ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Observational Studies of Particulate Contamination in the RIT Microelectronics Facility

Dr. Lynn Fuller

http://people.rit.edu/~lffeee/

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Lynn.Fuller@rit.edu http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

Page 1

1-29-2008 Par_count.ppt

OUTLINE

Accuracy of the Surfscan Particle Measurement Tool Calibration of Particulate Size **RIT Cleanroom Air Particle Counts** Air Velocity and Particle Counts in Wet Etch I Area Particle Counts in the MEBES Room Particle Counts in Gowning Measurement of Aerosol Particle Deposition Velocities Particle Counts on Wafers in a box Particle Counts on Monitor Wafers Setting Out in the Lab Particle Counts in Clean Hoods Particle Counts Added in LPCVD System

Rochester Institute of Technology Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

CALIBRATION OF PARTICLE SIZE

SURFACE PARTICULATE SIZE STANDARD

The Surfscan 364 analyzes light scattered from particles illuminated with a spot laser of calibrated size and intensity. The intensity of light scattered from a particle cannot be directly translated into particle size: it also depends on the shape, reflectivity of the substrate, and dielectric constant of the particle. The 364 uses units of scattering cross-section not particle size. The scattering cross-section is the ratio of the power scattered by the particle (watts) to the power density (watts/ μ m²) incident on it (units of μ m²). The scattering cross-section includes all light removed from the beam through absorption reflection, refraction and diffraction.

> Rochester Institute of Technology Microelectronic Engineering

CALIBRATION OF PARTICLE SIZE

Typical method to calibrate particle size is to measure a standard at different sensitivities. At low sensitivities only the larger particles will be "seen". As the sensitivity is increased the display shows more of the particles.

The standard is made by etching rounded holes in an oxide surface. The different sizes are calibrated against latex spheres of known size.

CLEANROOM PARTICLE COUNTS AT RIT

AIR VELOCITY AND PARTICLE COUNTS IN WET ETCH I

Particle count and air velocity measurements were made at 4 feet above the floor in the 20 locations shown.

> Rochester Institute of Technology Microelectronic Engineering

@ January 29, 2008 $\,$ Dr. Lynn Fuller, Professor $\,$

Rochester Institute of Technology Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

RESULTS

	Α		B		С		D	
	0.3u	0.5u	0.3u	0.5u	0.3u	0.5u	0.3u	0.5u
Floor	6550	5415	1145	155	302	155	37	19
Knee	1655	1074	897	59	83	59	119	474
Waist	665	474	216	110	167	110	215	115

A=with people changing

B=after vacuuming and with people in the room

C=no one in the room

=no one in the room after vacuuming

Rochester Institute of Technology Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

AEROSOL PARTICLE DEPOSITION VELOCITY

Wafers were placed in open boats in the center of the white tables in plasma etch area and in Photo I area. Surface particle counts were made initially and after 8 hours. The increase in particle counts was combined with particle counts to calculate an effective particle deposition velocity.

Rochester Institute of Technology Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

AEROSOL PARTICLE DEPOSITION VELOCITY

DI	Initial	Final	#/ft3	Veff
<pre>Plasn <1</pre>	na 4	26	593	0.425
1-2	25	41	39	4.70
2-5	27	68	9	52.2
5-10	73	187	8	163
Photo	o 2			
<1	4	210	109	21.7
1-2	78	188	6	210
2-5	45	64	1	217
5-10	33	324	1	1669
Ro	chester Institute of Technology			
	croelectronic Engineering			

© January 29, 2008 Dr. Lynn Fuller, Professor

Rochester Institute of Technology Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

PARTICLE COUNTS ON MONITOR WAFERS SETTING OUT IN THE LAB

A single wafer was placed on the white table in six locations throughout the lab. Each wafer had its surface scanned at 8:00 am and at 5:00 pm for several days. The locations were:

Metallization	(wafer 1)
Photo I	(wafer 2)
Wet Etch I	(wafer 3)
Wet Etch II	(wafer 4)
Photo II	(wafer 5)
Diffusion	(wafer 6)

Rochester Institute of Technology

Microelectronic Engineering

 $\ensuremath{\textcircled{C}}$ January 29, 2008 Dr. Lynn Fuller, Professor

PARTICLE COUNTS ON MONITOR WAFERS SETTING OUT IN THE LAB

Total Particle Count on Wafer Day Thur@5 Fri@8 Fri@5 Mon@8 1256 923 1694 527 Mon@5 Tue@8 Tue@5 1602 1084 Wed@8 1764 1251 1850 680 Wed@5 1015 1842 1426 850 1981 585 **Rochester Institute of Technology** Microelectronic Engineering

Microelectronic Engineering

PARTICLES ADDED BY AIR GUNS

New Bare Wafers init				
Sample Set	C01	C02	C03	C04
Particle Count				
BIN 1	0	88	0	0
BIN 1 BIN 2	0	88 112	0	0 99
BIN 1 BIN 2 Bin 3	0 0 42	88 112 114	0 0 183	0 99 200

AIR BLOWN With A	ir Wands			
Sample Set	C01	C02	C03	C04
Particle Count				
BIN 1	447	1373	1145	545
BIN 2	608	1552	1053	663
Bin 3	125	293	165	91
Bin 4	314	206	192	230

Rochester Institute of Technology

Microelectronic Engineering

AIR GUN PICTURES

input unfiltered air input unfiltered Input Side particulates particulates @ 35x output filtered output filtered particulates Output Side @ 90X @35X

Rochester Institute of 2 Microelectronic Engin

© January 29, 2008 Dr. Lynn Fuller, Professor

Page 38

@70x

AIR GUN FILTER PICTURES

Pictures of filter material showing tears and source of particles

PARTICLES IN THE DRYTECH QUAD

				Pre					Post					Adders		
	Wafer	Bin 1(1)	Bin 2 (2)	Bin 3 (5)	Bin 4 (10)	To tal	Bin 1(1)	Bin 2 (2)	Bin 3 (5)	Bin 4 (10)	Total	Bin 1(1)	Bin 2 (2)	Bin 3 (5)	Bin 4 (10)	Total
	Monitor 1	4	2	1	4	11	17	29	11	8	65	13	27	10	4	54
	Monitor 2	15	29	10	7	61	14	36	17	19	86	-1	7	7	12	25
	Monitor 3	5	13	0	1	19	5	11	0	4	20	0	-2	0	3	1
	Monitor 4	7	5	0	1	13	5	10	23	22	60	-2	5	23	21	47
	Monitor 5	9	13	7	7	36	0	26	5	31	62	-9	13	-2	24	26
	2	0	16	5	6	27	0	1362	5405	1902	86 69	0	1346	5400	1896	8642
Chamber 260 sec	3	4	18	3	28	53	725	1 127	216	272	2340	721	11 09	213	244	2287
idle w/ vac on	4	3	6	0	3	12	201	384	104	105	794	198	378	104	102	782
	5	2	21	3	11	37	107	1 16	19	44	286	105	95	16	33	249
	6	4	11	7	4	26	185	198	53	99	535	181	187	46	95	509
Chamber 360 sec	7	9	10	0	6	25	84	100	26	77	287	75	90	26	71	262
idle w/ vac on	8	2	8	5	2	17	0	6698	1970	636	9304	-2	6690	1965	634	9287
	9	9	5	0	0	14	723	1037	229	196	21 85	714	1032	229	196	2171
	10	1	3	5	6	15	340	359	112	150	961	3 39	356	107	144	946
Chamber 460 sec	11	3	1	2	0	6	239	596	169	1 10	11 14	236	595	167	110	1 108
idle w/ vac on	12	7	5	4	8	24	221	457	130	117	925	214	452	126	109	901
	13	4	7	1	3	15	19	67	20	21	127	15	60	19	18	1 12
Transfer Chnmber	14	8	33	12	16	69	335	476	110	99	1020	327	443	98	83	951
120 sec idle w/vac	15	7	10	3	2	22	29	56	6	27	118	22	46	3	25	96
on	16	4	8	1	1	14	32	77	11	24	144	28	69	10	23	130
	17	2	15	1	3	21	198	486	102	82	868	196	471	101	79	847
Chamber 3 w/	18	3	10	0	4	17	-	-	-	-	0	#VALUE	#VALUE!	#VALUE	#VALUE!	#VALUE
300mT Ar on for 60	19	6	11	0	7	24	1302	1296	121	1 39	2858	1296	1285	121	132	2834
s	20	2	6	0	2	10	443	410	66	138	1057	441	404	66	136	1047
	21	2	8	2	3	15	420	371	34	51	876	418	363	32	48	861

© January 29, 2008 Dr. Lynn Fuller, Professor

Particle Studies at RIT **PARTICLES ADDED IN VARIOUS TOOLS** BEFORE AFTER DELTA RIE 396 481 85 ASHER 25 386 361 **STEPPER** 108 142 34 ION IMPLANT 16 15 31 **SPUTTER** 137 349 212 DEVELOP 336 215 121 LPCVD 4" 14 229 215 LPCVD 6" 870 1200 330

Rochester Institute of Technology

Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

© January 29, 2008 Dr. Lynn Fuller, Professor

Particle Studies at RI	
PARTICLES AT FAIRCHILD, N	MOUNTAINTOP, PA
Particle counts after BOE	
Particle counts after BOE followe 95%/peroxide etch 5% (z-s	ed by Sulfuric strip)
Fairchild specification is <100 pa wafer	articles on a 150mm
Rochester Institute of Technology Microelectronic Engineering	Elias Ullah April 2001

RESULTS

Wafers get dirty in BOE etch. If they are cleaned further in z-strip the wafers need specification of less than 100 particles.

Date	After BOE	After Z-strip
3/23/01	2743	14
3/24/01	7986	65
3/25/01	3301	19
3/26/01	3380	28
3/27/01	2464	29
3/28/01	4999	44
3/29/01	3298	13
3/30/01	3568	37
3/31/01	4287	25
4/1/01	2916	23
4/2/01	3925	21
4/3/01	4334	20
4/4/01	4575	22
4/5/01	3829	61
4/6/01	3233	20
4/7/01	3869	40
4/8/01	4906	27
4/9/01	3789	16
4/19/01	2445	26
4/20/01	3688	127
4/21/01	3670	86
4/22/01	3217	19

Rochester Institute of Technology

Microelectronic Engineering

© January 29, 2008 Dr. Lynn Fuller, Professor

EFFECT OF CHLORINE PRECLEAN ON GATE OXIDE QUALITY

Chlorine tube clean prior to gate oxide growth. Chlorine source is trans-1,2-dichloroethylene (DCE). The results are that chlorine lowers the charged defects within the oxide and helps stabilize the minority carrier lifetimes within the silicon. Chlorine also reduces variation in flat band charges (fixed and mobile), interface traps and carrier lifetime.

Carefully RCA clean, preclean tube (run recipe 50) prior to 250A gate oxide growth and compare to standard gate oxide growth without preclean. (Recipe 50 heats furnace to 1000 C, runs DCE bubbler at 21 C with oxygen flowing during 20 min ramp up and 20 min soak. Then ramps down furnace to 800 C.

Rochester 1	Institute of Technology		
Microelectr	onic Engineering	Ieff Perry - June 2001	//
	© January 29, 2008 Dr. Lynn Fulle	r, Professor Page 52	

HYPOTHESIS

Due to the treatment of a typical clean room lab notebook, the number of particles deposited on a wafer from a used clean room notebook will not be significantly different than from a regular notebook. The number of particles caused by a new clean room notebook will be much lower than a used clean room notebook, but larger than a wafer sitting alone on a workbench.

Rochester Institute of Technology Microelectronic Engineering

CONCLUSIONS

- My hypothesis was very wrong.
- The type of notebook used has a significant effect on particle deposition.
- The used lab notebook, new lab notebook, and a wafer sitting on a workbench do not generate significantly different numbers of particles.
- A regular spiral bound notebook generates about 800% more particles!!!!
- Students should not complain about the expensive notebook price.
- Even if a ferret eats your lab notebook, and drags it under the couch it is still much much much cleaner than a regular notebook.

Rochester Institute of Technology Microelectronic Engineering