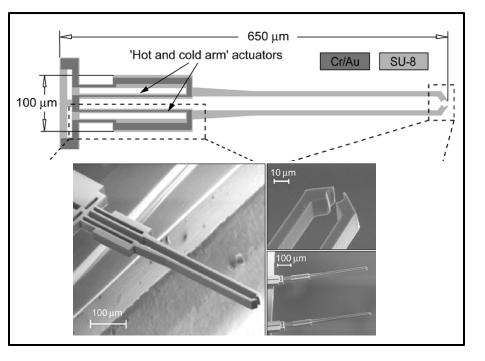
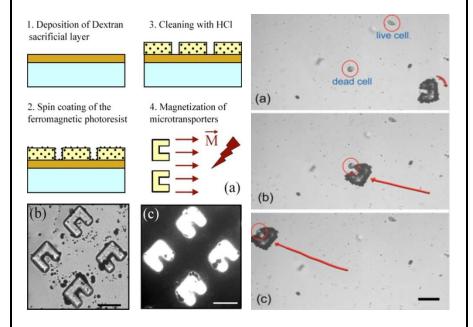
### STRESS IN SU-8 PHOTORESIST FILMS: DOE APPROACH

RYAN M. BOWEN, EYUP CINAR

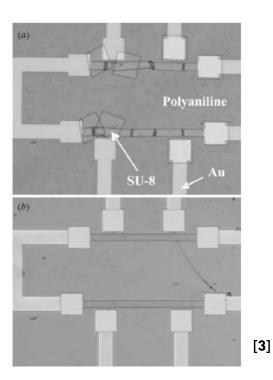
02/23/2012 0305- 320 Design of Experiments


## Overview


- Motivation
- Introduction
- Theory Negative Photoresist
- Deposition Process
- Experimental Design
- Results and Analysis
- □ Conclusions
- Future Work

# MOTIVATION

□ SU-8 Photoresist is a common structural material for MEMS devices


**Advantages:** Biocompatibility, structural stability, chemically inert, lithographically patternable, low elastic modulus, hydrophobic

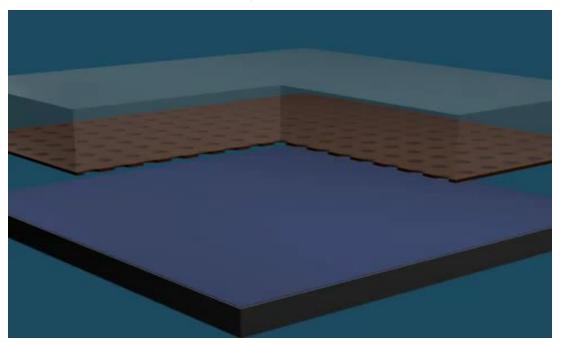




# MOTIVATION






Cracking or delamination due to the residual stress induced in the PR film material

A Might degrade the performance of the fabricated device significantly

A through understanding and process optimization is necessary to tackle the problem

# Theory- Negative Photo Resist

- Epoxy based, Negative tone PR
- PAG compound (triarylsulfoniumhexafluroantimonate), EPON SU8 epoxy (highly functionalized with 8 epoxy groups), solvent (γ-Butyrolacton)
- Cationic process is induced by PAG compound during UV illumination (PEB also accelerates the chemical reaction)



[4]

## **Theory- Residual Stress**

### Intrinsic and Extrinsic stress

**Intrinsic stress**: mostly generated during crosslinking due to the confinement of the monomers in the polymer matrix

Evaporation of solvent, loss of mass also result in intrinsic stress.

Extrinsic stress: involves the stress induced due to CTE mismatch (Si substrate and SU-8)

$$\sigma_{th} = (\alpha_{SU8} - \alpha_{si}) \frac{E_{SU8}}{1 - v_{SU8}} (T_{PEB} - T_o)$$

 $\alpha$  : CTE of the material

- $\sigma_{th}$ : Induced thermal stress
- $E_{SU8}$ : Young's modulus

 $T_{PEB}$ : PEB Temp

To: Ambient Temp

## **Theory- Residual Stress**

### Stoney's Equation

$$\sigma = \frac{1}{6} \left( \frac{1}{R_{post}} - \frac{1}{R_{pre}} \right) \frac{E}{(1-v)} \left( \frac{(ts)^2}{(tf)^2} \right), \text{ Height} = \frac{\left[ \left( \frac{Wafer\,dia}{2} \right)^2 \right]}{2R}$$

σ: stress in the film, after deposition *Rpre*: substrate radius of curvature before deposition *Rpost*: substrate radius of curvature after deposition

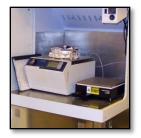
- E: Young's modulus
- v: Poisson's ratio
- ts: substrate thickness
- tf: film thickness

E= 130 GPa v=0.279 ts= 650 μm SU-8 resist Depositon Process

#### 1) Substrate Preparation

- Clean 6" [100] wafers.
- No dehydration bake done.

#### 2) Manual Spin Coat


- Tool: SCS Resist Coater
- Recipe : Two ramped levels rpm.

#### 3) Post Application Bake (PAB)

- Tool: Hot Plate
- Recipe: Constant temperature.

#### 4) Exposure

- Tool: Karl Suss MA150 Contact Aligner
  - Recipe: Flood exposure with I-line.



SCS Resist Coater



Karl Suss MA150



Wet Chemistry Bench



Images Obtained From http://wiki.smfl.rit.edu

Hot Plates



| Tool:   | Hot Plate             |
|---------|-----------------------|
| Recipe: | Constant temperature. |

#### 6) Development

- Tool: Wet Chemistry
  - Recipe: PGMEA Puddle, IPA rinse, DI water rinse. Repeat if scrumming is visible.
- 7) Hard Bake (HB)
  - Tool: Hot Plate
  - Recipe: Constant temperature.

# **Gathering Information**

- Need to gain knowledge of the fabrication process.
- Used a set of suggested processing guidelines and ran a test process.
- Test process provides knowledge to help answer:
  - What factors are required?
  - Which factors are controllable?
  - What are the sources of noise?



#### Factors to Control

- □ RPM of spin coating
- PAB time
- Exposure dose
- □ PEB temp.
- PEB time
- □ Hard Bake (HB) temp.
- HB time

#### Factors to be Fixed

- Quantity of resist
- □ Spin time
- □ PAB temp.
- Quantity of developer
- Development time

#### **Possible Noise Factors**

- □ Ambient temp. and humidity
- □ Hot plate temp. variation
- Contamination
- Measurement noise

# Goal and Objective

### Goal

To minimize the residual stress in a film of SU-8 photoresist spin coated onto a bare silicon substrate.

#### Objective

To test the hypothesis that residual stress in a spin coated film of SU-8 photoresist onto a bare silicon substrate is a function of

| RPM      | PEB Temp |
|----------|----------|
| PAB Time | PEB Time |

- Exposure Dose
  HB Temp
  - HB Time

# Fractional Factorial Design (2<sup>k-p</sup>)

| Number of Factors k=7                                                                       |                  |
|---------------------------------------------------------------------------------------------|------------------|
| Fraction: 1/8                                                                               |                  |
| Number of Center Points                                                                     |                  |
| □ Number of Treatment Combinations $n = 19$ (Full                                           | Factorial = 131) |
| Generators                                                                                  | Factor Mapping   |
| $\square E \approx ABC  F \approx BCD  G \approx ACD$                                       | 🗆 A – HB Temp    |
| <ul> <li>Defining Contrast</li> <li>1 ≈ ABCE, BCDF, ACDG, ADEF, BDEG, ABFG, CEFG</li> </ul> | B – PEB Time     |
| Confounding Pattern                                                                         | C – Dose         |
| $\Box AB \approx CE, FG \Box AF \approx DE, BG$                                             | D – RPM          |
| $\Box  AC \approx BE, DG  \Box  AG \approx BF, CD$                                          | 🗆 E – HB Time    |
| $\Box  AD \approx EF, CG \qquad \Box  BD \approx CF, EG$                                    | F – PEB Time     |
| $\Box  AE \approx DF, BC$                                                                   | 🗆 G – PAB Time   |

\* If A and B are found to not interact: DG, DF, DE, and CD will be free of confounding

## Factor Levels

| TC Name | Factor   | Low Level             | High Level            |
|---------|----------|-----------------------|-----------------------|
| A       | HB Temp  | 175 °C                | 225 ℃                 |
| В       | PEB Temp | 90 °C                 | 95 ℃                  |
| С       | Dose     | $110 \text{ mJ/cm}^2$ | $140 \text{ mJ/cm}^2$ |
| D       | RPM      | 2500 rpm              | 3500 rpm              |
| Е       | HB Time  | 10 minutes            | 20 minutes            |
| F       | PEB Time | 3 minutes             | 4 minutes             |
| G       | PAB Time | 2 minutes             | 3 minutes             |

- □ 1500 rpm was originally used
  - Thickness of the resist caused poor uniformity (expired material)
  - High spin coat rpm was needed.

## Results

| Run<br>Order | тс        | HB Temp<br>[°C] | PEB Temp<br>[°C] | Dose<br>[mJ/cm²] | RPM  | HB Time<br>[minutes] | PEB Time<br>[minutes] | PAB Time<br>[minutes] | DEV Stress<br>[MPa] | HB Stress<br>[MPa] |
|--------------|-----------|-----------------|------------------|------------------|------|----------------------|-----------------------|-----------------------|---------------------|--------------------|
| 19           | 0         | 200             | 95               | 125              | 2750 | 15                   | 3.5                   | 2.5                   | -7.14               | -17.77             |
| 8            | ab(fg)    | 225             | 100              | 110              | 2500 | 10                   | 4                     | 3                     | -5.08               | -15.79             |
| 3            | d(fg)     | 175             | 90               | 110              | 3500 | 10                   | 4                     | 3                     | -6.65               | -15.21             |
| 9            | b(ef)     | 175             | 100              | 110              | 2500 | 20                   | 4                     | 2                     | -6.30               | -14.99             |
| 5            | a(eg)     | 225             | 90               | 110              | 2500 | 20                   | 3                     | 3                     | -6.82               | -19.94             |
| 1            | bd(eg)    | 175             | 100              | 110              | 3500 | 20                   | 3                     | 3                     | -4.83               | -11.31             |
| 13           | bc(g)     | 175             | 100              | 140              | 2500 | 10                   | 3                     | 3                     | -7.52               | -15.49             |
| 11           | c(efg)    | 175             | 90               | 140              | 2500 | 20                   | 4                     | 3                     | -8.37               | -18.73             |
| 7            | cd(e)     | 175             | 90               | 140              | 3500 | 20                   | 3                     | 2                     | -6.61               | -16.93             |
| 4            | bcd(f)    | 175             | 100              | 140              | 3500 | 10                   | 4                     | 2                     | -7.78               | -15.12             |
| 15           | ad(ef)    | 225             | 90               | 110              | 3500 | 20                   | 4                     | 2                     | -6.41               | -17.66             |
| 2            | abc(e)    | 225             | 100              | 140              | 2500 | 20                   | 3                     | 2                     | -7.05               | -17.50             |
| 6            | -1        | 175             | 90               | 110              | 2500 | 10                   | 3                     | 2                     | -5.76               | -15.46             |
| 16           | 0         | 200             | 95               | 125              | 2750 | 15                   | 3.5                   | 2.5                   | -12.97              | -24.20             |
| 17           | acd(g)    | 225             | 90               | 140              | 3500 | 10                   | 3                     | 3                     | -6.13               | -17.65             |
| 10           | ac(f)     | 225             | 90               | 140              | 2500 | 10                   | 4                     | 2                     | -7.75               | -20.66             |
| 18           | 0         | 200             | 95               | 125              | 2750 | 15                   | 3.5                   | 2.5                   | -6.90               | -17.26             |
| 19           | abcd(efg) | 225             | 100              | 140              | 3500 | 20                   | 4                     | 3                     | -9.41               | -21.39             |
| 14           | abd       | 225             | 100              | 110              | 3500 | 10                   | 3                     | 2                     | -6.40               | -16.71             |

# Analysis - Stress After Hard Bake

### Main and 2-Factor

- Nothing Appears to be Significant.
- Possibly HB Temp

| Parameter Estimates |           |           |         |         |  |  |  |  |  |
|---------------------|-----------|-----------|---------|---------|--|--|--|--|--|
| Term                | Estimate  | Std Error | t Ratio | Prob> t |  |  |  |  |  |
| Intercept           | -17.36316 | 0.815551  | -21.29  | <.0001  |  |  |  |  |  |
| HB Temp             | -1.5125   | 0.888726  | -1.70   | 0.1495  |  |  |  |  |  |
| PEB Temp            | 0.875     | 0.888726  | 0.98    | 0.3701  |  |  |  |  |  |
| HB Temp*PEB Temp    | -0.3      | 0.888726  | -0.34   | 0.7494  |  |  |  |  |  |
| Dose                | -1.025    | 0.888726  | -1.15   | 0.3009  |  |  |  |  |  |
| HB Temp*Dose        | 0.125     | 0.888726  | 0.14    | 0.8936  |  |  |  |  |  |
| RPM                 | 0.4125    | 0.888726  | 0.46    | 0.6620  |  |  |  |  |  |
| HB Temp*RPM         | -0.3625   | 0.888726  | -0.41   | 0.7002  |  |  |  |  |  |
| Dose*RPM            | -0.25     | 0.888726  | -0.28   | 0.7897  |  |  |  |  |  |
| HB Time             | -0.3875   | 0.888726  | -0.44   | 0.6810  |  |  |  |  |  |
| PEB Time            | -0.5375   | 0.888726  | -0.60   | 0.5717  |  |  |  |  |  |
| PAB Time            | -0.025    | 0.888726  | -0.03   | 0.9786  |  |  |  |  |  |
| HB Temp*HB Time     | -0.3125   | 0.888726  | -0.35   | 0.7395  |  |  |  |  |  |
| HB Temp*PEB Time    | 0.0625    | 0.888726  | 0.07    | 0.9467  |  |  |  |  |  |

### Main Factors Only

 HB Temp is the only significant effect.

| Effect Tests |       |    |                |         |          |  |  |  |  |
|--------------|-------|----|----------------|---------|----------|--|--|--|--|
| Source       | Nparm | DF | Sum of Squares | F Ratio | Prob > F |  |  |  |  |
| HB Temp      | 1     | 1  | 36.602500      | 5.7845  | 0.0349   |  |  |  |  |
| PEB Temp     | 1     | 1  | 12.250000      | 1.9359  | 0.1916   |  |  |  |  |
| Dose         | 1     | 1  | 16.810000      | 2.6566  | 0.1314   |  |  |  |  |
| RPM          | 1     | 1  | 2.722500       | 0.4303  | 0.5253   |  |  |  |  |
| HB Time      | 1     | 1  | 2.402500       | 0.3797  | 0.5503   |  |  |  |  |
| PEB Time     | 1     | 1  | 4.622500       | 0.7305  | 0.4109   |  |  |  |  |
| PAB Time     | 1     | 1  | 0.010000       | 0.0016  | 0.9690   |  |  |  |  |

# Analysis - Stress After Development

### Main and 2-Factor

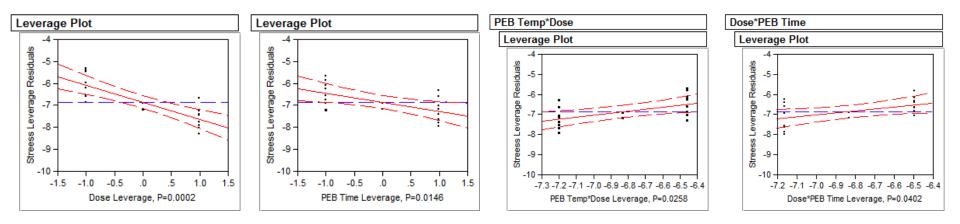
- α =0.05
  - Dose
- □ α =0.10
  - Dose, PEB Temp\*Dose, PEB Time
- α =0.15
  - Dose, PEB Temp \*Dose, PEB Time, Dose \* PEB Time

### **Significant Factors**

- α =0.05
  - Dose
  - PEB Time
  - PEB Temp\*Dose
  - Dose \* PEB Time

| Parameter Estimates |           |           |         |         |  |  |  |  |  |
|---------------------|-----------|-----------|---------|---------|--|--|--|--|--|
| Term                | Estimate  | Std Error | t Ratio | Prob> t |  |  |  |  |  |
| Intercept           | -6.828333 | 0.181337  | -37.66  | <.0001  |  |  |  |  |  |
| PEB Temp            | 0.008125  | 0.192337  | 0.04    | 0.9679  |  |  |  |  |  |
| Dose                | -0.773125 | 0.192337  | -4.02   | 0.0101  |  |  |  |  |  |
| PEB Temp*Dose       | -0.370625 | 0.192337  | -1.93   | 0.1119  |  |  |  |  |  |
| RPM                 | 0.026875  | 0.192337  | 0.14    | 0.8943  |  |  |  |  |  |
| PEB Time            | -0.414375 | 0.192337  | -2.15   | 0.0838  |  |  |  |  |  |
| PEB Temp*PEB Time   | 0.068125  | 0.192337  | 0.35    | 0.7376  |  |  |  |  |  |
| Dose*PEB Time       | -0.335625 | 0.192337  | -1.74   | 0.1414  |  |  |  |  |  |
| PAB Time            | -0.046875 | 0.192337  | -0.24   | 0.8171  |  |  |  |  |  |
| PEB Temp*PAB Time   | 0.133125  | 0.192337  | 0.69    | 0.5197  |  |  |  |  |  |
| Dose*PAB Time       | -0.233125 | 0.192337  | -1.21   | 0.2796  |  |  |  |  |  |
| RPM*PAB Time        | 0.069375  | 0.192337  | 0.36    | 0.7331  |  |  |  |  |  |
| PEB Time*PAB Time   | -0.111875 | 0.192337  | -0.58   | 0.5860  |  |  |  |  |  |

| Effect Tests  |       |    |                |         |          |  |  |  |
|---------------|-------|----|----------------|---------|----------|--|--|--|
| Source        | Nparm | DF | Sum of Squares | F Ratio | Prob > F |  |  |  |
| Dose          | 1     | 1  | 9.5635563      | 27.5553 | 0.0002   |  |  |  |
| PEB Time      | 1     | 1  | 2.7473062      | 7.9158  | 0.0146   |  |  |  |
| PEB Temp*Dose | 1     | 1  | 2.1978062      | 6.3325  | 0.0258   |  |  |  |
| Dose*PEB Time | 1     | 1  | 1.8023062      | 5.1930  | 0.0402   |  |  |  |


# Analysis – Model (Development)

### Model is significant and of good fit

| Analysis of Variance |    |                |             | Lack Of Fit |             |    |                |             |          |
|----------------------|----|----------------|-------------|-------------|-------------|----|----------------|-------------|----------|
| Source               | DF | Sum of Squares | Mean Souare | F Ratio     | Source      | DF | Sum of Squares | Mean Square | F Ratio  |
| Model                | 4  | 16.310975      | 4.07774     | 11.7491     | Lack Of Fit | 4  | 0.1695250      | 0.042381    | 0.0878   |
| Error                | 13 | 4.511875       | 0.34707     | Prob > F    | Pure Error  | 9  | 4.3423500      | 0.482483    | Prob > F |
| C. Total             | 17 | 20.822850      | 0.54707     |             | Total Error | 13 | 4.5118750      |             | 0.9840   |
| C. TOTAL             | 17 | 20.022030      |             | 0.0003      |             |    |                |             | Max RSq  |

0.7915

### Leverage plot show effects and significance



# Analysis - Confounding

- Confounding in significant effects
  - HB Temp \* HB Time ≈ RPM \* PEB Time , PEB Temp \* Dose
  - PEB Temp \* RPM ≈ Dose \* PEB Time, HB Time \* PAB Time
- No hard bake (Stress After Development)
- Based on prior knowledge, exposure and PEB should have an effect on stress due to shrinking caused by cross linking.
- Assuming above is true, confounded is resolved as:
  - PEB Temp \* Dose
  - Dose \* PEB Time

# Analysis – Estimate of Response

### Estimate of Stress in design units

 $\hat{Y} = -6.83 - (0.77 * Dose) = (0.41 * PEB_Time) = (0.37 * RPM * PEB_Time) = (0.34 * HB_Time * PAB_Time)$ 

### Optimum Factor Levels (Within high/low bounds)

- \*RPM = 2000
- PAB Time = 2 minutes
- Dose =  $110 \text{ mJ/cm}^2$
- **D** PEB Temp = 90  $^{\circ}$ C

 $\hat{Y} = -4.93MPa$ 

- PEB time = 3 minutes
- \*HB temp = 175 °C
- \*HB time = 10 minutes
- \* Not used in the model equation, values set to minimum for conversation f time and energy.

# Conclusion

- Unable to properly model stress after Hard Bake.
  - More knowledge is required on this processing step.
- Model was found for stress after development.
- Not all factors were found to be significant.
  - Dose, PEB Time, PEB Temp\*Dose, Dose \* PEB Time
  - Deconfounding of 2-factor effects is needed.
- From model and provided bounds
  - Minimum Stress -4.93 MPa
  - Larger bounds could yield lower stresses.
- Goal cannot be accessed without additional wafer to be processed.
- □ SU-8 is a very thick resist and challenging to work with.

## Future Work

- Non-expired resist, wafers from the same batch
- Creating energy based factors i.e. Time\*Temprature
- Processing the wafer with an optimum settings and measure the residual stress
- Running additional alpha start points to increase the levels and the range of the effects
- Fabrication of a test structure i.e. microcantilever, guckel rings in order to observe the residual stress effects

## References

- [1] N. Chronis and L. Lee, "Electrothermally activated SU-8 Microgripper for Single Cell Manipulation in Solution," JMEMS, vol. 14, pp. 857-867, 2005.
- [2] M. Sakar, E. Steager, and D. Kim, "Single cell manipulation using ferromagnetic composite microtransporters," Applied Physics Letters, vol. 96, pp. 1-5, 2010.
- [3] S. Keller, "Processing of thin SU-8 films," Journal of Micromechanics and Microengineering, V. 18, pp. 1-8, 2008
- □ [4] <u>http://sites.google.com/site/lergutierrez/su8 homepage</u>