u1, u2, u

′
1, u

′
2) of words u1, u2, u

′
1, u

′
2 ∈ V ∗, which is

often written in a two dimensional way as follows:
u1 u2

u′
1 u′

2
. We shall denote the

empty word by ε.
A splicing rule r = (u1, u2, u

′
1, u

′
2) is said to be applicable to two molecules

m1,m2 if there are words w1, w2, w
′
1, w

′
2 ∈ V ∗ with m1 = w1u1u2w2 and

m2 = w′
1u

′
1u

′
2w

′
2, and produces two new molecules m′

1 = w1u1u
′
2w

′
2 and

m′
2 = w′

1u
′
1u2w2. In this case, we also write (m1,m2) �r (m′

1,m
′
2).

A pair h = (V,R), where V is an alphabet and R is a finite set of splicing
rules, is called a splicing scheme or an H scheme.

For an H scheme h = (V,R) and a language L ⊆ V ∗ we define:

σh(L) def= {w,w′ ∈ V ∗ | (w1, w2) �r (w,w′) for some w1, w2 ∈ L, r ∈ R},
σ0

h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σh(σi
h(L)), i ≥ 0,

σ∗
h(L) = ∪i≥0σ

i
h(L).

A Head splicing system [5,6], or H system, is a construct H = (h,A) =
((V,R), A) of an alphabet V , a set A ⊆ V ∗ of initial molecules over V , the
axioms, and a set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of splicing rules. H is called finite if
A and R are finite sets.

The language generated by H system H is:

L(H) def= σ∗
h(A).

Thus, the language generated by H system H is the set of all molecules that
can be generated in H starting with A as initial molecules by iteratively applying
splicing rules to copies of the molecules already generated.

370 Sergey Verlan

2.3 Distributed Splicing Systems

A communicating distributed H system (CDH system) or a test tube system (TT
system) [1] is a construct

Δ = (V, T, (A1, R1, F1), . . . , (An, Rn, Fn)),

where V is an alphabet, T ⊆ V (terminal alphabet), Ai are finite languages over
V (axioms), Ri are finite sets of splicing rules over V , and Fi ⊆ V are finite sets
called filters or selectors, 1 ≤ i ≤ n.

Each triple (Ai, Ri, Fi), 1 ≤ i ≤ n, is called a component (or tube) of Δ.
An n-tuple (L1, . . . , Ln), Li ⊆ V ∗, 1 ≤ i ≤ n, is called a configuration of the

system; Li is also called the contents of ith component. For two configurations
(L1, . . . , Ln) and (L′

1, . . . , L
′
n) we define:

(L1, . . . , Ln)⇒ (L′
1, . . . , L

′
n) iff

L′
i =

⎛⎝ n⋃
j=1

σ∗
j (Lj) ∩ F ∗

i

⎞⎠ ∪(σ∗
i (Li) ∩

(
V ∗ −

n⋃
k=1

F ∗
k

))
,

where σi = (V,Ri) is the H scheme associated with the component i of the
system.

In words, the contents of each component is spliced according to the associ-
ated set of rules like in the case of an H system (splicing step) and the result
is redistributed among the n components according to filters Fi; the part which
cannot be redistributed remains in the component (communication step). If a
string can be distributed over several components then each of them receives a
copy of the string.

We shall consider all computations between two communications as a macro-
step, so macro-steps are separated by communication.

The language generated by Δ is:
L(Δ) = {w ∈ T ∗ | w ∈ L1, ∃L1, . . . , Ln ⊆ V ∗ : (A1, . . . , An) ⇒∗ (L1, . . . , Ln)}.

A communicating distributed H system with m alternating filters (CDHF sys-
tem or TTF system) is a construct

Γ = (V, T, (A1, R1, F
(1)
1 , . . . , F

(m)
1), . . . , (An, Rn, F (1)

n , . . . , F (m)
n)),

where V , T , Ai and Ri are defined as in a communicating distributed H system.
Now instead of one filter Fi for each component i we have an m-tuple of filters
F

(r)
i , 1 ≤ r ≤ m, where each filter F

(r)
i is defined as in the above case. At

each macro-step k ≥ 1 only filter F
(r)
i , r = (k − 1) (mod m) + 1, is active for

component i.
We define:

(L(1)
1 , . . . , L(1)

n) = (A1, . . . , An),

L
(k+1)
i =

⎛⎝ n⋃
j=1

σ∗
j (L(k)

j) ∩ F
(r)∗
i

⎞⎠ ∪(σ∗
i (L(k)

i) ∩
(

V ∗ −
n⋃

k=1

F
(r)∗
k

))
, k ≥ 1,

where σi = (V,Ri) is the H scheme associated with component i of the system.

Communicating Distributed H Systems with Alternating Filters 371

This is very similar to the previous system. The only difference is that instead
of one stationary filter Fi there is a tuple of filters F

(1)
i , . . . , F

(m)
i and the filter

to be used depends on the number of communications steps being done.
The language generated by Γ is:

L(Γ) = {w ∈ T ∗ | w ∈ L
(k)
1 for some k ≥ 1}.

We denote by CDHn (or TTn) the family of communicating distributed H
systems having at most n tubes and by CDHFn,m (or TTFn,m) the family of
communicating distributed H systems with alternating filters having at most n
tubes and m filters.

3 TTF2,2 Are Computationally Universal

In this section we present a CDHF system with two components and two filters
which simulates a type-0 grammar. Moreover, both filters in the first component
are identical.

Theorem 1. For any type-0 grammar G = (N,T, P, S) there is a communicat-
ing distributed H system with alternating filters having two components and two
filters Γ = (V, T, (A1, R1, F

(1)
1 , F

(2)
1), (A2, R2, F

(1)
2 , F

(2)
2)) which simulates G and

L(Γ) = L(G). Additionally F
(1)
1 = F

(2)
1 .

We construct Γ as follows. Let

N ∪ T ∪ {B} = {a1, a2, . . . , an}
(where we assume B = an).

In what follows we will assume the following:

1 ≤ i ≤ n, a ∈ N ∪ T ∪ {B}, γ ∈ {α, β},
b ∈ N ∪ T ∪ {B} ∪ {�},

V = N ∪ T ∪ {B} ∪ {α, β} ∪ {�}
∪ {X,Y,Xα, Xβ , X ′

α, Yα, Y ′
α, Yβ , Z, Z ′}.

The terminal alphabet T is the same as for the grammar G.

Test tube I:
Rules of R1:

1.1 :
ε uY

Z vY
; 1.2 :

a aiY

Z βαi−1Y ′
α

; 1.3 :
a BY

Z �Yβ
;

1.4 :
X a

Xαβ Z
; 1.5 :

X a

Xβββ Z
; 1.6 :

b βYa

Z Yβ
;

1.7 :
X ′

α α

Xα Z
; 1.8 :

X ′
α α

Xββ Z
; 1.9 :

γ αYα

Z Y ′
α

;

372 Sergey Verlan

Filter:
F1 = F

(1)
1 = F

(2)
1 = N ∪ T ∪ {B} ∪ {α, β} ∪ {�} ∪ {X,Y,X ′

α, Yα}.
Axioms (A1):
{XBSY,ZβαiY ′

α, Z � Yβ , XαβZ,XβββZ,ZYβ , XαZ,XββZ,ZY ′
α}

∪{ZvY | u→ v ∈ P}.
Test tube II:

Rules of R2:

2.1 :
γ Y ′

α

Z Yα
; 2.2 :

Xα γ

X ′
αα Z

; 2.3 :
ai Yβ

Z Y
;

2.4 :
Xββαiβ a

Xai Z
; 2.5 :

Xβββ a

ε Z′ ; 2.6 :
a �Yβ

Z′ ε
;

Filter:
F

(1)
2 = N ∪ T ∪ {B} ∪ {α, β} ∪ {�} ∪ {Xα, Y ′

α},
F

(2)
2 = N ∪ T ∪ {B} ∪ {α, β} ∪ {�} ∪ {Xβ, Yβ}.

Axioms (A2):
{ZYα, X ′

ααZ,ZY,XaiZ,Z ′}.

Ideas of the Proof

The “Rotate-and-Simulate” Method The system uses the method of words’
rotation [12,13,14]. Let us recall it briefly. For any word w = w′w′′ ∈ (N ∪ T)∗

of the grammar G the word Xw′′Bw′Y (X,Y,B /∈ N ∪ T) of CDHF system
Γ , is called a “rotational version” of the word w. The system Γ models the
grammar G as follows. It rotates the word Xw1uw2BY into Xw2Bw1uY and

applies a splicing rule
ε uY
Z vY

. So we model the application of a rule u → v

of the grammar G by a single scheme-rule. Γ rotates the word XwaiY (ai ∈
(N ∪T ∪{B}) “symbol by symbol”, i.e., the word XaiwY will be obtained after
some steps of working of system Γ .

The rotation technique is implemented as follows [15,13,14]. Suppose that we
have XwaiY and we rotate ai, i.e., we shall obtain XaiwY after some steps of
computation. We perform this rotation in three stages. First we encode ai by
βαi and we get Xαβwβαi−1Y ′

α. After that we transfer α’s from the right end of
the molecule to the left end obtaining XββαiβwYβ . Finally we decode βαiβ into
ai which gives us XaiwY . More precisely, we start with the word XwaiY in the
first tube. The second tube receives the word Xαβwβαi−1Y ′

α from the first one.
After that point the system works in a cycle where α’s are inserted at the left
end of the molecule and simultaneously deleted at the right end. The cycle stops
when there is no α at the right end. After that we obtain the word XββαiβwYβ

in the second tube and we decode ai obtaining XaiwY .
If we have XwBY , then we take off X,Y and B obtaining w as a possible

result.

Communicating Distributed H Systems with Alternating Filters 373

Proof

Our proof is done in the following way. We present how we can simulate the
behaviour of grammar G by Γ . In the same time we consider all other possible
evolutions of molecules and we show that they do not lead to a valid result.

Checking the Simulation We note that the molecules from the bottom part
of each rule are already present in the corresponding tube. Moreover, one of the
results of the splicing will contain Z and will not contribute for obtaining the
result. So we will omit these molecules and we will write:

XwaiY −→
1.2

Xwβαi−1Y ′
α, instead of

(Xw|aiY, Z|βαi−1Y ′
α) �1.2 (Xwβαi−1Y ′

α, ZaiY),

where by | we highlighted the splicing sites. During the presentation we mark
molecules which can evolve in the same tube with h and we mark molecules
which must communicate to another tube with 1 or 2 (depending on tube). We
also write m ↑ if molecule m cannot enter any rule and cannot be communicated
to another tube.

We shall present the evolution of words of the form XwaiY . We shall describe
splicing rules which are used and the resulting molecules. We note that, due to
parallelism, at the same time in the system there can be several molecules of
this form or intermediate forms which evolve in parallel. These molecules do not
interact with each other, so we shall concentrate only on a single evolution.

Rotation We shall give the evolution of word XwaiY which is in the first tube.
Step 1.
Tube I.
XwaiY h −→

1.2
Xwβαi−1Y′αh −→

1.4
Xαβwβαi−1Y′α2.

We can use these two rules in opposite order which gives the same result. We
can also use rule 1.5 instead of the last application. This gives us:

Xwβαi−1Y ′
αh −→

1.5
Xβββwβαi−1Y′α ↑.

We can also have:
XwaiY h −→

1.5
XβββwYh.

Molecule Xαβwβαi−1Y ′
α goes to the second tube because it can pass the

filter F
(1)
2 and all other molecules cannot pass any of filters of the second tube.

As we noted before there are other applications of splicing rules on other
molecules but they are not relevant for our evolution. We shall not mention this
fact in the future.

Tube II.
As we noted before there are other applications of splicing rules on other

molecules but they are not relevant for our evolution. We shall not mention this
fact in the future.

374 Sergey Verlan

Step 2.
Tube II.
Xαβwβαi−1Y ′

αh −→
2.1

Xαβwβαi−1Yαh −→
2.2

X′ααβwβαi−1Yα1.

Only molecule X ′
ααβwβαi−1Yα can pass filter F1.

In this way we transferred one α from the right end to the left end.
Step 3.
Tube I.
X ′

ααβwβαi−1Yαh −→
1.9

X′ααβwβαi−2Y′αh −→
1.7

Xααβwβαi−2Y′α2.
We can also have:
X ′

ααβwβαi−1Yαh −→
1.8

Xββαβwβαi−1Yαh −→
1.9

Xββαβwβαi−2Y′α ↑.
Only Xααβwβαi−1Y ′

α can pass filter F
(1)
2 .

Step 4.
Tube II.
Xααβwβαi−2Y ′

αh −→
2.1

Xααβwβαi−2Yαh −→
2.2

X′αααβwβαi−2Yα1.

Only molecule X ′
αααβwβαi−2Yα can pass filter F1.

In this way we transferred one more α from the right end to the left end. We
can continue in this way until we obtain for the first time X ′

ααiβwβYα in tube 2
at some step p. This molecule is communicated to tube 1 where we can use the
rule 1.6 and we complete the rotation of ai.

Step p+1.
Tube I.
X ′

ααiβwβYαh −→
1.6

X′ααiβwYβh −→
1.8

XββαiβwYβ2.
We can also have:
X ′

ααiβwβYαh −→
1.7

XααiβwβY′αh −→
1.6

XααiβwYβ ↑.
Only XββαiβwYβ can pass filter F

(2)
2 . We also add that p+1 is an odd num-

ber, so molecule XββαiβwYβ will remain for one step in the first component
because the filter used in the second component during odd steps is F

(1)
2 . Dur-

ing next step (p+2) this molecule will not change and it will be communicated
to the second tube because the filter to be used will be F

(2)
2 .

Step p+3.
Tube II.
XββαiβwYβh −→

2.4
XaiwYβh −→

2.3
XaiwY1.

XaiwY goes to the first tube.
In this way we competed the rotation of ai.

Simulation of Grammar Productions If we have a molecule XwuY in the
first tube and there is a rule u→ v ∈ P , then we can apply rule 1.1 to simulate
the corresponding production of the grammar.

Obtaining Results Now we shall show how we can obtain a result. If we have
a molecule of type XwBY , then we can perform a rotation of B as described
above. We can also take off X and Y from the ends. In this way, if w ∈ T ∗, then

Communicating Distributed H Systems with Alternating Filters 375

w will be a result. So, now we shall show how to do this. Suppose that XwBY
appears for the first time in tube 1 at some step q (it is easy to check that q is
even).

Step q.

Tube 1.

XwBY h −→
1.3

Xw � Yβh −→
1.5

Xβββw � Yβ2.

We can also have:
Xw � Yβh −→

1.4
Xαβw � Yβ ↑.

Xβββw � Yβ can pass filter F
(2)
2 .

Step q+1.

Tube II.

Xβββw � Yβh −→
2.5

w � Yβh −→
2.6

w1.

So, if w ∈ T ∗ then w is a result.

Final Remarks We start with molecule XBSY in the first tube. After that
we are doing a rotation and simulation of productions of G. Finally we reach a
configuration XwBY where w ∈ T ∗. At this moment we eliminate X , Y and B
obtaining w ∈ T ∗.

As all cases have been investigated, the proof is complete.

4 TTF2,4 with Garbage Collection

In this section we shall present a TTF system having two components and four
filters. Additionally this system contains no rules in the second component, so
it is used only as a garbage collector. Also, all filters in the second tube are the
same.

Theorem 2. For any type-0 grammar G = (N,T, P, S) there is a communicat-
ing distributed H system with alternating filters having two components and four
filters Γ = (V, T, (A1, R1, F

(1)
1 , . . . , F

(4)
1), (A2, R2, F

(1)
2 , . . . , F

(4)
2)) which simu-

lates G and L(Γ) = L(G). Additionally, the second component of Γ has no
splicing rules, i.e., R2 = ∅, and also F

(1)
2 = · · · = F

(4)
2 .

We construct Γ as follows.
Let N ∪ T ∪ {B} = {a1, a2, . . . , an} (B = an).
In what follows we will assume the following:
1 ≤ i ≤ n, 1 ≤ j ≤ 4,a ∈ N ∪ T ∪ {B},
b ∈ N ∪ T ∪ {B} ∪ {�}, γ ∈ {α, β}.
Also let V = N ∪ T ∪ {B} ∪ {α, β} ∪ {�}.
V = V ∪ {X,Y,Xα, Xβ, X ′

α, Yα, Y ′
α, Yβ , Z, Z ′, Zj, Rj , Lj}.

The terminal alphabet T is the same as for grammar G.

376 Sergey Verlan

Test tube I:
Rules of R1:

1.1.1 :
ε uY

R1 vY
; 1.1.2 :

X a

Xαβ L1
; 1.1.3 :

X a

Xβββ L1
;

1.1.4 :
a aiY

R1 βαi−1Y ′
α

; 1.1.5 :
a BY

R1 �Yβ
;

1.2.1 :
γ Y ′

α

R2 Yα
; 1.2.2 :

Xα γ

X ′
αα L2

;

1.3.1 :
X ′

α α

Xα L3
; 1.3.2 :

X ′
α α

Xββ L3
; 1.3.3 :

γ αYα

R3 Y ′
α

;

1.3.4 :
b βYa

R3 Yβ
;

1.4.1 :
ai Yβ

R4 Y
; 1.4.2 :

Xββαiβ a

Xai L4
; 1.4.3 :

Xβββ a

ε Z′L4
;

1.4.4 :
a �Yβ

Z′L4 ε
;

1.1.1′ :
Z1 vY

R1 L1
; 1.1.2′ :

Xαβ Z1

R1 L1
; 1.1.3′ :

Xβββ Z1

R1 L1
;

1.1.4′ :
Z1 βαiY ′

α

R1 L1
; 1.1.5′ :

Z1 �Yβ

R1 L1
;

1.2.1′ :
Z2 Yα

R2 L2
; 1.2.2′ :

X ′
αα Z2

R2 L2
;

1.3.1′ :
Xα Z3

R3 L3
; 1.3.2′ :

Xββ Z3

R3 L3
; 1.3.3′ :

Z3 Y ′
α

R3 L3
;

1.3.4′ :
Z3 Yβ

R3 L3
;

1.4.1′ :
Z4 Y

R4 L4
; 1.4.2′ :

Xai Z4

R4 L4
; 1.4.3′ :

Z′ Z4

R4 L4
;

Filter:
F

(1)
1 = V ∪ {Xα, Y ′

α, R2, L2},
F

(2)
1 = V ∪ {X ′

α, Yα, R3, L3},
F

(3)
1 = V ∪ {Xβ, Yβ , R4, L4},

F
(4)
1 = V ∪ {X,Y,R1, L1}.

Communicating Distributed H Systems with Alternating Filters 377

Axioms (A1):
{XBSY,XαβZ1, XβββZ1, Z1βαiY ′

α, Z � Yβ , Z2Yα, X ′
ααZ2,

XαZ3, XββZ3, Z3Y
′
α, ZYβ, Z4Y,XaiZ4, Z

′Z4, R1L1}
∪{ZvY | u→ v ∈ P}.

Test tube II:
No rules (R2 = ∅).
Filter:
F

(j)
2 = V ∪ {X,Y,Xα, Xβ, X ′

α, Yα, Y ′
α, Yβ , Z ′, Rj , Lj}.

Axioms (A2):
{R2L2, R3L3, R4L4}

Ideas of the Proof

The system is similar to the system from the previous section. It contains the
same rules which are grouped in the first tube. The rules are split into four
subsets (1.1.x–1.4.x) which cannot be used all at the same time. In order to
achieve this we use the method described in [16,9]. We use molecules RjLj

which travel from one tube to another. When a molecule RjLj appears in the
first tube it triggers subset j of rules which can be applied (in [16] these molecules
are called directing molecules). More precisely, the bottom part of each rule is
made in a special way: the molecule which is present there can be produced only
if we have the corresponding RjLj in the first tube. For example, rule 1.1.3 can
be used only if molecule XβββL1 is present. But this molecule can be present
only if R1L1 is present in the first tube (it is produced by applying rule 1.1.3’
on the axiom XβββZ1 and R1L1, and on the next step it is communicated to
the second tube).

This mechanism can be realized by using alternating filters. The filters act
also like selectors for correct molecules and the computation goes in the following
way: molecules are sent into the second tube and after that the correct molecules
are extracted from this tube into the first one where they are processed.

We also note that the operations performed in the first group and the third
group are independent and the molecules are of different forms. So, we can join
the first group with the third group (the corresponding filters 2 and 4 as well)
and we obtain:

Theorem 3. For any type-0 grammar G = (N,T, P, S) there is a communicat-
ing distributed H system with alternating filters having two components and three
filters Γ = (V, T, (A1, R1, F

(1)
1 , . . . , F

(3)
1), (A2, R2, F

(1)
2 , . . . , F

(3)
2)) which simu-

lates G and L(Γ) = L(G). Additionally, the second component of Γ has no
splicing rules, i.e., R2 = ∅, and also F

(1)
2 = · · · = F

(3)
2 .

5 TTF2,2 with Garbage Collection

In this section we shall present a TTF system with two components and two
filters which has no rules in the second component. Moreover, the two filters for

378 Sergey Verlan

both components differ only in one letter. Also the proof is different: we shall
use a simulation of a Turing machine instead of a Chomsky grammar.

We define a coding function φ as follows. For any configuration w1qw2 of a
Turing machine M we define φ(w1qw2) = Xw1Sqw2Y , where X,Y and S are
three symbols which are not in T .

We also define the notion of an input for a TTF system. An input word
for a system Γ is simply a word w over the non-terminal alphabet of Γ . The
computation of Γ on input w is obtained by adding w to the axioms of the first
tube and after that by making Γ to evolve as usual.

Lemma 1. For any Turing machine TM = (Q, T, a0, s0, F, δ) and for any in-
put word w there is a communicating distributed H system with alternating
filters having two components and two filters, Γ = (V, TΓ , (A1, R1, F

(1)
1 , F

(2)
1),

(A2, R2, F
(1)
2 , F

(2)
2)) which given the input φ(w) simulates M on input w, i.e.,

such that:

1. for any word w ∈ L(M) that reaches a halting configuration w1qw2, Γ will
produce a unique result φ(w1qw2);

2. for any word w �∈ L(M), Γ will produce the empty language.

Let T = {a0, . . . , am−1}, Q = {q0, . . . , qn−1}, a ∈ T ∪ {X}, b,d, e ∈ T ,
c ∈ T ∪ {Y }, q ∈ Q, a0 – blank symbol.

We construct Γ as follows:
V = T ∪Q ∪ {X,Y, S, S′, RY , R, L,R′, L′, RR, ZR

1 , ZX , RL
1 , ZL

1 , R′
1, Z

′
1}.

TΓ = T ∪ {X,Y, S} ∪ {q | q ∈ F}.

Test tube I:
Rules of R1:

For any rule qiakRalqj ∈ δ we have the following group of 4 rules:

1.1.1.1.
aSqiak Y

RY a0Y
, 1.1.1.2.

a Sqiakb

R L
,

1.1.1.3.
RSqiak b

RR
1 alS

′qj ZR
1

, 1.1.1.4.
a L

RR
1 bS′qd

,

For any rule qiakLalqj ∈ δ we have the following group of 5 rules:

1.1.2.1.
X Sqiak

Xa0 ZX
, 1.1.2.2.

b dSqiak

R L
, 1.1.2.3.

RbSqiak c

RL
1 S′qjbal ZL

1
,

1.1.2.1′ .
X bSqiak

Xa0 ZX
1.1.2.4.

b L

RL
1 S′qdec

,

We have also the following group of 3 rules:

1.2.1.
ab S′qd

R′ L′ , 1.2.2.
R′S′ qb

R′
1S Z′

1
, 1.2.3.

b L′

R′
1 Sqd

Communicating Distributed H Systems with Alternating Filters 379

Filter:
F

(1)
1 = {R′, L, L′},

F
(2)
1 = {R,L, L′} = (F 1

1 \ {R′}) ∪ {R}.
Axioms (A1):
XSq0wY,RR

1 alS
′qjZ

R
1 (∃qiakRalqj ∈ δ), RL

1 S′qjbalZ
L
1 (∃qiakLalqj ∈ δ),

RY a0Y,Xa0ZX , R′
1SZ ′

1, RL.

Test tube II: No rules (R2 is empty).
Filter:
F

(1)
2 = Q ∪ T ∪ {X,Y, S,R, L,R′, L′, RL

1 , RR
1 , R′

1},
F

(2)
2 = Q ∪ T ∪ {X,Y, S′, R, L,R′, L′, RL

1 , RR
1 , R′

1} = (F 1
2 − {S}) ∪ {S′}.

Axioms (A2): R′L′.

Ideas of the Proof

The tape of M is encoded in the following way: for any configuration w1qw2 of
M we have a configuration Xw1Sqw2Y in the system Γ . So, the tape is enclosed
by X and Y and we have a marker Sqi which marks the head position and the
current state on the tape.

Γ simulates each step of M in 2 stages. During the first stage it simulates a
step of the Turing machine and it primes symbol S using rules 1.1.x.2–1.1.x.4.
During the second stage it unprimes S′ using rules 1.2.x. The tape can be ex-
tended if necessary by rules 1.1.x.1. The system produces a result only if M halts
on the initial string w.

In order to achieve the separation in 2 stages we use two subsets of rules in the
first tube and the directing molecules RL and R′L′ which appear alternatively
in the first and the second test tube will trigger the first (1.1.x) or the second
(1.2.x) subset (see also section 4 and [16]). All extra molecules are passed to the
second test tube which is considered as a garbage collector because only RL and
R′L′ may go from that tube to the first one.

Molecules RY a0Y,RR
1 alS

′qjZ
R
1 , Xa0ZX , RL

1 S′qjbalZ
L
1 , R′

1SZ ′
1, are present

in test tube 1 all the time and they do not leave it. Also all molecules hav-
ing Z with indices at the end remain in the first test tube.

We start with Xw1Sq0w2Y in the first test tube where w1q0w2 is the initial
configuration of M .

Checking the Simulation

We completely describe the simulation of the application of a rule with a move
to right (qiakRalqj ∈ δ) to configuration Xw1Sqiakw2Y. Now also we shall omit
molecules RY a0Y,RR

1 alS
′qjZ

R
1 , Xa0ZX , RL

1 S′qjbalZ
L
1 , R′

1SZ ′
1 which are always

present in the first tube. Also the molecules having Z with indices at the end
and which do not alter the computation will be omitted from the description
after one step of computation.

380 Sergey Verlan

We also note that the second tube may contain some other molecules (ob-
tained during the previous steps) as it is a garbage collector. We shall omit these
molecules as they do not alter our simulation.

Step 1.
Splicing:

Tube 1:

We have: Xw1Sqiakw2Y,RL.
We apply the following rules which are all from group 1.1.1.x:
(Xw1|Sqiakw2Y,R|L) �1.1.1.2 (Xw1L,RSqiakw2Y).
(RSqiak|w2Y,RR

1 alS
′qj |ZR

1) �1.1.1.3 (RR
1 alS

′qjw2Y,RSqiakZ
R
1).

(Xw1|L,RR
1 |alS

′qjw2Y) �1.1.1.4 (Xw1alS
′qjw2Y,RR

1 L).
Tube 2:

We have: R′L′. As it was said above we can also have a lot of other molecules
here which do not alter the computation. We omit them and we do not mention
this in the future.

No application of rules.
Communication:
The current filter is F

(1)
2 = Q ∪ T ∪ {X,Y, S,R, L,R′, L′, RL

1 , RR
1 , R′

1}.
Molecules going from tube 1 to tube 2:
RL,Xw1Sqiakw2Y,Xw1L,RSqiakw2Y,RR

1 L.

Molecules remaining in tube 1:
RR

1 alS
′qjw2Y,RSqiakZ

R
1 , Xw1alS

′qjw2Y.

Molecules going from tube 2 to tube 1:
R′L′.
Molecules remaining in tube 2:
none.
Molecule RSqiakZ

R
1 cannot evolve any further so we shall omit it from the

checking. Also molecule RR
1 alS

′qjw2Y will go from the first test tube to the
second tube during the next iteration.

Step 2.
Splicing:

Tube 1:
We have: RR

1 alS
′qjw2Y,Xw1alS

′qjw2Y,R′L′.
We apply the following rules which are all from group 1.2.x:
(Xw1al|S′qjw2Y,R′|L′) �1.2.1 (Xw1alL

′, R′S′qjw2Y).
(R′S′|qjw2Y,R′

1S|Z ′
1) �1.2.2 (R′

1Sqjw2Y,R′S′Z ′
1).

(Xw1al|L′, R′
1|Sqjw2Y) �1.2.3 (Xw1alSqjw2Y,R′

1L
′).

Tube 2:

We have: Xw1Sqiakw2Y,RL,Xw1L,RSqiakw2Y,R′
1L

′.
No application of rules.
Communication:

The current filter is F
(2)
2 = Q ∪ T ∪ {X,Y, S′, R, L,R′, L′, RL

1 , RR
1 , R′

1}.
Molecules going from tube 1 to tube 2:
R′L′, RR

1 alS
′qjw2Y,Xw1alS

′qjw2Y,Xw1alL
′, R′S′qjw2Y,R′

1L
′.

Communicating Distributed H Systems with Alternating Filters 381

Molecules remaining in tube 1:
R′S′Z1, R

′
1Sqjw2Y,Xw1alSqjw2Y.

Molecules going from tube 2 to tube 1:
RL.
Molecules remaining in tube 2:
R′L′, RR

1 alS
′qjw2Y,Xw1alS

′qjw2Y,Xw1alL
′, R′S′qjw2Y,R′

1L
′,

Xw1Sqiakw2Y,Xw1L,RSqiakw2Y,RR
1 L.

On the next iteration R′
1Sqjw2Y will go from the first test tube to the second

tube.

Thus we modelled the application of the rule (qi, ak, R, al, qj) of the Turing
machine M . It is easy to observe that if w2 = ε we first apply rule 1.1.1.1 in
order to extend the tape to the right and after that w2 = a0. Also it is easy
to check that additional molecules obtained (such as Xw1Sqiakw2Y, Xw1L,
RSqiakw2Y, RR

1 L, RR
1 alS

′qjw2Y,RSqiakZ
R
1 , Xw1alS

′qjw2Y, R′S′qjw2Y,
R′S′Z1, R′

1Sqjw2Y, Xw1alS
′qjw2Y,Xw1alL

′) either go to the second test tube
or do not alter the computation.

For the left shift rules the things are similar, except that we ensure that there
are at least 2 symbols at the left of S.

We see that we model step by step the application of rules of M . It is easy
to observe that this is the only possibility for the computations to go on as the
molecule which encodes the configuration of M triggers the application of rules
of Γ .

Theorem 4. For any recursively enumerable language L ⊆ T ∗ there is a com-
municating distributed H system with alternating filters with two components and
two filters Γ = (V, T, (A1, R1, F

(1)
1 , F

(2)
1), (A2, R2, F

(1)
2 , F

(2)
2)), which generates

L, i.e., L = L(Γ).

Proof. For the proof we use ideas similar to ones used in [10].
Let L = {w0, w1, . . . }. Then there is a Turing machine TL which computes

wi0 . . . 0 starting from 01i+1 where 0 is the blank symbol.
It is possible to construct such a machine in the following way. Let G be a

grammar which generates L. Then we can construct a Turing machine M which
will simulate derivations in G, i.e., we shall obtain all sentential forms of G. We
shall simulate bounded derivation in order to deal with a possible recursion in
a derivation. After deriving a new word the machine checks if this word is a
terminal word and, if this is the case, it checks if this word is the i-th terminal
word which is obtained. If the last condition holds, then the machine erases
everything except the word.

Moreover, this machine is not stationary (i.e., the head has to move at each
step) and it never visits cells to the left of the 0 from the initial configuration
(i.e., the tape is semi-infinite to the right). Ideas for doing this can be found
in [8]. So, machine TL transforms configuration q001k+1 into qfwk0 . . . 0.

Now starting from TL it is possible to construct a machine T ′
L which computes

01k+2Mq′fwk0 . . . 0 starting from q001k+1. Now, using Γ we shall cut off wk and
pass to configuration q001k+2. In this way we will generate L word by word.

382 Sergey Verlan

In order to simplify the proof we shall consider machine T ′′
L which will do the

same thing as T ′
L but at the end will move its head to the right until the first 0,

i.e. will produce 01k+2Mwkq
′′
f 0 . . . 0 from q001k+1. We use also two additional

Turing machines T1 and T2 having the tape alphabet of T ′′
L extended by the set

{X,Y, S}. The first machine, T1, moves to the left until it reaches M and then
stops in the state q1

f . The starting state of T1 is q1
s . The second machine, T2

moves to the left until it reaches 0 and then stops in the state q0. The starting
state of this machine is q2

s .
Now we consider Γ which is very similar to the system constructed in the

previous lemma. In fact, we take machine T ′′
L and we construct Γ for this machine

as it is done before. After that we take the rules of T1 and T2 and we add
the corresponding splicing rules and axioms to Γ . Finally we add the following
splicing rules:

x.1.
a bdSq′′f 0
Z1 aSq1

sbd
, x.2.

e 11Sq1
fM

X2 eSq2
s11

, x.2′.
X211Sq1

fM c
ε Z ′

where e = {0, 1}.
We also add Xq001Y to the axioms in the first tube and we consider T as a

terminal alphabet.
We claim that Γ can generate L. First of all it simulates machine T ′′

L so
it permits to pass from configuration XSq001k+1Y to X01k+2MwkSq′f0 . . . 0Y .
Now we can use rule x.1. As a result we have the part 0 . . . 0Y which is cut off and
sent to the second tube, and a new molecule X01k+2Mw′

kSq1
sab (wk = w′

kab)
which is obtained. Now we can easily observe that we can simulate the work
of T1 because the only condition which must be satisfied is the presence of one
symbol at the right from the head position. So at this moment Γ will simulate
the work of T1 and we will arrive to the following molecule: X01k+2Sq1

fMwk.
Now by rules x.2 and x.2′ we will cut off wk which will represent a result and
we will obtain the molecule X01kSq2

s11Y . In a similar way we can simulate
the work of T2 and we will arrive to configuration XSq001k+2Y . So, we showed
that we succeeded to implement the mechanism of generation of words which we
presented before.

6 Conclusions

We presented a new variant of communicating distributed H systems which uses a
tuple of filters instead of one single filter. We showed that using two components
it is possible to generate any recursively enumerable language. We presented four
systems which differ in the number of filters being used. In the first system we
use two filters and additionally both filters for the first tube coincide. The second
system uses four filters, but do not contain any rules in the second component
which serves for garbage collection. We showed that it is possible to reduce the
number of filters down to three. The last system contains two filters, but do not
contain any rule in the second component and the two filters in each tuple differ

Communicating Distributed H Systems with Alternating Filters 383

only in one letter. In the first three systems we simulate a Chomsky grammar
and in the last system we simulate a Turing machine.

It is an open problem whether or not it is possible to have no rules in the
second component and only one tuple containing different filters (as in the case
of the first system). Also it is interesting to simulate Chomsky grammars instead
of Turing machines in the case of the last system.

Acknowledgments The author wants to thank M. Margenstern and Yu. Rogozhin
for their very helpful comments and for their attention for the present work.
The author acknowledges also the “MolCoNet” IST-2001-32008 project and the
Laboratoire d’Informatique Théorique et Apliquée de Metz which provided him
the best conditions for producing the present result. And finally the author
acknowledges the Ministry of Education of France for the financial support of
his PhD.

References

1. Csuhaj-Varju E., Kari L., Păun Gh., Test tube distributed systems based on splic-
ing. Computers and Artificial Intelligence, 15 2 (1996) 211–232.

2. Ferretti C., Mauri G., Zandron C., Nine test tubes generate any RE language,
Theoretical Computer Science, 231 N2 (2000) 171–180.

3. Freund R., Freund F., Test tube systems: when two tubes are enough, Prepro-
ceedings of DLT99: Developments in Languages Theory, Aachen, July 6-9, (1999)
275–286.

4. Frisco P., Zandron C., On variants of communicating distributed H systems, Fun-
damenta Informaticae, 48 1(2001) 9–20.

5. Head T., Formal language theory and DNA: an analysis of the generative capacity
of recombinant behaviors. Bulletin of Mathematical Biology, 49 (1987) 737–759.

6. Head T., Păun Gh., Pixton D., Language theory and molecular genetics. Generative
mechanisms suggested by DNA recombination, ch. 7 in vol.2 of G. Rozenberg, A.
Salomaa, eds., Handbook of Formal Languages, Springer-Verlag, Heidelberg, 1997.

7. Hopcroft J.E., Motwani R., Ullman J.D., Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed., Addison-Wesley, Reading, Mass., 2001.

8. Kleene S., Introduction to Metamathematics. Van Nostrand Comp. Inc., New-York,
1952.

9. Margenstern M., Rogozhin Yu., Verlan S., Time-varying distributed H systems with
parallel computations: the problem is solved. Preproceedings of DNA9, Madison,
USA, June 1-4, 2003, 47–51.

10. Margenstern M., Rogozhin Yu., Time-varying distributed H systems of degree
1 generate all recursively enumerable languages, in vol. Words, Semigroups and
Transductions (M. Ito, G. Păun, S. Yu, eds.), World Scientific, Singapore, 2001,
329–340.

11. Păun G., DNA computing: distributed splicing systems. In Structures in Logic and
Computer Science. A Selection of Essays in honor of A. Ehrenfeucht, Lecture Notes
in Computer Science, 1261 (1997), 353–370.

12. Păun G., Regular extended H systems are computationally universal, J. Automata,
Languages, and Combinatorics, 1 1 (1996) 27–36.

384 Sergey Verlan

13. Păun G., DNA computing based on splicing: universality results. Theoretical Com-
puter Science, 231 2 (2000) 275–296.

14. Păun G., Rozenberg G., Salomaa A., DNA Computing: New Computing Paradigms.
Springer, Berlin, 1998.

15. Priese L., Rogozhin Yu., Margenstern M., Finite H-Systems with 3 Test Tubes are
not Predictable. In Proceedings of Pacific Symposium on Biocomputing, Kapalua,
Maui, January 1998 (R.B. Altman, A.K. Dunker, L. Hunter, T.E. Klein, eds.),
World Sci. Publ., Singapore, 1998, 545–556.

16. Verlan S., A frontier result on enhanced time-varying distributed H systems with
parallel computations. Preproceeding of DCFS’03, Budapest, Hungary, July 12–14,
2003, 221–232.

Publications by Thomas J. Head

Books:

1. Modules: A Primer of Structure Theorems, Brooks/Cole, 1974.
2. (with J. Golan) Modules and the Structure of Rings, Marcel Dekker, 1991.

Research Papers:

1. Dense submodules, Proc. Amer. Math. Soc., 13 (1962), 197–199.
2. Remarks on a problem in primary abelian groups, Bull. Soc. Math. France,

91 (1963), 109–112.
3. An application of abelian groups to geometries with a transitive set of trans-

lations, in Topics in Abelian Groups (J.M. and E.A. Walker Scott, eds.),
Foresman& Co., 1963, 349–355.

4. Note on the occurrence of direct factors in groups, Proc. Amer. Math. Soc.,
15 (1964), 193–195.

5. Note on groups and lattices, Nieuw Archief Wiskunde, 13 (1965), 110–112.
6. Normal subgroups and Cartesian powers of simple groups, Nieuw Archief

Wiskunde, 13 (1965), 177–179.
7. Purity in compactly generated modular latices, Acta Math. Acad. Sci. Hun-

garicae, 17 (1966), 55–59.
8. A direct limit representation for abelian groups with an aplication to tensor

sequences, Acta Math. Acad. Sci. Hungaricae, 18 (1967), 231–234.
9. Homomorphisms of commutative semigroups as tensor maps, J. Nat. Sci. &

Math., 7 (1967), 39–49.
10. A tensor product of a group with a semigroup; The tensor product of semi-

groups with minimal ideals; Functor properties of semigroup tensor products,
J. Nat. Sci. & Math., 7 (1967), 155–171.

11. The varieties of commutative monoids, Nieuw Archief Wiskunde, 16 (1968),
203–206.

12. Tensor products and maximal subgroups of commutative semigroups, Pub.
Math. Debrecen, 16 (1969), 145–147.

13. Groups as sequences and direct products of countable groups, J. Nat. Sci.
& Math., 10 (1970), 45–47.

14. Commutative semigroups having greatest regular images, Semigroup Forum,
2 (1971), 130–137.

15. Embedded ordinals in modular algebraic lattices, Algebra Universalis, 1
(1971), 200–203.

16. Preservation of coproducts by Hom(,), Rocky Mtn. J. Math., 2 (1972),
235–237.

17. (with N. Kuroki) Greatest regular images of tensor products of commutative
semigroups, Kodai Math. Sem. Rep., 26 (1975), 132–136.

18. An algebraic characterization of multiplicative semigroups of real valued
functions (short note), Semigroup Forum, 14 (1977), 93–94.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 385–389, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

386 Publications by Thomas J. Head

19. (with M. Blattner) Single valued a–transducers, J. Computer & System Sci.,
15 (1977), 310–327.

20. (with M. Blatner) Automata that recognize intersections of free monoids,
Information & Control, 35 (1977), 173–176.

21. Quotenet monoids and greatest commutative monoid images of several types,
Semigroup Forum, 17 (1979), 351–363.

22. (with M. Blattner) The decidability of equivalence for deterministic finite
transducers, J. Computer & System Sci., 19 (1979), 45–49.

23. Codes, languages, 0L schemes, and a–transducers, Soochow J. Math., 5
(1979), 45–62.

24. Codeterministic Lindenmayer schemes and systems, J. Computer & Systems
Sci., 19 (1979), 203–210.

25. A–transducers and the monotonicity of IL schemes, J. Computer & Systems
Sci., 21 (1980), 87–91.

26. (with J. Anderson) On injective and flat commutative regular semigroups
(short note), Semigroup Forum, 21 (1980), 283–284.

27. Unique decipherability relative to a language, Tamkang J. Math., 11 (1980),
59–66.

28. (with G. Thierrin) Hypercodes in deterministic and slender 0L languages,
Information & control, 45 (1980), 251–262.

29. Fixed languages and the adult languages of 0L schemes, Intern. J. Computer
Math., 10 (1981), 103–107.

30. Expanded subalphabets in the theories of languages and semigroups, Intern.
J. Computer. Math., 12 (1982), 113–123.

31. (with J. Wilkinson) Finite D0L languages and codes (note), Theoretical Com-
puter Science, 21 (1982), 357–361.

32. (with Culik II) Transductions and the parallel generation of languages, In-
tern. J. Computer. Math., 13 (1983), 3–15.

33. (with G. Therrin, J. Wilkinson) D0L schemes and the periodicity of string
embeddings (note), Theoretical Computer Science, 23 (1983), 83–89.

34. (with G. Therrin) Polynomially bounded D0L systems yield codes, in Com-
binatorics on Words: Progress and Perspectives (L.J. Cummings, ed.), Aca-
demic Press, 1983, 167–174.

35. Adherences of D0L languages, Theoretical Computer Science, 31 (1984),
139–149.

36. Adherence equivalence is decidable for D0L languages, in Lecture Notes in
Computer Science 166 (M. Fontet, K. Melhorn, eds.), Springer–Verlag, 1984,
241–249.

37. (with J. Wilkinson) Code properties and homomorphisms of D0L systems,
Theoretical Comp. Sci., 35 (1985), 295–312.

38. (with J. Wilkinson) Code properties and derivatives of D0L systems, Com-
binatorial Algorithms on Words (A. Apostolico & Z. Galil, eds.), Springer–
Verlag, 1985, 315–327.

39. The topological structure of adherences of regular languages R.A.I.R.O.
Theor. Informatics & Applications, 20 (1986), 31–41.

Publications by Thomas J. Head 387

40. The adherences of languages as topological spaces, in Automata on Infinite
Words (M. Nivat, D. Perrin, eds.), Lecture Notes in Computer Science 192,
Springer–Verlag, 1985, 147–163.

41. (with B. Lando) Fixed and stationary omega–words and omega–languages,
in The Book of L (G. Rozenberg, A. Salomaa, eds.), Springer–Verlag, 1986,
147–156.

42. (with B. Lando) Periodic D0L languages, Theoretical Computer Science, 46
(1986), 83–89.

43. (with B. Lando) Regularity of sets of initial strings of periodic D0L systems,
Theoretical Computer Science, 48 (1986), 101–108.

44. (with B. Lando) Bounded D0L languages, Theoretical Computer Science, 51
(1987), 255–264.

45. The topological structure of the space of unending paths of a graph, Con-
gressus Numerantium, 60 (1987), 131–140.

46. Formal language theory and DNA: an analysis of generative capacity of
specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737–759.

47. Deciding the immutability of regular codes and languages under finite trans-
ductions, Information Processing Letters, 31 (1989), 239–241.

48. One–dimensional cellular automata: injectivity from unambiguity, Complex
Systems, 3 (1989), 343–348.

49. (with B. Lando) Eignewords and periodic behaviors, in Sequences: Com-
binatorics, Compression, Security and Transmission (R. Capocelli, ed.),
Springer–Verlag, 1990, 244–253.

50. The set of strings mapped into a submonoid by iterates of a morphism,
Theoretical Computer Science, 73 (1990), 329–333.

51. (with W. Forys) The poset of retracts of a free monoid, International J.
Computer Math., 37 (1990), 45–48.

52. (with W. Forys) Retracts of free monoids are nowhere dense with respect
to finite–group topologies and p–adic topologies (short note), Semigroup Fo-
rum, 42 (1991), 117–119.

53. The topologies of sofic subshifts have comutable Pierce invariants,
R.A.I.R.O. Theor. Informatics & Applications, 25 (1991), 247–254.

54. (with J. Anderson) The lattice of semiretracts of a free monoid, Intern. J.
Computer Math., 41, ???

55. Splicing schemes and DNA, in Lindenmayer Systems: Impact on Theoretical
Computer Science and Developmental Biology (G. Rozenberg, A. Salomaa,
eds.) Springer–Verlag, 1992, 371–383.

56. (with A. Weber) Deciding code related properties by means of finite trans-
ducers, Sequences, II (Positano, 1991), Springer–Verlag, 1993, 260–272.

57. (with A. Weber) The finest homophonic partition and related code concepts,
Proc. Mathematical Foundations of Computer Science (Košice, 1994), Lec-
ture Notes in Computer Scvience 841, Springer–Verlag, 1994, 618–628.

58. (with M. Ito) Power absorbing languages and semigroups, Proc. Words, Lan-
guages and Combinatorics, II (Kyoto, 1992), World Scientific, Singapore,
1994, 179–191.

388 Publications by Thomas J. Head

59. (with N. Jonoska) Images of cellular maps on sofic shifts, Congr. Numer.,
101 (1994), 109–115.

60. A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Sets
and Systems, 73 (1995), 349–358.

61. Cylindrical and eventual languages, Mathematical Linguistics and Related
Topics (Gh. Păun, ed.), Ed. Acad. Române, Bucharest, 1995, 179–183.

62. (with A. Weber) Deciding multiset decipherability, IEEE Trans. Inform.
Theory, 41 (1995), 291–297.

63. (with A. Weber) The finest homophonic partition and related code concepts,
IEEE Trans. Inform. Theory, 42 (1996), 1569–1575.

64. The finest homophonic partition and related code concepts, IEEE Trans.
Inform. Theory 42 5 (1996), 1569–1575.

65. (with K. Satoshi, T. Yokomori) Locality, reversibility, and beyond: learning
languages from positive data, Proc. Algorithmic Learning Theory (Otzen-
hausen, 1998), Lecture Notes in Computer Science 1501, Springer–Verlag,
1998, 191–204.

66. Splicing representations of strictly locally testable languages, Discrete Appl.
Math., 87 (1998), 139–147.

67. (with G. Rozenberg, R. Bladergroen, C.K.D. Breek, P.H.M. Lomerese, H.
Spaink) Computing with DNA by operating on plasmids, BioSystems, 57
(2000), 87–93.

68. Writing by communication by documents in communities of organisms, Mil-
lenium III, Issue #4 (winter 1999/2000), 33–42.

69. Circular suggestions for DNA computing, in Pattern Formation in Biology,
Vision and Dynamics (A. Carbone, M. Gromov, P. Prusinkiewicz, eds.),
World Scientific, Singapore, 2000, 325–335.

70. Relativised code properties and multi–tube DNA dictionaries, in Finite vs.
Infinite (C. Calude, Gh. Păun, eds.), Springer–Verlag, 2000, 175–186.

71. (with M. Yamamura, S. Gal) Aqueous computing – mathematical princi-
ples of molecular memory and its biomolecular implementation, Chap. 2 in
Genetic Algorithms (H. Kitano, ed.), 4 (2000), 49–73 (in Japanese).

72. Writing by methylation proposed for aqueous computing, Chap. 31 in Where
Mathematics, Computer Science, Linguistics, and Biology Meet (C. Martin–
Vide, V. Mitrana, eds.), Kluwer, Dordrecht, 2001, 353–360.

73. Splicing systems, aqueous computing, and beyond, in Unconventional Models
of Computation UMC’2K (I. Antoniou, C.S. Calude, M.J. Dineen, eds.),
Springer–Verlag, 2001, 68–84.

74. Biomolecular realizations of a parallel architecture for solving combinatorial
problems, New Generation Computing, 19 (2001), 301–312.

75. (with S. Gal) Aqueous computing: Writing into fluid memory, Bull. Europ.
Assoc. Theor. Comput. Sci., 75 (2001), 190–198.

76. Visualizing languages using primitive powers, in Words, Semigroups, Trans-
ducers (M. Ito, Gh. Păun, S. Yu, eds.), World Scientific, Singapore, 2001,
169–180.

77. Finitely generated languages and positive data, Romanian J. Inform. Sci. &
Tech., 5 (2002), 127–136.

Publications by Thomas J. Head 389

78. Aqueous simulations of membrane computations, Romanian J. Inform. Sci.
& Tech., 5, 4 (2002), 355–364.

79. An aqueous algorithm for finding the bijections in a binary relation, in For-
mal and Natural Computing: Essays Dedicated to Grzegorz Rozenberg (W.
Brauer, H. Ehrig, J. Karhumaki, A. Salomaa, eds.), Lecture Notes in Com-
puter Science 2300, Springer–Verlag, 2002, 354–360.

80. (with X. Chen, M.J. Nichols, M. Yamamura, S. Gal) Aqueous solutions of
algorithmic problems: emphasizing knights on a 3X3, DNA Computing – 7th
International Workshop on DNA–Based Computers June 2001 (N. Jonoska,
N.C.Seeman, eds.), Lecture Notes in Computer Science 2340, Springer–
Verlag, 2002, 191–202.

81. (with X. Chen, M. Yamamura, S. Gal) Aqueous computing: a survey with
an invitation to participate, J. Computer Sci. Tech., 17 (2002), 672–681.

82. (with D. Pixton, E. Goode) Splicing systems: regularity and below, DNA
Computing – 8th International Workshop on DNA–Based Computers (M.
Hagiya, A. Ohuchi, eds.), Lecture Notes in Computer Science 2568,
Springer–Verlag, 2003, 262–268.

Author Index

Alhazov, Artiom, 1
Arita, Masanori, 23
Arulanandham, Joshua J., 36

Balan, M. Sakthi, 353
Bernardini, Francesco, 49
Bobba, Kiranchand V., 152

Calude, Cristian S., 36
Carbone, Alessandra, 61
Ceterchi, Rodica, 84
Csuhaj-Varjú, Erzsébet, 106
Culik II, Karel, 119

Das, Bireswar, 361
Dinneen, Michael J., 36

Ferretti, Claudio, 132
Freund, Franziska, 139
Freund, Rudolf, 139

Garzon, Max H., 152
Gehani, Ashish, 167
Gheorghe, Marian, 49
Goode, Elizabeth, 189

Harju, Tero, 202
Holcombe, Mike, 49
Hyde, Bryan P., 152

Ito, Masami, 213

Jonoska, Nataša, 219, 241

Karhumäki, Juhani, 119
Kari, Lila, 254
Kobayashi, Satoshi, 266
Krithivasan, Kamala, 353
Kudlek, Manfred, 278

LaBean, Thomas, 167
Ledesma, Lucas, 289
Leupold, Peter, 297
Liao, Shiping, 219

Mahalingam, Kalpana, 241
Manca, Vincenzo, 309
Marcus, Solomon, 318
Mart́ın-Vide, Carlos, 1, 84, 254
Mauri, Giancarlo, 132
Mitrana, Victor, 297

Oswald, Marion, 139

Pan, Linqiang, 1
Păun, Andrei, 254
Păun, Gheorghe, 322
Pazos, Juan, 289
Pérez-Jiménez, Mario J., 338
Petre, Ion, 202
Pixton, Dennis, 189

Reif, John, 167
Rodŕıguez-Patón, Alfonso, 289
Romero-Jiménez, Alvaro, 338
Rozenberg, Grzegorz, 202

Sakakibara, Yasubumi, 266
Salmela, Petri, 119
Salomaa, Arto, 106
Sancho-Caparrini, Fernando, 338
Seeman, Nadrian C., 61, 219
Sempere, José M., 297
Siromoney, Rani, 361
Subramanian, K.G., 84
Sugiura, Ryo, 213

Verlan, Sergey, 367

Yokomori, Takashi, 266

	Frontmatter
	Solving Graph Problems by P Systems with Restricted Elementary Active Membranes
	Writing Information into DNA
	Balance Machines: Computing = Balancing
	Eilenberg P Systems with Symbol-Objects
	Molecular Tiling and DNA Self-assembly
	On Some Classes of Splicing Languages
	The Power of Networks of Watson-Crick D0L Systems
	Fixed Point Approach to Commutation of Languages
	Remarks on Relativisations and DNA Encodings
	Splicing Test Tube Systems and Their Relation to Splicing Membrane Systems
	Digital Information Encoding on DNA
	DNA-based Cryptography
	Splicing to the Limit
	Formal Properties of Gene Assembly: Equivalence Problem for Overlap Graphs
	{\itshape n}-Insertion on Languages
	Transducers with Programmable Input by DNA Self-assembly
	Methods for Constructing Coded DNA Languages
	On the Universality of P Systems with Minimal Symport/Antiport Rules
	An Algorithm for Testing Structure Freeness of Biomolecular Sequences
	On Languages of Cyclic Words
	A DNA Algorithm for the Hamiltonian Path Problem Using Microfluidic Systems
	Formal Languages Arising from Gene Repeated Duplication
	A Proof of Regularity for Finite Splicing
	The Duality of Patterning in Molecular Genetics
	Membrane Computing: Some Non-standard Ideas
	The {\bfseries P} Versus {\bfseries NP} Problem Through Cellular Computing with Membranes
	Realizing Switching Functions Using Peptide-Antibody Interactions
	Plasmids to Solve \#3SAT
	Communicating Distributed H Systems with Alternating Filters
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

