ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Resistors: Heaters and Temperature Sensors

Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive

Rochester, NY 14623-5604

Tel(585) 475-2035

Fax (585) 475-5041

Email: Lynn.Fuller@rit.edu

Department webpage: http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

12-5-11 resistor_mems.ppt

© December 5, 2011 Dr. Lynn Fuller, Professor

OUTLINE

Introduction Resistors Resistive Temperature Sensors Heaters

Rochester Institute of Technology

Microelectronic Engineering

© December 5, 2011 Dr. Lynn Fuller, Professor

INTRODUCTION

Heaters are used in many MEMS applications including ink jet print heads, actuators, bio-mems, chemical detectors and gas flow sensors. Resistors are used in temperature sensors, pressure sensors, accelerometers and light sensors. This module will discuss the resistor as a heater and as a sensor.

Rochester Institute of Technology

Microelectronic Engineering

© December 5, 2011 Dr. Lynn Fuller, Professor

SURFACE MICROMACHINED GAS FLOW SENSOR

Rochester Institute of Technology Microelectronic Engineering

L of heater & resistor = 1mm				
W (heater)	= 50um			
W (resistors)	= 20um			
Gap	= 10um			
V applied = $27V$ to $30.5V$				
Temp ~600 °C at 26 volts				
Lifetime > 10 min at 27 volts (possibly longer, did not test)				

© December 5, 2011 Dr. Lynn Fuller, Professor

THERMIONIC GAS DETECTOR

MICROELECTRONIC ENGINEERIN	IG	3/13/2005
CALCULATION OF MOBILITY		Dr. Lynn Fuller
CONSTANTS Tn = T/300 1.13	VARIABLES	CHOICES 1=yes, 0=no
	Temp= <u>338</u> °K N total <u>1.00E+18</u> cm-	n-type 1 3 p-type 0 <100>
Kamins, Muller and Chan; 3rd Ed., 3	2003, pg 33 mol	oility= 196 cm2/(V-sec)

EXACT CALCULATION OF n AND p

diffused region. This ensures that the pn junction that is formed is in reverse bias, and there is no current leaking to the substrate. Current will flow through the diffused resistor from one contact to the other. The I-V characteristic follows Ohm's Law: I = V/R

DIFFUSION CONSTANTS AND SOLID SOLUBILITY

			DIFFUS	ION CONSTANT	S	
	BORON TEMP PRE or DRIVE-IN		PHOS	PHOSPHOROUS		PHOSPHOROUS
			N PRE	PRE DRIVE-IN		SOLID
		Dp or D	Dp	D	SOLUBILITY NOB	SOLUBILITY NOP
	900 °C	1.07E-15 cm2/s	2.09e-14 cm2/s	7.49E-16 cm2/s	4.75E20 cm-3	6.75E20 cm-3
	950	4.32E-15	6.11E-14	3.29E-15	4.65E20	7.97E20
	1000	1.57E-14	1.65E-13	1.28E-14	4.825E20	9.200E20
	1050	5.15E-14	4.11E-13	4.52E-14	5.000E20	1.043E21
	1100	1.55E-13	9.61E-13	1.46E-13	5.175E20	1.165E21
	1150	4.34E-13	2.12E-12	4.31E-13	5.350E20	1.288E21
	1200	1.13E-12	4.42E-12	1.19E-12	5.525E20	1.410E21
	1250	2.76E-12	8.78E-12	3.65E-12	5.700E20	1.533E21

Rochester Institute of Technology

Microelectronic Engineering

© December 5, 2011 Dr. Lynn Fuller, Professor

© December 5, 2011 Dr. Lynn Fuller, Professor

POLY SILICON

Grain boundary take up some of the implanted dose. They also add resistance to the resistor that is less sensitive to temperature and doping concentration. We assume grain size ~ equal to $\frac{1}{2}$ the film thickness (t) and the number of grains equals the path length (L) divided by grain size (t/2). Each grain boundary adds a fixed resistance which is found empirically. (example 0.9 ohms)

CALCULATION OF RESISTANCE

Calculation of Mobility of Sing	le Crystal Silicon		
CONSTANTS	VARIABLES	CH	HOICES
Tn = T/300 1.00		_	1=yes, 0=no
	Тетр= <u>300</u> К	n-type	0
Concentration from Dose I thic	kness, N = Dosełt = <u>1.33E+18</u> cn	n-3 p-type [1
Kamins, Muller and Chan; 3rd Ed., 200	3, pg 33		
	mob	ility = μ = <u>131</u>	cm2/(V-sec)
Calculation of Resistance			
L ength is the	drawn length	Length, L =	180 µm
Width is the dr	awn width	Width, W =	<u>200</u> μm
Thickness is I	nown if poly, or Xj from Diffusion.Xl	LS Thickness, t =	<u>1.5</u> μm
Implanter setting if doped by ion impla	ant or from Diffusion.xls if doped by	diffusion Dose =	2.00E+14 /cm2
		Poly?	0 Yes=1, No =0
	resistance	/poly grain boundary	0.9 ohm
Calculation of Resistance			
	approximate number of grain bound	laries in path = L ł t =	120
	Average Doping :	= Dose/Thickness =	1.33E+18 atoms/cm3
		Mobility, μ =	131 cm2/v-sec
q = 1.6e-19 coulomb∤ion	Rhos = sheet resist	ance =1/(q μ Dose) =	239 ohms/sq
	Rł	10 = bulk resistivity =	159 ohm-em
R=RhoL/W/t		Resistance =	215 ohms
R=RhosL/W	If Poly the effective	e sheet resistance =	239 ohms/sq
We assume the grain size is equal to t	he polu film thickness/2. We calcula	te the number of grain	ns from the lenath. L.
divided by the grain size, t/2. We also	assume the grain boundary adds a fi	xed resistance that is	not a function of
emperature or doping. The resistanc	e of a grain boundary is found from	resistance measuren	nents of poly resistors.
	December 5, 2011 Dr. Lynn Fuller, Pro	fessor	Dago 24

Resistor MEMS RESISTOR I-V CHARACTERISTICS 500x100 um Resistor 5 Miles 5010 5.0000E-03 211 (3 500 2.5000E-03 \triangleleft 0.0000 -2.5000E-03 -5.0000E-03 -2.000E+00 -1.000E+00 0.000 1.000E+00 2.000E+00 Use t=1.5, L=500, w=100 VA *dose* =0.5*e*15, *p*-*type* single R = 1/1.44e-3Fit #1: Fit #2: Cursors: X crystal silicon -1.2400E+00 -1.7870E-03 Type: Cursor None Slp:1.4413E-03 2.3784E-07 0.0000 = 694 ohmsYint:2.3784E-07 **** Xint:-1.6502E-04 \bowtie 08:46:52 **Rochester Institute of Technology** 04/12/2007 Microelectronic Engineering © December 5, 2011 Dr. Lynn Fuller, Professor Page 25

CLOSE UP OF RESISTORS AND THERMOCOUPLE

Aluminum – N+ Poly Thermocouple

Green P+ Diffused Resistor 200 um wide x 180 um long Use t=1.5, L=180, w=200dose =2e14, p-type crystalline, Rmeas = 207

Red N+ Polysilicon Resistor 60 um x 20 um + 30 to contact so L/W ~ 6 Use t=0.5, L=120, w=20dose =1e16, n-type poly, and 0.9 ohms per boundary Rmeas = 448

SIX DIFFERENT RESISTORS

(that is, n and p is determined by doping)

© December 5, 2011 Dr. Lynn Fuller, Professor

© December 5, 2011 Dr. Lynn Fuller, Professor

THERMAL PROPERTIES OF SOME MATERIALS

	MP °C	Coefficient of Thermal	Thermal Conductivity	Specific Heat
		Expansion	w./amV	$aa1/am^{\circ}C$
Diamond		$\frac{1}{1}$		cal/gm C
	1 4 1 0	1.0	20	
Single Crystal Silicon	n 1412	2.33	1.5	
Poly Silicon	1412	2.33	1.5	
Silicon Dioxide	1700	0.55	0.014	
Silicon Nitride	1900	0.8	0.185	
Aluminum	660	22	2.36	0.215
Nickel	1453	13.5	0.90	0.107
Chrome	1890	5.1	0.90	0.03
Copper	1357	16.1	3.98	0.092
Gold	1062	14.2	0.032	
Tungsten	3370	4.5	1.78	
Titanium	1660	8.9	0.17	
Tantalum	2996	6.5	0.54	
Air			0.00026	0.24
Water	0		0.0061	1.00
Rochester I	nstitute of Technology			
Microelectr	onic Engineering		1 watt = 0).239 cal/sec
	© December	5, 2011 Dr. Lynn Fuller, Pro	ofessor Page 33	

DIODES AND HEATERS

Poly Heater on top of Diodes

© December 5, 2011 Dr. Lynn Fuller, Professor

SINGLE WIRE ANEMOMETER

A single heater/sensor element is placed in the flow. The amount of power supplied to keep the temperature constant is proportional to flow. At zero flow a given amount of power Po will heat the resistor to temperature To. With non zero flow more power Pf is needed to keep the resistor at To.

REFERENCES

- 1. <u>Mechanics of Materials</u>, by Ferdinand P. Beer, E. Russell Johnston, Jr., McGraw-Hill Book Co.1981, ISBN 0-07-004284-5
- 2. <u>Electromagnetics</u>, by John D Kraus, Keith R. Carver, McGraw-Hill Book Co.1981, ISBN 0-07-035396-4
- 3. Fundamentals of Microfabrication, M. Madou, CRC Press, New York, 1997
- 4. <u>Mechanics of Materials</u>, by Ferdinand P. Beer, E. Russell Johnston, Jr., McGraw-Hill Book Co.1981, ISBN 0-07-004284-5
- 5. Device Electronics for Integrated Circuits, Richard S. Muller, Theodore I. Kamins, John Wiley & Sons., 3rd edition, 2003.

¥ +++++++++	Rochester Institute of Technology	//
	Microelectronic Engineering	
	© December 5, 2011 Dr. Lynn Fuller, Professor Page 42	

Resistor MEMS HOMEWORK – RESISTORS 1. Poly heater is $500 \,\mu\text{m}$ long and $100 \,\mu\text{m}$ wide, it has a sheet resistance of 25 ohms/sq and 9 volts is applied. What temperature will it reach if built on 1000Å of silicon nitride on top of 10,000Å thick oxide? 2. A diffused resistor is used as a temperature sensor. Calculate what the resistance will be at room T and at 150 °C above room T. The diffused resistor is $1000 \,\mu m \log and 20 \,\mu m$ wide. It has an average Boron doping (Na) of 1E16 cm-3 over

Rochester Institute of Technology

Microelectronic Engineering

its 2.5 µm thickness.