ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Backend Wafer Processing Technology

Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Electrical and Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: <u>Lynn.Fuller@rit.edu</u> Program Webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

5-4-11 back_end.ppt

© May 4, 2011 Dr. Lynn Fuller

OUTLINE

Introduction Vacuum & Pumping Systems Physical Vapor Deposition Chemical Vapor Deposition Chemical Mechanical Polishing Multilayer Metal Processes

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

Back	Back End Wafer Processing Technology							
	INDUSTRY ROADMAP							
	1995	1998	2001	2004	2007	2010		
Polysilicon CD µm	0.35	0.25	0.18	0.13	0.10	0.07		
Contact/Via CD µm	0.04	0.28	.020	0.14	0.11	0.08		
Min Interconnect CD µm Metal height/width	0.40	0.30	0.22	0.15	0.11	0.08		
aspect ratio	1.5:1	2:1	2.5:1	3:1	3.5:1	4:1		
DRAM	2	2-3	3	3	3	3		
Microprocessor	4-5	5	5-6	6	6-7	7-8		
Interconnection Length m	380	840	2100	4100	6300	10,000		
Reliability FITs/meter	0.016	0.0047	0.0011	0.0005	0.0004	0.0002		
Cost \$/cm ² /level	0.29	0.23	0.23	0.18	0.18	0.14		
$\frac{Microelectronic Engineering}{1 \text{ mile} = 1625 \text{ meters}}$								
	© May 4, 2011 Dr. Lynn Fuller]		

VACUUM LEVELS

Atmospheric Pressure ~ 14.7 lbs/sq inch = 760 mm Hg1 Torr is approximately 1 mm of Hg = 1/760 Atmosphere

Low vacuum Medium vacuum High vacuum Very high vacuum 10-6 to 10-9 Torr

700 to 25 Torr 25 to 10-3 Torr 10-3 to 10-6 Torr

Hold spinning wafers LPCVD, Plasma Etch Sputter Evaporation Ion Implant Base pressure prior to Sputter, Etch SEM MBE

Ultrahigh vacuum

below 10-9 Torr

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

Back End Wafer Proc	cessing Technology	y					
VACUM PUMPS							
	Range Speed						
	Torr	liters/s	\$				
Pumps That Exhaust to Outside							
Rotary Mechanical Pumps	ATM to10-3	high	low				
Roots Blower	10-1 to 10-4	high	medium				
Turbomolecular	10-2 to 10-6	high	high				
Oil Diffusion Pump	10-2 to 10-6	high	low				
Pumps That Trap Gas Inside							
Ion Pump	10-4 to 10-9	low	high				
Sublimation	10-2 to 10-4	low	low				
Cryogenic	10-2 to 10-7	medium	high				
Rochester Institute of Technology Microelectronic Engineering	_		,				
© May 4, 2011 Dr. L	ynn Fuller 📃	Page 8					

VANE TYPE ROTARY OIL PUMP

Atmosphere to medium vacuum levels High Volume

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

TURBOMOLECULAR PUMPS

Magnetically levitated turbomolecular pumps on HDPCVD system

High Volume 10-2 to 10-6 Torr

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

ION PUMP

High electric field and magnetic field. Ionizes gas molecules and accelerates ions into the cathode where they remain.

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

Page 13

MAGNE

CATHODES

SUBLIMATION PUMP

Titanium wire when heated sublimes and covers up molecules adhered to the chamber walls. This creates a new surface which adsorbes more molecules.

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

CRYO PUMP

Cryo pumps use extremely cold surfaces to trap molecules and thus pump the system. Self contained refrigeration units and liquid nitrogen cooled pumps are available. Regeneration involves heating the system to drive off trapped gases, pumping the system down to medium vacuum levels and then cooling to -200 °C

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

PIRANI GAGE

The pirani gage uses a resistance wire in a wheatstone bridge arrangement. Vsupply The heat is carried away by the gas causing a change in the resistance and thus providing an indication of pressure. Vc Vacuum System • Gnd **Rochester Institute of Technology** Microelectronic Engineering © May 4, 2011 Dr. Lynn Fuller Page 17

PENNING GAUGE

Essentially a cold cathode ionization gauge. This gage uses about 2000 volts between the anode and cathode which are placed between two permanent magnets. The magnetic field causes ions and electrons to travel in long spiral paths enroute to the cathode and anode respectively thus increasing the probability of causing an ionizing collision which in turn sustains the process. The current measured is proportional to the pressure.

MASS FLOW CONTROLLER

Gas Flow in Water Movie

Constant heat (input power in watts) heater and two temperature measurement resistors, one upstream, one downstream. At zero flow both sensors will be at the same temperature. Flow will cause the upstream sensor to be at a lower temperature than the down stream sensor.

> Rochester Institute of Technology Microelectronic Engineering

> > © May 4, 2011 Dr. Lynn Fuller

PHYSICAL VAPOR DEPOSITION

Thermal Evaporation Resistance Heating Electron Gun Heating

Sputtering DC RF RF Magnetron

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

EVAPORATION CALCULATION

Roch Micro Evap of a surfa is m	nester Institute of T coelectronic Engine poration in this mod sphere with radius ice area is 4 pi h ² ultiplied by the der	Technology ering del assume equal to th when multip isity to give	s that the e distance plied by film	mass evapora e from the eva m thickness g a needed. Divid	ated is sprea poration sou gives volume de the mass	March Dr. L ad out ove rce to the of mater by 2 if a	n 19, 2006 ynn Fuller er the insid e substrate ial needed dimpled b	e surface e. The which oat is		
$\frac{us}{m} = \frac{f}{f} = tr}{d} = t$	the mass that nee ne desired film thic he density of the r he height between	over a hemis ds to be ev kness naterial bein the filamer	sphere ins aporated = ng evapora nt and the	= 4 pi h ² f c at ed subs trate		m = f = d = h =	3.88 0.1 19.3 40	gm μm cm		
Deni	s in troy oz is four sty of some mater Aluminum Gold Copper	d = 0.3215 ials 5 2.7 19.3 8.96	x mass (c Select only 0 1 0	y one =1, othe	ers = 0	m =	0.12	Troy Oz		
	Tin Lead	<u>7.3</u> 11.4	0 0 Substrat				Dimpled B			
Roche Micro		©Ma	f = film tl d = densit h = heigh m = mass	π h ² hickness ty t 1 Dr. Lynn	Fuller				no 27	

	Back End	Wafer Processing	Technology			
	E	VAPORATION	DATA			
Material Formula	n Melt pt.	Temp °C @ V	Vapor Pressui	e		
	-	°C	- 1E-8	1E-6	1E-4	
Aluminum	Al	660	677	812	1010	
Alumina	Al2O3	2045	1045	1210	1325	
Antimony	Sb	630	279	345	425	
Arsenic	As	814	107	152	210	
Bervllium	Be	1278	710	878	1000	
Boron	B	2100	1278	1548	1797	
Cadmium	Cd	321	64	120	180	
Cadmium Sulfide	CdS	1750			550	
Chromium	Cr	1890	837	977	1177	
Cobalt	Со	1495	850	990	1200	
Gallium	Ga	30	619	742	907	
Germanium	Ge	937	812	957	1167	

MRC Co., "Evaporation and Sputtering Data Book," Orangeburg, NY

http://www.epimbe.com/pages/vp

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

EVAPORATION DATA

Material Formula Melt pt.

Temp °C @ Vapor Pressure

		°C	1E-8	1E-6	1E-4
Gold	Au	1062	807	947	1132
Hafnium Oxide	HfO2	2812			2500
Nickel	Ni	1453	927	987	1262
Palladium	Pd	1550	842	992	1192
Platinum	Pt	1769	1292	1492	1747
Selenium	Se	217	89	125	170
Silicon	Si	1410	992	1147	1337
Silicon Dioxide	SiO2	1800			1025
Silicon Nitride	Si3N4				800
Silver	Ag	961	574	617	684
Tantalum	Ta	2966	1960	2240	2590
Titanium	Ti	1668	1067	1235	1453
Tungsten	\mathbf{W}	3410	2117	2407	2757
Zirconium	Zr	1852	1477	1702	1987

MRC Co., "Evaporation and Sputtering Data Book," Orangeburg, NY

http://www.epimbe.com/pages/vp

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

EVAPORATION TOOLS

CHA Electron Beam Evapora	tor CVC Thermal Evaporator
Microelectronic Engineering	
© May 4, 2011 Dr.	Lynn Fuller Page 30

CHA FLASH EVAPORATOR

FLASH EVAPORATOR THICKNESS UNIFORMITY

CVC 601 SPUTTER TOOL

CVC 601 Sputter Tool Loading 6 inch wafers

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

CVC601 THICKNESS UNIFORMITY

PE4400 SPUTTER TOOL

SPUTTERING

DC Sputtering - Sputtering can be achieved by applying large (~2000) DC voltages to the target (cathode). A plasma discharge will be established and the Ar+ ions will be attracted to and impact the target sputtering off target atoms. In DC sputtering the target must be electrically conductive otherwise the target surface will charge up with the collection of Ar+ ions and repel other argon ions, halting the process.

RF Sputtering - Radio Frequency (RF) sputtering will allow the sputtering of targets that are electrical insulators (SiO2, etc). The target attracts Argon ions during one half of the cycle and electrons during the other half cycle. The electrons are more mobile and build up a negative charge called self bias that aids in attracting the Argon ions which does the sputtering.

Rochester Institute of Technology Microelectronic Engineering

SPUTTERING

Magnetron Sputtering - Magnets buried in the baseplate under the target material cause the argon ions and electrons to concentrate in certain regions near the surface of the target. This increases the sputtering rate.

SPUTTER TARGETS

PE 2400 Targets

Au Ta2O5 Zr Cr SiO2 Qty2 Qty2 Ta Si Mg TiO2 NiFe Nb2O5 **CrSiO** In2O5 Qty2 Nb Permalloy SnO2 Fe A12O3 AlNi MgF2 NiFeMg MgO Ni Target Insulators 3 Co **Backing Plates6**

2" Unbonded for Denton Gold Palladium

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

SPUTTER TARGETS

8" Bonded for CVC-601

Aluminum 100% Aluminum/1% Silicon Chrome Chrome Oxide Copper Molybdenum Tantalum Titanium Titanium10%/Tungsten 90% Silicon Dioxide Silicon Indium Tin Oxide **8''Unbonded for CVC-601** Molybdenum/Titanium Titanium/Al 1%/Silicon 2%

4" Unbonded for CVC 601

Chrome Indium 90%/Tin 10% Nickel Tantalum Tin Nickel-Chromium 80%/20% 108E-6 ohm cm, TCR 110 E-6/°C \$450- 4"x1/4" Mel Hollander, Research and PVD Materials Corp. (973) 575-4245

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

RIT SPUTTERING DATA

Material Aluminum Nickel Chromium InSn + O2 Copper Gold* Tantalum Titanium Tungsten	Head 8" 4" 8" 4" 8" 2" 4" 8" 4" 8"	Power (watts) 2000 500 1350 100 325 40 mA,50mTorr 500 1350 500	Rate 240 Å/min. 170 350 80 110 250 190 220 100
Tungsten	4"	500	100
Tungsten	8"	1000	115
Palladium#	2"	10mA, 90 mTorr	100
Tungsten	8"	1000	115
Palladium#	2"	10mA, 90 mTorr	100

This data is for the CVC 601 Sputter System at 5 mTorr Argon Pressure, Base Pressure Prior to Sputter <1E-5 *Denton Sputter Machine

Rochester Institute of Technology

Microelectronic Engineering

4 PT PROBE WAFER THICKNESS MEASUREMENTS

MODELING OF BULK RESISTIVITY

Bulk Resistivity is assumed to have a value = $x Exp^{(y)}$

Where the pre exponential value may be different for different film deposition techniques (i.e. evaporation, RF sputtering, DC sputtering, etc.)

	X	У	Rho ohm-Å
CDE Manual	337.17	-0.92401	133.8
PE4400 (300watts)	412	-0.92401	163.5
CVC601	540	-0.92401	214.3
Flash Evaporator	490	-0.92401	194.5

Note: bulk Aluminum Rho = $270 \text{ ohm-} \text{\AA}$

Rochester Institute of Technology

Microelectronic Engineering

VERIFICATION USING THE TENCORE P2

STRESS IN SPUTTERED FILMS

Compressively stressed films would like to expand parallel to the substrate surface, and in the extreme, films in compressive stress will buckle up on the substrate. Films in tensile stress, on the other hand, would like to contract parallel to the substrate, and may crack if their elastic limits are exceeded. In general stresses in films range from 1E8 to 5E10 dynes/cm2.

STRESS IN SPUTTERED TUNGSTEN FILMS

Tungsten

CVC 601 4" Target 500 Watts 50 minutes 5 mTorr Argon Thickness ~ 0.8 μm

Compressive Stress

Rochester Institute of Technology

Microelectronic Engineering

Picture from scanner in gowning

© May 4, 2011 Dr. Lynn Fuller

STRESS IN SPUTTERED ALUMINUM FILMS

Tensile Stress

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

REACTIVE SPUTTERING

Reactive Sputtering - introducing gases such as oxygen and nitrogen during sputtering can result in the deposition of films such as indium tin oxide (ITO) or titanium nitride TiN (other examples include AlN, Al_2O_3 , AnO Ta_2O_5)

Unwanted Background Gases in Sputtering - Most Films are very reactive when deposited. Water and oxygen cause rougher films, poorer step coverage, discoloration (brown aluminum), poorer electrical properties, etc.

Rochester Institute of Technology Microelectronic Engineering

SUMMARY FOR DEPOSITION, UNIFORMITY and STEP COVERAGE

1. None of the deposition tools are that great from a thickness uniformity point of view. The best tool we investigated is the Cha Flash Evaporator.

2. The PE 4400 is the only tool that can do sputter etch prior to metal deposition. So we need to use this tool for the 2^{nd} layer of aluminum.

3. The four point probe technique for measuring thickness is a good way to measure uniformity.

4. Step coverage can be a problem so we choose to deposit metal thickness larger than the step height. Our metal thicknesses are $0.75\mu m$ for metal one and two.

DRYTEK QUAD ETCH RECIPE FOR CC AND VIA

Recipe Name:		FACCUT
Chamber		3
Power		200W
Pressure		100 mTorr
Gas 1	CHF3	50 sccm
Gas 2	CF4	10 sccm
Gas 3	Ar	100 sccm
Gas 4	O2	0 sccm
	(could be c	hanged to N2
		-

TEOS Etch Rate	494	A/min
Annealed TEOS	450	Å/min
Photoresist Etch Rate:	117	Å/min
Thermal Oxide Etch Rate:	441	Å/min
Silicon Etch Rate	82	Å/min
TiSi2 Etch Rate	1	Å/min
Rochester Institute of To	echnology	

Rochester Institute of Technology

Microelectronic Engineering

US Patent 5935877 - Etch process for forming contacts over titanium silicide

CONTACT CUT ETCH RECIPE

Theory: The CHF3 and CF4 provide the F radicals that do the etching of the silicon dioxide, SiO2. The high voltage RF power creates a plasma and the gasses in the chamber are broken into radicals and ions. The F radical combines with Si to make SiF4 which is volatile and is removed by pumping. The O2 in the oxide is released and also removed by pumping. The C and H can be removed as CO, CO2, H2 or other volatile combinations. The C and H can also form hydrocarbon polymers that can coat the chamber and wafer surfaces. The Ar can be ionized in the plasma and at low pressures can be accelerated toward the wafer surface without many collisions giving some vertical ion bombardment on the horizontal surfaces. If everything is correct (wafer temperature, pressure, amounts of polymer formed, energy of Ar bombardment, etc.) the SiO2 should be etched, polymer should be formed on the horizontal and vertical surfaces but the Ar bombardment on the horizontal surfaces should remove the polymer there. The O2 (O radicals) released also help remove polymer. Once the SiÖ2 is etched and the underlying Si is reached there is less O2 around and the removal of polymer on the horizontal surfaces is not adequate thus the removal rate of the Si is reduced. The etch rate of SiO2 should be 4 or 5 times the etch rate of the underlying Si. The chamber should be cleaned in an O2 plasma after each wafer is etched.

Rochester Institute of Technology Microelectronic Engineering US Patent 5935877 - Etch process for forming contacts over Titanium Silicide

SEM OF 6µm LINES / 2X2µm VIAS

RESISTANCE MEASUREMENTS FOR M1-M2 VIA CHAIN

F081201

M1-M2 Via chain with 512 Vias and total resistance of 118 ohms or 0.231 ohms per contact

ALUMINUM ETCH USING LAM4600

LAM 4600 ALUMINUM ETCHER

Plasma Chemistry

Cl2 – Reduces Pure Aluminum
BCl3 – Etches native Aluminum Oxide

Increases Physical Sputtering

N2 – Dilute and Carrier for the chemistry
Chloroform – Helps Anisotropy and reduces

Photoresist damage

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

LAM4600 ANISOTROPIC ALUMINUM ETCH

Step	1	2	3	4	5
Pressure	100	100	100	100	C
RF Top (W)	0	0	0	0	C
RF Bottom	0	250	125	125	C
Gap (cm)	3	3	3	3	5.3
N2	13	13	20	25	25
BCl	50	50	25	25	C
Cl2	10	10	30	23	C
Ar	0	0	0	0	(
CFORM	8	8	8	8	8
Complete	Stabl	Time	Endpoint	Oetch	Time
Time (s)	15	8	180	10%	15

Fuller, December 2009

Rochester Institute of Technology

Microelectronic Engineering

Delay130Normalize10 sNorm Val5670Trigger105%Slope+

В

Channel

© May 4, 2011 Dr. Lynn Fuller

Rochester Institute of Technology	
Microelectronic Engineering © May 4, 2011 Dr. Lynn Fuller Page 67	

MORE PICTURES OF RESIST SCUM PROBLEM

Pictures on left show resist residue after ashing. Pictures on right show effectiveness of ACT 935 solvent strip process.

From: [ACT-CMI Data Sheet]

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

RESIST REMOVAL AFTER PE4600 PLASMA ETCH

Obserations:

A solvent based photoresist stripper followed by a plasma ash is effective at removing Chlorine "burned resist"

Recommendations:

PRS2000 at 90C for 10 min Rinse 5 min. / SRD Follow up with 6" Factory ash on the Branson Asher

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

EFFECT OF SINTER ON IV CHARACTERISTICS

SINTERING, SPIKING, EUTECTIC

TITANIUM SILICIDE FORMATION (TiSi2)

Figure 30: Titanium Silicide Formation

To reduce sheet resistance of source/drain contact regions from 50 – 75 Ω /sq to 4 Ω /sq To give high drive current for fast switching speeds. Titanium Silicide was widely used at the 0.25 μ m node

Back End Wafer Processing Technology TITANIUM SILICIDE FORMATION (TiSi2)						
TiSi ₂ (C54) TiSi ₂ (C49)	13-16 60-70	700-900 500-700	~900	450	2.27 2.27	2.51 2.51

45 nm of Si is consumed by 20 nm of Ti to produce 50 nm of $TiSi_2$ in C49 phase

The C49 phase is a higher resistivity phase created after a 500-700°C rapid thermal step

The un-reacted Ti is removed by wet chemistry and a 2nd thermal step is performed at 700-900°C to form lower resistivity C54 phase

50 nm of TiSi₂ in the C54 phase should yield an $R_s \sim 4 \Omega/sq$

Rochester Institute of Technology Microelectronic Engineering

COBALT SILICIDE (CoSi2)

CoSi2 is being used commonly for the advanced IC technologies. There are several process choices to be made for the formation of a high yielding and reproducible silicide. The Co/Ti(cap) process is the best for 0.18µm and below.

SIX LAYER ALUMINUM, W PLUGS, CMP, DAMASCENE OF LOCAL W INERCONNECT

Six levels aluminum interconnect with tungsten plugs, CMP, and damascene of local tungsten interconnect for 0.18 µm gates.

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2011 Dr. Lynn Fuller

Page 87

6 LAYER COPPER INTERCONNECT

Copper resistivity $\sim 2 \mu ohm cm$

Copper Layer 6

Copper Layer 5

Copper Layer 4

Copper Layer 3

Copper Layer 2 Copper Layer 1

Local tungsten interconnect at 0.2 µm transistor gates

COPPER INTERCONNECT

[1] IBM Corp.'s new CMOS 7S process for manufacturing ICs uses copper for its six levels of interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires [see "The Damascus connection," p. 25].

© May 4, 2011 Dr. Lynn Fuller

Page 91

FINAL PASSIVATION

Funtions of Passivation Layers

Scratch protection for metal Immunity to shorts by loose conductive particles Corrosion protection for metal Reduce susceptibility to electromigration Provide alkali gettering capability

Materials

SiNxHy by PECVD SiOxNyHz by PECVD 3 wt % P-PSG by LPCVD, PECVD BPSG by LPCVD Polyimides by Spin Coating

Rochester Institute of Technology

Microelectronic Engineering

