

OUTLINE

Introduction Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) Atomic Force Microscopy (AFM) Energy Dispersive Analysis of x-rays (EDAX) Auger Electron Spectroscopy X-ray Fluorescence Spectroscopy (XPS) Secondary Ion Mass Spectroscopy (SIMS) Capacitance Voltage Measurements Surface Charge Analyzer

Rochester Institute of Technology Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller

AMRAY 1830 1 & 2

LEO EVO 50 SEM & EDAX

SEM EXAMPLES

SEM EXAMPLES

SEM WITH FOCUSED ION BEAM (FIB)

SEM WITH FOCUSED ION BEAM (FIB)

FIB allows crossection SEM images to be made at any point by cutting a trench with a focused beam of argon ions.

> Rochester Institute of Technology Microelectronic Engineering

> > © January 31, 2011 Dr. Lynn Fuller

ATOMIC FORCE MICROSCOPE (AFM)

ATOMIC FORCE MICROSCOPE (AFM)

Standard

Sharp Apex Slender Long Used in Contact mode

CD Mode (Conical and Flared)

Flared tip able to measure undercut sidewalls

Used in non-contact mode

Rochester Institute of Technology Microelectronic Engineering

Page 16

© January 31, 2011 Dr. Lynn Fuller

EDAX ANALYSIS OF FAILED RF PIN

Failed RF Pin: 40X

Failed RF Pin: 320X Point A & B Analyzed using EDAX

Rochester Institute of Technology Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller

AUGER

Auger analysis showed an aluminum particle contaminated the wafer.

Rochester Institute of Technology Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller

AUGER

- Simultaneous Process
- Ionization of Core Electron
- Upper level electron falls into lower energy state
- Energy release from second electron allows Auger electron to escape
- The illustrated LMM Auger electron energy is ~423 eV (EAuger = EL2 - EM4 - EM3)

http://www.cea.com/cai/augtheo/process.htm

© January 31, 2011 Dr. Lynn Fuller

ESCA or XPS

Electron Spectroscopy for Chemical Analysis (ESCA) or X-ray Photo Electron Spectroscopy (XPS)

© January 31, 2011 Dr. Lynn Fuller

SCA-2500 SETUP

Login: FACTORY Password: OPER <F1> Operate <F1> Test Place the blank spot in middle of wafer on center of the stage Select (use arrow keys, space bar, page up, etc) PROGRAM = FAC-P or FAC-N LOT ID = F990909 WAFER NO. = D1 TOX = 463 (from nanospec) <F12> start test and wait for measurement <Print Screen> print results <F8> exit and log off <ESC> can be used anytime, but wait for current test to be completed

Rochester Institute of Technology Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller

EXAMPLE OF SCA OUTPUT MEASURED AT RIT

EXAMPLE OF SCA OUTPUT MEASURED AT RIT

HOMEWORK: SURFACE

- 1. Calculate the wavelength of the K_{α} and L_{B} x-ray for copper.]
- 2. Explain how SIMS gives doping profiles.
- 3. Why can't Auger and a ESCA give doping profiles.

Rochester Institute of Technology

Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller