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ABSTRACT

Identification of the source that has generated a digital
content is considered one of the main open issues in multime-
dia forensics community. The extraction of photo-response
non-uniformity (PRNU) noise has been so far indicated as a
mean to identify sensor fingerprint. Such a fingerprint can
be estimated from multiple images taken by the same cam-
era by means of a denoising filtering operation. This paper
presents an analysis of the performances of different denois-
ing filters based on diverse noise models when applied for
digital camera tracking. In particular, a digital filter, based
on a signal-dependent noise model, is introduced and com-
pared with others commonly adopted for this purpose. A the-
oretical framework and experimental results are provided and
discussed.

Index Terms— Digital forensics, source camera identifi-
cation, photo response non uniformity, wavelet denoising fil-
ter

1. INTRODUCTION

Digital forensics science emerged in the last decade in re-
sponse to the escalation of crimes committed by the use of
electronic devices as an instrument used to commit a crime
or as a repository of evidences related to a crime (e.g. piracy
and child-pornography). For instance a digital camera could
be the instrument used to commit a crime and/or a digital pho-
tograph, being the evidence related to an illegal action, might
have been altered to mislead the judgement. One important
element of digital forensics is the credibility of the digital ev-
idence in order to assess digital data origin and authenticity.
In this paper digital images are taken in account focusing on
evaluating image origin determining the specific digital cam-
era which has acquired that content. It is possible to split
the source identification problem in two fields [1]: the first
is devoted to determine the specific digital camera or scan-
ner and also identify the model and brand that acquired an
image [6, 3, 2, 7], the second one is dedicated to investigate
the kind of device [4, 5] that has generated the image under
examination (digital camera, scanner, computer graphics im-
ages). Various solutions have been proposed in literature to

solve the source identification problem analyzing the digital
device acquisition process in order to find a fingerprint left by
the device like the use of Color Filter Array (CFA) character-
istics [7, 6] and the Photo Response Non-Uniformity (PRNU)
noise [4, 5, 3, 2]. The PRNU noise is induced by intrinsic in-
homogeneities over the silicon wafer and imperfections gen-
erated during sensor manufacturing process of CCD/CMOSs.
The PRNU is used as sensor fingerprint and it is commonly
employed to solve the problem of digital camera sensor iden-
tification. Such a technique is investigated in this paper. The
extraction of PRNU noise happens through a digital filtering
operation from a set of digital images taken by a camera. Af-
ter that, the PRNU noise of the to-be-checked image is ex-
tracted and compared with the available fingerprints and then
the image is classified as taken (or not) by a certain camera.
It is important to point out, for the further discussion, that the
PRNU noise is deterministically embedded in each image the
sensor acquired.
In this paper we present a theoretical and experimental com-
parative analysis of different wavelet denoising filters to esti-
mate the PRNU in order to solve the digital camera identifica-
tion problem. We have used two denoising filters operating in
the wavelet domain and based on different noise models. The
first is the filter proposed in [8] and used in [3] and the second
filter is a MMSE filter operating in the undecimated wavelet
domain [10]. Introducing this kind of filter we make an as-
sumption that the digital camera noise is considered as de-
pendent on the sensed signal, while using the filter described
in [8] a signal-independent noise model is supposed.
The filter in [10] is used for the first time in the digital foren-
sic domain to solve the problem of source camera identifica-
tion, generally it is adopted for speckle and film-grain noise
removal in coherent radiation imaging systems including ul-
trasound, infrared and laser imaging and synthetic aperture
radar (SAR).
The paper layout is the following: in Section 2 the two denois-
ing filters are introduced, in Section 3 we describe the digital
camera sensor output model that will be used to derive the
estimation of PRNU and the noise models for the two filters
will be discussed. Some experimental results are presented
to evaluate the denoising filters performances in Section 4;
finally in Section 5 conclusions are drawn.
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2. DENOISING FILTERS

According to PRNU methodology, it is crucial to analyze the
type of denoising filter to be used for the extraction of such a
noise. In this work we have decided to evaluate two denois-
ing filters described in detail hereafter: a spatially adaptive
statistical modelling of wavelet coefficients filter [8] (Mih-
cak’s Filter) and a MMSE filter operating in the undecimated
wavelet domain [10] (Argenti’s Filter). The first one adopts a
simple additive noise model, on the contrary the second one
is based on a signal dependent noise model.

For sake of completeness a simple low-pass filter in the
wavelets domain (LP Filter) has been considered too, to pro-
vide a performance lower bound during the experimental
tests. In this case, after a 4 level Discrete Wavelets Trans-
form (DWT), all the detail coefficients are set to zero and the
Inverse Discrete Wavelets Transform (IDWT) is performed
to reconstruct the denoised image. The extreme simplicity
of this filter is inversely proportional to its accuracy, because
setting to zero the coefficients of detail equally removes
noise and details that are part of the content of the image.
Therefore, the results obtained when we used this filter are
presumably coarser.

2.1. Mihcak’s Filter [8]

This filter is based on a spatially adaptive statistical modelling
of wavelet coefficients; such noisy coefficients G(k) are con-
sidered as the addition of the noise-free image X(k) (a locally
stationary i.i.d. signal with zero mean) and the noise com-
ponent n(k) (a stationary white Gaussian noise with known
variance σ2

n). The target is to retrieve the original image co-
efficients as well as possible from the noisy observation. By
using a local Wiener filter (Equation (1)) we obtain an esti-
mate of the denoised image in the wavelet domain and then
apply the IDWT (Inverse DWT).

X̂(k) =
σ2

x(k)
σ2

x(k) + σ2
n

G(k) (1)

However, we can not use the true signal variance σ2
x(k) since

it is unknown, but only an estimate σ̂2
x(k) achieved by previ-

ously using a MAP (Maximum A-posteriori Probability) ap-
proach on noisy wavelet coefficients.

2.2. Argenti’s Filter [10]

Unlike the filter seen before this filter is based on a signal-
dependent noise model (see Equation 2):

I = Io + [Io]α ·U + W, (2)

where I and Io represent the noisy and noise-free images re-
spectively, while U states for a stationary zero-mean uncor-
related random process independent of Io and W takes into
account of electronics noise (zero-mean white and gaussian).

The term α is the exponent that rules the dependence of noise
from the signal. It is a parametric model which meets differ-
ent situations of acquisition [11]. The parameters to be esti-
mated are: α, σ2

U which is the variance of U and σ2
W which

is the variance of electronic noise W, that can simply be esti-
mated from black image area. The denoising method is based
on MMSE filtering in undecimated wavelet domain: after the
estimation of the parameters α and σ2

U in the spatial domain,
the undecimated wavelet transform of the image is computed
and then a MMSE filtering in this domain is applied accord-
ing to the supplied parameters. IDWT to reconstruct the esti-
mated noise-free image is finally performed.

2.2.1. The estimation of α and σU

As described above two are the parameters to be estimated in
the noise model (Equation (2)): α and σ2

U . In [9] has been
proposed an iterative algorithm to estimate these parameters
which utilizes an adaptive filter (a MMSE noise filter in the
spatial domain). After simple calculation [9], it is possible
to derive the relationship among σ̃I , the image I and σU ex-
pressed in Equation (3) which is valid on homogeneous pix-
els:

log[σ̃I] = α · log{E[I]}+ log(σu). (3)

So on homogeneous pixels, the ensemble statistics of I are
aligned along a straight line having α as a slope and log(σU )
as intercept. At each step of the algorithm, the α and σU

estimate are substituted in the MMSE spatial filter in order to
obtain the noise free image on which the homogeneous pixels
are selected through an homogeneity equation described in
detail in [9]. On these homogeneous pixels a log scatter plot
is computed, the regression line is estimated and then the α
and σU are found.

3. DIGITAL CAMERA SENSOR OUTPUT MODEL

Digital camera acquisition process is well-known as being
composed by different processes such as signal quantization,
white balance, color and gamma correction, filtering and usu-
ally JPEG compression. This variety of effects, together with
the diversities due to the specific kind of camera, determine
that a precise modelling is difficult to be achieved. In [3] a
quite complete model, which takes into account most of the
components relevant for forensic task, is introduced. Such a
model is reported in Equation (4), where I is the 2-D sen-
sor output (noisy image), g and γ are the gain factor and
the gamma correction respectively, and Y is the 2-D incident
light:

I = gγ · [(1 + K)Y + Λ]γ + Θq. (4)

The term that is useful for the forensic analysis is K which
represents a zero-mean noise-like signal that is the PRNU



(Photo Response Non-Uniformity) (i.e. the 2-D sensor fin-
gerprint deterministically superimposed to each taken digital
image), while Θq is the quantization noise and Λ takes into
account a combination of different noise sources.

According to the discussion presented in [3], this expres-
sion can be simplified to get to a more concise representation
(see Equation (5)), where Io is the noise-free sensor output,
K1 = K · γ is basically considered again as the PRNU and
Θ is an ensemble of independent random noise components.

I = Io + Io ·K1 + Θ (5)

This expression points out an additive-multiplicative re-
lation between the signal without noise and the noise terms.
An estimate Îo = FM (I) of the denoised image Io is usually
obtained by a wavelet-based denoising filter FM [8], though
such a filter is built on an additive noise model as explained
in Section 2.1. It is immediate to comprehend that Equation
(2) coincides with Equation (5) (U and W are the same of
K1 and of Θ respectively) except for the term α (|α| ≤ 1)
which determines signal-dependency. When α is equal to 1
for purely multiplicative noise the two models are identical.
On the basis of this consideration, it is interesting to analyze
how this difference in modelling can influence filtering and
consequently PRNU detection.

The two digital filters FM and FA will yield two esti-
mates FM (I) and FA(I), and when are tested against signal-
dependent generated noisy images, results achieved in denois-
ing operation are generally superior with FA filter (e.g. 2 or
3 dB of PSNR improvement), as expected. This witnesses
the goodness of the Argenti’s filter when the noise model is
exactly matched.
When the noise-free image is obtained, the PRNU noise is
computed, at least in a rough approach, by subtracting from
the noisy image the denoised one. The more accurate the de-
noised image estimate, the more reliable the fingerprint ex-
traction so high relevence is given to the kind denoising filter
used. The sensor fingerprint N is obtained, as indicated in
Equation (6), by suppressing the scene content:

N = I− Îo. (6)

Successively a refinement of the fingerprint is carried out
by averaging the results got over a set of M training images
(usually M is around 50). This operation yields to delete dif-
ferent noise components that are present on the acquired im-
ages but which are not systematic like PRNU.

4. EXPERIMENTAL RESULTS

In the first part of this section the denoising filters perfor-
mances are discussed in relation with the digital camera iden-
tification. In the second part of this section experimental mea-
sures of the model parameters associated to the Argenti’s filter
are reported and analyzed.

4.1. Denoising filters performances

In this section experimental results for digital camera identi-
fication, carried out to compare the three filters (LP, Mihcak
and Argenti) used to estimate the PRNU noise are collected
and analyzed. The data set is composed by images coming
from 10 digital cameras of various brand and model taken
by generic users in different kinds of settings. We have cre-
ated the fingerprint for each camera in the data set, averaging
residual noises from 40 images; the remaining photos have
composed the test-set (approximately 250 images for each
camera). For each camera we obtained three fingerprints,
one for each denoising filter under investigation. The cor-
relation between each fingeprint and the residual noises of
the test images is performed. In Table 1 a numerical exam-
ple of the correlation values for a selection of images from a
Concord 2000 is shown. Each fingerprint calculated for the
Nikon E4600, Samsung MS11 etc., through the three filters
under examination (Low Pass, Mihcak and Argenti) is com-
pared with the residual noise of a selection of Concord 2000
test images (from 30 to 38). It is worth to point out that the
correlation values in the last column of the Table 1 have the
higher values, so the images taken by the Concord 2000 are
correctly identified as belonging to Concord 2000 digital cam-
era. Moreover it is interesting to observe that higher values of
the last column are encountered when the correlation is made
between the fingerprint and the PRNU noise residual calcu-
lated with the Argenti filter (see the lower part of the Table
1).
To decide if an image has been acquired or not by a specific
camera we introduced a statistical threshold for the correla-
tion value. To calculate the threshold we used the Neyman-
Pearson approach based on two parameters: the False Accep-
tance Ratio (FAR) and False Rejection Ratio (FRR).
The FAR establishes a limit to the number of cases in which
an image is wrongly identified as related to a given finger-
print. The FRR is the rate that indicates the number of im-
ages that, though related to the given fingerprint, are not rec-
ognized as such. With this method we set an a priori FAR
and we found the threshold that minimize FRR. We suppose
that the distribution of the correlation between the fingerprint
of the camera C0 and the noise residuals coming from im-
ages taken by different cameras is Generalized Gaussian (see
Equation (7)).

f(x; δ, β, µ) =
1

2δΓ(1 + 1/β)
e−(

|x−µ|
δ )β

(7)

In Figure 1 the distribution of correlation between the
Nikon D40x with noise residual from a selection of images
taken by the others cameras in the database (except the Nikon
D40x) is shown. It is possible to fit the data with a Gener-
alized Gaussian distribution centered close to zero. Further-
more, the standard deviation is bigger in the Low Pass filter
case and decrease in the other two filters. So it’s possible to
consider the standard deviation as a performance marker of



Filter Type n. Nikon E4600 Samsung MS11 Olympus FE120 Sony S650 Nikon L12 Concord 2000

Low Pass

30 -1.714 0.735 -0.234 0.778 0.262 67.969
31 0.083 -0.160 0.469 -0.056 -0.265 83.186
32 -1.007 0.593 -0.254 0.090 0.147 67.926
33 -0.722 -0.522 0.411 -0.158 -0.456 39.619
34 -1.815 0.700 0.322 0.883 1.037 43.593
35 0.613 -1.261 -0.028 -0.340 -0.444 68.18
36 -0.280 0.292 -0.539 0.294 -0.229 69.173
37 0.477 0.016 0.347 -0.082 0.341 99.602
38 0.416 -0.013 -0.001 -0.239 0.481 63.028

Mihcak

30 1.210 -0.487 0.365 0.173 -1.997 101.070
31 -0.370 -1.152 0.263 -0.880 -1.157 98.416
32 0.190 0.923 0.171 0.619 0.043 100.710
33 -1.486 1.226 -0.524 0.595 0.026 74.502
34 1.154 -0.621 0.031 1.368 0.449 70.787
35 0.288 -0.594 0.917 -0.645 0.440 105.400
36 0.166 0.470 -0.736 0.001 -0.064 102.320
37 0.219 0.946 -0.048 0.185 0.736 145.380
38 0.525 0.948 -0.282 0.679 0.996 92.319

Argenti

30 0.884 -0.469 0.026 0.334 -0.471 111.530
31 -3.362 -4.128 3.466 -1.883 -1.879 111.290
32 0.046 1.355 -1.608 1.026 0.787 102.050
33 -0.591 -0.238 -0.547 -0.162 -0.959 84.691
34 1.292 -0.762 -0.549 -1.179 -0.720 79.884
35 0.174 -0.423 0.252 -0.421 -0.577 113.380
36 -0.046 -1.253 -0.212 -1.235 -0.060 105.320
37 1.291 0.051 -0.839 1.217 -0.629 143.020
38 1.556 0.216 -1.395 0.889 1.211 96.836

Table 1. Correlation values (values are to be scaled by 10−3) for a selection of 9 test images (30 to 38) from a Concord 2000
digital camera calculated with the fingerprints of 6 cameras (Concord 2000 included).

LP Mihcak Argenti
Camera t (10−3) FRR t (10−3) FRR t (10−3) FRR

Nikon E4600 3.0 3x10−2 3.0 8.11x10−3 9.3 8.11x10−3

Samsung MS11 15.5 2x10−2 4.6 1.8x10−10 9.9 8x10−12

Olympus FE120 4.2 2.8x10−2 2.6 1.2x10−2 9.9 8x10−4

Sony S650 4.9 2.6x10−2 2.0 3.1x10−3 7.7 1.8x10−2

Nikon L12 5.6 1.1810−1 4.1 8.8x10−3 8.4 9.4x10−3

Canon DI50 5.7 5.210−1 4.2 4.5x10−2 7.7 4.7x10−2

Nikon D40x 2.1 1.7610−1 2.4 7x10−3 4.8 1.5x10−2

Canon Diiz 7.7 2.7210−1 4.5 9.3x10−2 5.2 5.7x10−2

HP PSC935 4.6 4.510−1 4.1 1.9x10−10 5.0 7x10−2

Concord 2000 3.3 1.3x10−2 3.7 5x10−4 5.8 9x10−4

Table 2. Thresholds t and FRR for all 10 cameras with a FAR=10−3 for the three different denoising filters.

the three filter, and it is possible to presume that Argenti’s
and Mihcak’s filter will show better results. The method of
moments [2] is used to estimate the parameters of Equation
(7) and then we calculate the cumulative density function of
f(x; δ, β, µ) over all the cameras at disposal, except C0. By
using the Neyman-Pearson approach we determine the thresh-

old by minimizing the probability of rejection, given an upper
bound on the FAR = 10−3. In Table 2 the decision thresholds
and the FRR computed for each denoising filter relatively to
the 10 test cameras are shown.
The LP filter has the worst behavior as obviously expected.
The other two filters showed a comparable behavior; in fact



(a) Low Pass

(b) Mihcak

(c) Argenti

Fig. 1. Distribution of the correlation values between Nikon
D40x fingerprint with residual noises taken by a random se-
lection of 300 images belonging to different cameras. The
continuous line is the Generalized Gaussian fitting.

in most cases the value of FRR has the same order of magni-
tude though Argenti’s filter has a significative lower FRR for
Samsung MS11 and Olympus FE120. However Argenti’s fil-
ter does not exhibit a considerable improvement in the results
of camera identification compared to Mihcak’s filter. Accord-
ing to our analysis, this is mainly due to the sensibility of the
filter itself to the reliability of the parameters estimation (see
Section 4.2). In fact we noted, by acting on noisy images
generated by introducing a speckle noise, that filter perfor-

(a) Low Pass

(b) Mihcak

(c) Argenti

Fig. 2. Correlation values of residual noises (values are to
be scaled by 10−3) of 20 images coming from an Olympus
FE120 with 5 fingerprints. Legend: + Nikon E4600, ◦ Sam-
sung MS11, ∗ Olympus FE120, × Sony S650, ¦ Nikon L12

mances drastically decreased, when an uncorrect estimation
was done, specifically for the parameter α.



In Figure 2 the correlation values for images from a Olympus
FE120 with 5 fingerprints of various cameras are pictured.
The distributions of the correlation values in all the three cases
are always well separated; in fact the higher values are those
related to the correlation between the noise residual of the
Olympus FE120 images and its fingerprint. In the Mihcak
and Argenti filter cases (Figure 2 (b),(c)) the two classes are
better clustered than in Figure 2 (a). This result confirms that
using a denoising filter adequate at the noise model there is an
improvement in the performance of the camera identification
method.

4.2. Consideration about α and σU estimate in the Ar-
genti’s filter

The Argenti’s filter proposes, as said in Section 2.2.1, an it-
erative estimate of α and σU in the parametric noise model
(Equation (2)). So some tests to check the reliability of such
estimation have been performed. We consider a noise free
computer generated image (Figure 3), then we corrupted this
image with a noise in order to achieve a SNR = 3dB, driven
by the parameters α and σU . Then using the estimation algo-
rithm proposed in 2.2.1 we obtained the α̂ and σ̂U estimated
values. In Table 3 the results of this test are listed: in the first
and the second columns there are the actual α and σU values
while in the third and the forth there are the corresponding es-
timated values obtained by implementing the algorithm pro-
posed in [9]. In general the estimate of each couple of value
(α, σU ) seems to be consistent with the real ones.

α σU α̂ σ̂U

-0.80 1340.66 -0.77 1187.47
-0.70 885.20 -0.66 751.36
-0.60 578.87 -0.55 461.65
-0.50 375.11 -0.45 298.65
-0.40 241.01 -0.35 188.70
-0.30 153.63 -0.25 121.34
-0.20 97.22 -0.16 80.27
-0.10 61.12 -0.08 54.00
0.00 38.19 0.01 36.31
0.10 23.74 0.09 24.70
0.20 14.68 0.17 16.78
0.30 9.04 0.24 11.67
0.40 5.55 0.32 7.84
0.50 3.39 0.40 5.35
0.60 2.07 0.48 3.57
0.70 1.25 0.57 2.36
0.80 0.76 0.65 1.54

Table 3. The real α and σU and their estimate α̂ and σ̂U over
different measures.

Furthermore we considered the estimate of these parame-
ters in relation to the correlation value obtained from the fin-
gerprint and the residual noise when the Argenti’s denoising
filter is used. We calculated the first estimate (α1 and σ1

U ) of
the parameters for each photo taken by a certain camera C.

Fig. 3. A computer graphics image “Room”.

We computed new α and σU values calculated in the range
of [-50%, +50%] from the initial value (121 values are con-
sidered in total). Then we calculated the residual noises for
each of the 121 couples and then the correlation of them with
the fingerprint of the camera C is measured. In the majority
of the observed cases the correlation value does not improve
using the 121 values of α and σU instead the initial one. In
Figure 4 an example of this situation for Nikon E4600 is pre-
sented. The values of (α, σU ) in the (x, y) axes, and in z axes
the value of the correlation are reported. The higher value of
correlation is in the central point of the graph (x = 0, y = 0)
that corresponds at the initial estimate of the two parameters.
According to these observations we used the first estimate of
the α and σU parameters for the computation of the PRNU
noise. So it is necessary to find a new technique to estimate α
and σU parameters in order to improve their reliability.

Fig. 4. Trend of the correlation values with respect to (α, σU )
for a Nikon E4600.



5. CONCLUSIONS

In this paper, we have analyzed how different denoising filters
based on diverse noise models can be adopted for PRNU ex-
traction in source camera identification. In particular, exper-
imental results have demonstrated that when the noise model
exactly matches the actual situation (i.e digital image acqui-
sition process), the filter based on such a model grants better
performances if the parameters, needed for filtering, are re-
liably estimated (e.g. Argenti’s filter). This is an input in
proceeding to research appropriate solutions which can per-
mit a better PRNU detection. Future works will be dedicated
to deeply investigate how parameters estimate really affects
the successive filtering operation and furthermore to study a
more effective methodology for PRNU extraction instead of
that roughly adopted in Equation (6) by properly taking into
account all the other. Other tests will be performed for the
source identification, in the case of digital cameras of the
same brand and model to better understand the both filters
behaviour.
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