ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Hand Calculations for RIT's Advanced CMOS Process

Dr. Lynn Fuller

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Webpage: <u>http://people.rit.edu/lffeee</u> Email: <u>Lynn.Fuller@rit.edu</u> Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

4-1-2014 HandcalcADV_CMOS.ppt

© April 1, 2014, Dr. Lynn Fuller, Professor

OUTLINE

Introduction Calculations

Rochester Institute of Technology

Microelectronic Engineering

© April 1, 2014, Dr. Lynn Fuller, Professor

INTRODUCTION

RIT is supporting two different CMOS process technologies. The older p-well CMOS and SMFL-CMOS have been phased out. The SUB-CMOS process is used for standard 3 Volt Digital and Analog integrated circuits. This is the technology of choice for teaching circuit design and fabricating CMOS circuits at RIT. The ADV-CMOS process is intended to introduce our students to process technology that is close to industry state-of-the-art. This process is used to build test structures and develop new technologies at RIT.

RIT p-well CMOS RIT SMFL-CMOS RIT Subµ-CMOS RIT Advanced-CMOS

$\lambda = 4 \ \mu m$	
$\lambda = 1 \ \mu m$	
$\lambda = 0.5 \ \mu m$	
$\lambda = 0.25 \ \mu r$	n

 $Lmin = 8 \ \mu m$ $Lmin = 2 \ \mu m$ $Lmin = 1.0 \ \mu m$ $Lmin = 0.5 \ \mu m$

Rochester Institute of Technology

Microelectronic Engineering

RIT ADVANCED CMOS VER 150

RIT Advanced CMOS

150 mm Wafers Nsub = 1E15 cm-3 or 10 ohm-cm, n or pNn-well = 1E17 cm-3 Long L $X_{j} = 2.5 \ \mu m$ Channel Np-well = 1E17 cm-3**Behavior** $X_{i} = 2.5 \ \mu m$ Shallow Trench Isolation Field Ox = 4000 ÅDual Doped Gate n+ and p+ Supply = 3 Volt Xox = 100 Å $Vth^{-} = +/- 0.75$ Volts $Lmin=0.5 \mu m$ LDD/Nitride Side Wall Spacers TiSi2 Silicide Tungsten Plugs, CMP, 2 Layers Aluminum **Rochester Institute of Technology**

Microelectronic Engineering

© April 1, 2014, Dr. Lynn Fuller, Professor

Internal Channel Length, Lint =distance between junctions, including under diffusion Effective Channel Length, Leff = distance between space charge layers, Vd = Vs = 0Channel Length, L, = distance between space charge layers, when Vd= what it is Extracted Channel Length Parameters = anything that makes the fit good (not real)

CALCULATION OF SC LAYER SIZE, ELECTRIC FIELD

Width of Space Charge Layer: $W = (W_1 + W_2) = [(2\epsilon/\theta) (\Psi_0 + V_R) (1/N_A + 1/N_D)]^{1/2}$ **Maximum Electric Field:** $E_0 = - [(2q/\epsilon) (\Psi_0 + V_R) (N_A N_D / (N_A + N_D))]^{1/2}$ Let $N_A = N_D = 1E17$ Well Bias SC Layer Efield Short Doping (volts) (μm) (V/cm)1E17 0 0.07 - 1.09E53 0.14 -2.42E5 1E17 Breakdown Electric Field = 3E5 V/cm $\epsilon = \epsilon_{0} \epsilon_{r} = 8.85 \text{E} \cdot 12 \ (11.7) \text{ F/m}$ 8.85E-14 (11.7) F/cm **Rochester Institute of Technology Microelectronic Engineering**

© April 1, 2014, Dr. Lynn Fuller, Professor

Page 7

L

Long

USING EXCEL SPREADSHEET FOR CALCULATIONS

© April 1, 2014, Dr. Lynn Fuller, Professor

HAND CALCULATIONS FOR ADV-CMOS WELL

The well implant dose is estimated from the selected values of well doping and junction depth of 2.5µm.

The dose is the total number of impurity atoms per cm2 in the well.

HAND CALCULATIONS FOR ADV-CMOS WELL

Well calculations for junction depth, well sheet resistance, well surface concentration and average well doping

Given: Dose=2.5E13, Drive-in Time=6 Hrs Drive in Temp = 1100 C Starting wafer 1E15 cm-3 from 10 ohm-cm

WELL DRIVE CALCULATIONS

GIVEN Starting Wafer Resistivity Starting Wafer Type	Implant.xls		Rho = n-type = 1 p-type = 1	VALUE 10 0 1	UNITS ohm-cm 1 or 0 1 or 0
Pre Deposition Ion Implant Dose				2.50E+13	ions/cm2
Drive-in Temperature Drive-in Time				1100 360	°C min
CALCULATE Diffusion Constant at Temperatu	re of Drive-in			VALUE 1.33E-13	UNITS cm/sec
CALCULATION OF DIFFUSION	N CONSTANTS				
_	D0 (cm2/s)		EA (eV)		
Boron		0.76	3.46		
Phosphorous		3.85	3.66		
CALCULATIONS				VALUE	UNITS
Substrate Doping = $1 / (q \ \mu max R)$	ho)			1.33E+15	cm-3
RESULTS				VALUE	UNITS
Pre deposition Dose				2.50E+13	atoms/cm2
xj after drive-in = ((4 Dd td/QA) lr	n (Nsub (πDdtd)^0.5))^0.5			2.47	μm
average doping Nave = Dose/xj				1.01E+17	atoms/cm3
mobility (μ) at Doping equal to N	ave			718	cm2/V-s
Sheet Resistance = $1/(q (\mu(Nave)))$)Dose)			348.2	ohms
Surface Concentration = Dose/ (p	Dt)^0.5			2.63E+17	cm-3

© April 1, 2014, Dr. Lynn Fuller, Professor

WELL CALCULATIONS

Given	Ns =	Xj=2.5			Dose=	Well Drive			
	1E17cm-3	μm			$2.5E13 \text{ cm}^{-2}$	=6hr,1100C			
Calculated	Ns	Xj	Nave cm-3	Rhos Ω					
N-well	2.63E17	2.47	1.01E17	348					
P-well	2.54E17	2.80	8.93E16	768					
Photoresist	13000Å		Boron	105KeV	Phos Emax	210KeV			
			Emax						
Oxide	4000Å		Boron	80KeV	Phos Emin	120KeV			
			Emin						
						1			
	IMPLANT MASK	CALCULATOR	Ente	er 1 - Yes 0 - No	in white boxes				
	DOPANT SPECI	ES	MASK TYPE		ENERGY				
	B11	1	Resist	1	105 KeV				
	BF2	0	Poly Oxido	0					
		0	Nitride	0					
Thickness to Mask >1E15/cm3 Surface Concentration 12753.72									
© April 1, 2014, Dr. Lynn Fuller, Professor Page 12									

SILVACO ATHENA WELL SIMULATION

P-well Dose=7.0E13 Energy=120KeV Drive 6 hr, 1100 C Find: Nsurface=1E17 Nsti=1E17 Xj=3.0 um

N-well Dose=3E13 Energy=170KeV Drive 6 hr, 1100 C Find Nsurface=1E17 Nsti=2E16 Xj=3.0um

HAND CALCULATIONS FOR ADV-CMOS OXIDE

Oxide Growth Calculations

Step 4 - Pad oxide 1/3 nitride thickness so oxide target is 500 Å 55 min at 1000 C dry O2 gives 500 Å, Recipe 250 Step 10 – Pad Oxide Trench Liner, **500Å, Recipe 250** Step 23 - Well Drive is in Nitrogen: no oxide growth, Recipe 11 Step 30 - Gate Oxide 100Å, 40 min at 900 C dry O2, Recipe 213 Fowler/Nordheim Tunneling Consideration: 3 volt power supply and max field of 4E6 V/cm gives Xox min of 75 A, pick 100 A for gate oxide target thickness Step 36 - Poly Reox, 500 Å, Recipe 250 Step 52 - DS Anneal will be in N2: no oxide growth, 900C for 30 min., Recipe ??? Step 67 – Sinter, Recipe 101 no oxide growth

Microelectronic Engineering

HAND CALCULATIONS FOR ADV-CMOS POLY

Poly Thickness and Sheet Resistance Calculations Poly thickness needs to mask D/S implants (see next page) Target should be 4000 Å, USL 4500 Å, LSL 3500 Å

Rhos=1/(qµDose) and Dose is 4E15 for both, μ =20 and 10

Poly Doping by Ion Implant, N+, Rhos=78 ohms Poly Doping by Ion Implant, P+, Rhos=156 ohms

Rochester Institute of Technology

Microelectronic Engineering

© April 1, 2014, Dr. Lynn Fuller, Professor

DRAIN/SOURCE IMPLANT ENERGY CALCULATIONS

		B11	P31		
	Min Thickness	E max	E max	E used	E used
Resist	13000 Å	105	210		
Poly	3500 Å	50	80	50	50
Oxide	4000 Å	75	115		
Nitride	3000 Å	95	145		

SILVACO ATHENA SIMULATIONS OF D/S IMPLANT

These simulations show that 3000 A of poly and nitride spacer is enough to block P31 implants from reaching the channel (region 1), the n+ D/S implant profile is shown in region 2, the LDD n-D/S implant profile is shown in region 3, both after 900 C, 30 min anneal. Note doping ~1E20 in D/S and ~1E18 in LDD/LDS and xj ~ 0.6 μ m HAND CALCULATIONS FOR ADV-CMOS D/S

D/S Sheet Resistance and Junction Depth Calculations (**Rhos=1/(quDose)**), **Xj depends on implant energy so Xj~0.2** N-LDD implant dose 4E13 and 50KeV, μ=100, Rhos=1250 ohms N+ D/S implant dose 4E15 and 50 KeV, μ=100, Rhos=12.5 ohms P-LDD implant dose 4E13 and 50 KeV, μ=75, Rhos=1667 ohms P+ D/S implant dose 4E15 and 50 KeV, μ=75, Rhos=16.7 ohms Silicide Consideration: will reduce sheet resistance to as low as 5 ohms

Drain Source Space Charge Layer Calculations

N-D/S using Nd=1E18, Na=1E17 gives W=0.10um at 0V and W=0.21um at 3V N+D/S using Nd=1E20, Na=1E17 gives W=0.11um at 0V and W=0.23um at 3V P-D/S using Na=1E18, Nd=1E17 gives W=0.10um at 0V and W=0.21um at 3V P+D/s using Na=1E20, Nd=1E17 gives W=0.11um at 0V and W=0.23um at 3V

Rochester Institute of Technology

Microelectronic Engineering

HAND CALCULATIONS FOR ADV-CMOS VT

Threshold Voltage Calculations, target +0.75 and -0.75 volts

N-MOSFET VT, Nss=1E11, Xox=100 A, Na=1E17, VT=0.25, Wdmax=.103um Dose=1.07E12 x 2 = 2.15E12 Boron
P-MOSFET VT, Nss=1E11, Xox=100 A, Nd=1E17, VT=-0.34, Wdmax=.103um Dose=8.76E11 x 2 = 1.75E12 Phosphorous

N-Field VT, Nss=1E11, Xox=4000 A, Na=1E17, VT=17 volts P-Field VT, Nss=1E11, Xox=4000 A, Nd=1E17, VT=-20 volts No channel stop needed

Rochester Institute of Technology

Microelectronic Engineering

VT CALCULATIONS

CONSTANT	S	VARIABLE	S	CHOICES				
T=KT/q = ni = Eo = Er si = Fr SiO2 = Er si = Er SiO2 =	300 K 0.026 volts 1.45E+10 cm-3 8.85E-14 F/cm 11.7 3.9	Na = Nd = Nss = Xox =	1.00E+17 cm-3 1.00E+17 cm-3 1.00E+11 cm-2 100 Ang	Aluminum gate n+ Poly gate p+ Poly gate N substrate P substrate		1=yes, 0 1 0 0 1	∫0=No } Select one typ } Select one typ	be of gate be of substra
E affinity =	4.15 volts			Desired VT		0.75		
q =	1.60E-19 coul			or				
Eg =	1.124 volts			Delta VT		20		
				Given Dose (Boron)		1.30E+12		
CALCULAT	IONS:			RESULTS				
	METAL WORK F	UNCTION	=	4.122988528	volts			
	SEMICONDUCTO	OR POTENTIA	AL = +/-	0.409409834	volts			
	OXIDE CAPACIT.	ANCE/CM2	=	3.4515E-07	F/cm2	Wdmax=	0.103	μm
	METAL SEMI WO	ORK FUNCTI	ON DIFF =	-0.998421306	volts			
]	FLAT BAND VOL	TAŒ	=	-1.044777963	volts			
,	THRESHOLD VOI	TAGE	=	0.25126959	volts			
1	DELTA VT = VTd	esired - VT	=	0.49873041	volts			
	IMPLANT DOSE		=	1.07586E+12	ions/cm2	x 2 =	2.15171E+12	2
				where + is Boron, - i	s Phosphor	ous		
	IMPLANT DOSE I	FOR GIVEN I	Delta VT =	4.31438E+13	ions/cm2	x 2 =	8.62875E+13	5
	Vt WITH GIVEN D	OSE	=	0.552587857	volts	assume $1/2 d$	ose in Si	

© April 1, 2014, Dr. Lynn Fuller, Professor

ADV-CMOS 150 PROCESS

CMOS Versions 150, one level Metal

1. ID01	22. CL01
2. DE01	23. OX06 well drive, 6hr 1100C
3. CL01	24. IM01 blanket implant
4. OX05 pad Ox 500A, 1000C, 45mi	n25. PH03 – 4 - VT adjust
5. CV02- 1500 Å, ~30min	26. IM01 adjust
6. PH03 –1- STI	27. ET07
7. ET29 etch shallow trench, 4000A	28. CL01
8. ET07-ash	29. ET06 oxide etch
9. CL01	30. OX06 gate oxide
10. OX05 – pad oxide, 500 A	31. CV01 poly dep
11. CV03 – CVD oxide trench fill	32. PH03 - 5 - poly
11.1 OX07 - Anneal	33. ET08 poly etch
12. CM01 – Trench CMP	34. ET07
13. CL02 - CMP_Clean	35 CL01
14. CL01-rca clean	36 OX05 pad oxide
15. ET19 hot phos	37. PH03 –6- р LDD
16. PH03-2-n-well, 1.3um thick resist	38. IM01 p LDD
17. IM01 3E13, P31, 180 KeV	39. ET07
18. ET07-ash	40. PH03 –7- n LDD
19. PH03 – 3 – p-well	41. IM01 n LDD
20. IM01 – 3E13, B11, 150KeV	42. ET07
21. ET07 -ash	43. CL01

44. CV02 nitride spacer dep 45. ET39 spacer etch 46. PH03 - 8 - N+D/S 47. IM01 - N + D/S48. ET07 49. PH03 - 9- P+ D/S 50. IM01 - P + D/S51. ET07 52. CL01 53. OX08 – DS Anneal 54. ME03 HF dip & Co/Ti 55. RT01 56. ET11 Ti Etch 57. RT02 58. CV03 - LTO 59. PH03 - 10 CC 60. ET10 61. ET07 62. CL01 62.1 CV04 W Plugs 63 ME01 Aluminum

- 64. PH03 -11- metal
- 65. ET15 plasma Al Etch
- 66. ET07
- 67. SI01
- 68. SEM1
- 69. TE01
- 70. TE02
- 70. TE02 71. TE03
- 72. TE04

(Revision 9-20-04)

Rochester Institute of Technology

Microelectronic Engineering

© April 1, 2014, Dr. Lynn Fuller, Professor

ETCH RATES

STI etch rates 1000A/min Nitride, 500A/min Oxide, 5000A/min Si, 1000A/min PR

Hot Phos Nitride Etch Rate 80A/min, 45 min to etch 1500A nitride

Poly Etch Lam 490, Gap 1.5, 325 mTorr, 140 w, 150 sccm SF6, 15sccm O2, rate=6000Å/min

Sidewall spacer etch, Power=250 Watts, Pressure=40 mTorr, SF6=30 sccm, CHF3=30 sccm, Nitride Etch Rate=1250 A/min, Nitride Etch %NU ~ 4%, Oxide Etch Rate~ 950 A/min Oxide Etch %NU~ 10%, Selectivity Nitride:Oxide 1.3:1

H2SO4/H2O2 (1:2) Ti etch for silicide, at 100°C (set plate temperature to 150°C), Rate ~500Å/min

Aluminum Etch Rate LAM4600 ~10,000Å/min.

DEPOSITION RATES

LPCVD Nitride dep rate at $810^{\circ}C = 50$ A/min. 1500 Å for STI Stop, time = 30 min4000 Å for Side Wall Spacer = 80 min**PECVD TEOS Oxide dep** rate 91A/sec 10,000 Å trench fill 4000 Å for contact cuts **LPCVD Poly dep** rate at $610^{\circ}C = 75$ Å/min 4000 Å gate deposition time = 53 min. **Aluminum Sputter dep** rate at 2000 w = 300Å/min. 7500 Å metal one dep time = 25 min **Ti Sputter dep** rate, 4" target, 350w, 5mTorr = 100Å/min 700 A Ti dep time = 7 min**Ti Sputter dep** rate, 8" target, 750w, 5mTorr=176Å/min. 700 A Ti dep time = 4 min

Rochester Institute of Technology

Microelectronic Engineering

ADV-CMOS PHOTO

Level Name	Coat Recipe	Coat Xpr µm	Dose mj/cm2	Develop Recipe	Dev Time	Post Bake Time at 140°C
STI	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
N-well	Coatmtl.rcp	1.3	185	Devmtl.rcp	75s	2 min.
P-well	Coatmtl.rcp	1.3	185	Devmtl.rcp	75s	2 min.
Vtn	Coat.rcp	1.0	185	DevFac.rcp	180s	1 min.
Vtp	Coat.rcp	1.0	185	DevFac.rcp	180s	1 min.
Poly	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
Ldd P	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
Ldd N	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
N+ D/S	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
P+ D/S	Coat.rcp	1.0	160	develop.rcp	50s	1 min.
CC	Coat.rcp	1.0	260	DevFac.rcp	180s	1 min.
Metal 1	Coatmtl.rcp	1.3	160	Devmtl.rcp	75s	2 min.

SIMULATION: ORIGINAL PROCESS WELL PROFILES

Current Process

Proposed Process

WELL PARAMETERS

	Design Parameters	Old Process Simulation	New Process Simulation	
N well				
Dose	3E13	3E13	3E13	
Energy		180	170	Lower
Surface Conc.	~1E17	2.4E17	1.0E17	Better
N well Xj	~3.0	4.0#	3.5	Better
P well				
Dose	3E13	3E13	7E13	
Energy		150	120	Lower
Surface Conc.	~1E17	3.6E16	1.0E17	Better
P well Xj	~3.0	3.3	3.1	Better

If Boron penetration into N-well can be eliminated with thicker photoresist

SIMULATION: PROCESS CROSS-SECTION

TARGET, USL AND LSL

	Unit	LSL	Target	USL
Pad Oxide	Å	400	500	600
Nitride 1	Å	1000	1500	2000
Nitride 2	Å	3500	4000	4500
Gate Oxide	Å	80	100	120
Poly	Å	3500	4000	4500
STI Depth	Å	3500	4000	4500
Poly ReOx	Å	400	500	600
Trench	Å	400	500	600
Liner Ox				
TEOS Ox 1	Å	3500	4000	4500
Metal One	Å	7000	7500	8000
TEOS Ox 2	Å	3500	4000	4500
Metal Two	Å	7000	7500	8000
7				

© April 1, 2014, Dr. Lynn Fuller, Professor

SUMMARY

The numbers found from these hand calculations should be close to the actual values. SUPREM simulations will give more accurate results, but the hand calculations are useful for comparison and trouble shooting the simulation. Actual factory values have a target, USL and LSL due to processing variations.

Rochester Institute of Technology

Microelectronic Engineering

Rochester Institute of Technology

Microelectronic Engineering

HOMEWORK – HANDCALC FOR ADV-CMOS

- 1. Why is 1E16 cm-3 well doping too low for this process?
- 2. Why is 5 volts supply too high for this process?
- 3. Adding another photo level will allow for separate VT adjust implants (no blanket implant). What will the VT adjust implant dose be for each transistor?

Rochester Institute of Technology

Microelectronic Engineering

© April 1, 2014, Dr. Lynn Fuller, Professor