ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

VLSI Computer Aided Design (CAD)

Dr. Lynn Fuller

Webpage: http://www.rit.edu/~lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: LFFEEE@rit.edu MicroE Webpage: http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

11-4-2014 VLSI-CAD.ppt

© November 4, 2014 Dr. Lynn Fuller

ADOBE PRESENTER

This PowerPoint module has been published using Adobe Presenter. Please click on the **Notes** tab in the left panel to read the instructors comments for each slide. Manually advance the slide by clicking on the play arrow or pressing the page down key.

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

OUTLINE

The Design Process Introduction Schematic Level Design Simulation Technology Selection Design Rules Physical Design References Homework

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

STAGES IN THE DESIGN PROCESS

Problem Specification -> Behavioral Design or Truth Table Logic Design -> Gate Level Schematic Circuit Design -> Transistor Level Schematic Simulation -> Output File

Technology Selection -> Design Rules, Layout Layers Physical Design -> Layout

Maskmaking – Fabrication – Testing - Packaging

Rochester Institute of Technology

Microelectronic Engineering

INTRODUCTION

This document is intended to lead the student through a simple digital circuit design with emphasis on the physical design (layout).

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

EXCLUSIVE OR (XOR) DESIGN EXAMPLE

Functional Description – This digital logic circuit returns a true (high) value when one of two inputs is high and returns a false (zero) otherwise.

GATE LEVEL SIMULATION OF XOR - AND/OR

NOR CIRCUIT REALIZATION FOR XOR

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

GATE LEVEL SIMULATION OF XOR – ALL/NOR

TRANSISTOR LEVEL SIMULATION OF XOR – ALL/NOR

RIT SUBµ CMOS – TECHNOLOGY SELECTION

RIT Subµ CMOS 150 mm wafers Nsub = 1E15 cm-3Nn-well = 3E16 cm-3 $X_{j} = 2.5 \ \mu m$ Np-well = 1E16 cm-3 $X_{j} = 3.0 \ \mu m$ LOCOS Field Ox = 6000 ÅXox = 150 ÅLmin= $1.0 \ \mu m$ LDD/Side Wall Spacers 2 Layers Aluminum

Rochester Institute of Technology

Microelectronic Engineering

MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

	MASK LAYER NAME	MENTOR NAME	GDS #	COMMENT			
	N WELL	N_well.i	42				
	ACTIVE	Active.i	43				
	POLY	Poly.i	46				
	N PLUS	N_plus_select.i	45				
	P PLUS	P_plus_select.i	44				
	CONTACT	Contact.i	25	Active_contact.i 48 poly_contact.i 47			
	METAL1	Metal1.i	49				
	VIA	Via.i	50				
	METAL2	Metal2.i	51				
L L	VIA2	Via2.i	61	Under Bump Metal			
P	METAL3	Metal3.i	62	Solder Bump			
7	These are the main design layers up through metal two						
-	© November 4, 2014 Dr. Lynn Fuller Page 12						

MORE LAYERS USED IN MASK MAKING

LAYER	NAME	GDS	COMMENT	
	cell_outline.i	70	Not used	
	alignment	81	Placed on first level mask	
	nw_res	82	Placed on nwell level mask	
	active_lettering	83	Placed on active mask	
	channel_stop	84	Overlay/Resolution for Stop Mask	
	pmos_vt	85	Overlay/Resolution for Vt Mask	
	LDD	86	Overlay/Resolution for LDD Masks	
	p plus	87	Overlay/Resolution for P+ Mask	
	n plus	88	Overlay/Resolution for N+ Mask	
 、	tile_exclusion	89	Areas for no STI tiling	
Rou Mit	Rochester Institute of Technology Microelectronic Engineering		These are the additional layer used in layout and mask mak	
	© Novemb	er 4, 2014 D	r. Lynn Fuller Page 13	

MOSIS LAMBDA BASED DESIGN RULES

http://www.mosis.com/design/rules/

MOSIS LAMBDA BASED DESIGN RULES

http://www.mosis.com/design/rules/

MOSIS Educational Program

Instructional Processes Include: AMI $\lambda = 0.8 \ \mu m$ SCMOS Rules AMI $\lambda = 0.35 \ \mu m$ SCMOS Rules

Research Processes: go down to poly length of 65nm

Rochester Institute of Technology

Microelectronic Engineering

GETTING STARTED WITH LAYOUT EDITOR IC

Usually the workstation screen will be blank, move the mouse to view a login window.

Login: username

Password: *******

The screen background will change and your desktop will appear. On the top of the screen click on **Applications** then **System Tools** then **Terminal**. A window will appear that has a Unix prompt inside. Type the command **Is** at the prompt to see a list of directories and files, the account should be empty.

Type **ic <ENTER>**, it will take a few seconds, then maximize the IC Station window by clicking the left mouse button on the large square in the upper right corner of the IC Station window.

Rochester Institute of Technology

Microelectronic Engineering

SHARED FOLDERS

We have set up a shared folder for this course that has primitive cells which you can open and copy from for your designs. /shared/mcee550/

Students and faculty for this course have their own personal accounts where they can keep their designs.

/home/username/filename/

All users have access to some public folders that have files for processes, design rules, etc.

/tools/ritpub/process/fuller

Rochester Institute of Technology

Microelectronic Engineering

STARTING A STANDARD CELL DESIGN

On the right hand panel of the IC Station window click on **Create** to open the create Cell window. Fill in a cell name that includes your initials (so I can identify your cells from other students cells). For process browse to or type **/tools/ritpub/process/fuller**. This will select the correct level names, level numbers and colors for the TSMC 0.35 2P3M process as discussed above. The workspace should change to a black screen with dots. If you move the cursor around you can find different xy cursor locations as displayed at the top-center.

On top banner select Other>Window>Set Grid

	Snap grid coordinates X: Y: 1
	Snap grid offsets X: 0 Y: 0
	Grid points at Major: 10 Minor: 1
Rochester Institute of T	Cechnology Use snap grid?
Microelectronic Engine	OK Cancel Apply
	© November 4, 2014 Dr. Lynn Fuller Page 18

Set Grid

STARTING A STANDARD CELL DESIGN

Open a cell from the shared folder by clicking on the open cell icon in the top-left banner. Navigate to /shared/mcee550/ and select the cell you want in your design. Press Shift+F8 to scale the window to fit the cell. Drag a box around the cell to select it and right click to Edit>Copy>ToClipboard

Then return to your cell and right click and **Edit>Paste**. Place the lower left corner where you want the cell. **Shift+F8** will scale the window to fit the cell. **F2** will unselect cell.

If you use the add cell approach to build your design you can place a cell from /shared/mcee500 folder in your design. To see the details inside the cell type anywhere in the workspace Peek then OK.

Rochester Institute of Technology

Microelectronic Engineering

COPYING CELL FROM SHARED FOLDER

F IC Station v2008.2_3.1 (2008.2b) - IC 0: Tes MGC File Co <u>n</u> text Objects Edit Select	stNORIff > TestNORIff (i) <u>C</u> onnectivity Rout <u>i</u> ng Set <u>up R</u> eport O <u>t</u>	ner <u>Vi</u> ew Chec <u>ki</u> ng Tr <u>a</u> nslate <u>P</u> acka	ges Caljibre <u>H</u> elp	
🌵 🤌 💾 📰 🚆 🍳 🔍 👆	2	🔣 📆 🔄 Width 2.5	d∎ ► ► Layer:	<u>_</u>
Context: TestNORIff(GE-E 0) Process: fuller(-R)		Cursor: 390.000 120.000	Layer: Metal2.i	Sel: 0 + Hotk
ORIFf > TestNORIFf (i) 🛛 IC 8: null > null	I (i) 🛛			- a
	nstitute of Technology			Add C Sh Pro Prop C De' Via Pro Prop C De' Via Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro
	onu Engineering			Rel S

INTERCONNECTING PRIMITIVE CELLS

The primitive cells are interconnected using Metal-1 and Metal-2 in the routing channels above and below the primitive cells. First place horizontal metal lines in the routing channels by creating a shape with the following command (type anywhere in the drawing window)

\$add_shape([[0,166],[368,172]],49)

This will draw a box with lower left corner at x=0, y=166 and upper right corner at x=368um, y=172um, with layer number 49 (metal-1). This should be a horizontal metal-1 interconnect line at the top of your cell if you placed the lower left corner of your cell at (0,0)

Both M1 and M2 will need some type of contact cut or Via. See next page for examples

Rochester Institute of Technology

Microelectronic Engineering

M1 AND M2 INTERCONNECTS

en e						
_ · [· · ·] · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·						
and the second						
$-$ null \rightarrow $ \rightarrow$ norz norz norz norz norz hull $-$						
A A A A A A A A A A						
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1						
- $ -$						
Microelectronic Engineering						
Sector State S						

/

USING THE VLSI LAB WORKSTATIONS AND MENTOR GRAPHICS CAD TOOLS

Usually the workstation screen will be blank, press any key to view a login window. Login or switch user and then login.

Login: username (RIT computer account)

Password: ******

The screen background will change and your desktop will appear. On the top of the screen click on **Applications** then **System Tools** then **Terminal**. A window will appear that has a Unix prompt inside. Type

the command **ls** at the prompt to see a list of your directories and files.

Type **ic** <RET>, it will take a few seconds, then the Pyxis Layout user interface will appear. Maximize the Pyxis Layout window.

Rochester Institute of Technology

Microelectronic Engineering

Page 26

USING THE HP WORKSTATIONS AND MENTOR GRAPHICS CAD TOOLS - PROCESS AND GRID

In the session menu palette on the right hand side of the screen, under Layout, select **New**, using the left mouse button. For cell name type **name-device**. Set the process by typing /tools/ritpub/process/mems-2014 in the process field. Leave the Rules field blank. Click **OK**

At the top left of the window check that the process is **mems-2014** not Default. If not correct go to top banner click on **Context>Process>Set Process**

The Layer Palette should show the layers you expect to used for your device layout.

On top banner select Setup>Preferences>Display>Rulers/Grid Set Snap to 10 and 10 as shown. (or other values as necessary)

USING THE HP WORKSTATIONS AND MENTOR GRAPHICS CAD TOOLS – WORKSPACE, LOCATION

© November 4, 2014 Dr. Lynn Fuller

The plus mark + is (0,0) the small dots are the 10 um grid the large dots are the 100um grid. The mouse curser is shown by the diamond and is at (100um,100um) as indicated by the cursor position at the top of the workspace.

USING THE HP WORKSTATIONS AND MENTOR GRAPHICS CAD TOOLS – SELECTING OBJECTS

Select easy edit, Select Shape. Draw boxes by click and drag of mouse. Unselect by pressing **F2** function key. The highlighted layer in the layer palette is selected prior to drawing. Unselect by pressing **F2**. Exit drawing by pressing **ESC**.

Selecting multiple objects is defined in **Setup>Selection**

Unclick **Surrounding the select rectangle** to not select the cell outline

Rochester Institute of Technology Microelectronic Engineering

DRAWING BOXES AND OTHER SHAPES

Select easy edit, right click and select Show Scroll Bars, scroll through the various edit commands.

DRAW BOXES by click and drag of mouse. Unselect by pressing F2 function key. The following command will draw a 3000 μ m by 3000 μ m box with layer 4 color/shading. Put the curser in the workspace and start typing. A text line window will pop up. If the command has a typo just start typing again and use the up arrow to recall previous text.

The Notch command is useful to change the size of a selected box or alter rectangular shapes into more complex shapes.

Rochester Institute of Technology

Microelectronic Engineering

DRAWING CIRCLES

DRAW CIRCLES by typing **\$set_location_mode**(@arc) return. The following command will draw a 100µm radius circle centered at (0,0) using 300 straight line segments. **\$add_shape(\$get_circle([0,0],[100,0],300),3)**

To reset to rectangles type \$set_location_mode(@line) return.

MOVE, COPY, DELETE, NOTCH, etc: Selected objects will appear to have a bright outline. Selected objects can be moved (**Move**), copied (**Copy**), deleted (**Del**), notched (**Notc**). When done **unselect** objects, press F2.

Change an Object to another layer: Selected object(s) click on **Edit** on the top banner, select **Change Attributes**, change **layer name** to the name you want. When done press **F2** to unselect

USING THE HP WORKSTATIONS AND MENTOR GRAPHICS CAD TOOLS - OTHER

ZOOM IN OUT: pressing the + or - sign on right key pad will zoom in or out. Also pressing **shift** + **F8** will zoom so that all objects are in the view area. Select **View** then **Area** and click and drag a rectangle will zoom so that the objects in the rectangle are in the view area.

MOVING VIEW CENTER: pressing the middle mouse button will center the view around the pointer.\

ADDING TEXT: Add > Polygon Text click on layout where you want it located. Select the text box and Edit > Change > Attributes, change pgtext, change scale to 3.0

SCREEN PRINT: Click on **MGC** and select **Capture Screen**. Enter file name and location such as **Lynn.png** and **Desktop**. After saving you can use a flash drive and transfer the file to another computer.

LOG OUT: upper right of screen click on name and select LOG OUT

ULSI-CAD

BASIC UNIX COMMANDS

Command	Description
ls	list the files and directories in the current directory
cd	change directory
cd	go up one directory
mv	move a file (rename a file)
rm	remove a file (delete a file)
pwd	display path of current directory
mkdir	create a new directory
rmdir	remove a directory
yppasswd	change your password

It is important to remember that since this is a UNIX operating system, the commands are case sensitive.

Rochester Institute of Technology

Microelectronic Engineering

GDS FILE GENERATION

Once the cell design is completed export the GDS file for maskmaking. Select **Translate** on the top banner and then **Write GDSII** Output file needs full path name and .gds extension.

EXPORT CELL DESIGN AS GDS II FILE

MASK ORDER FORM

Rochester Institute of Technology Semiconductor & Microsystems Fabrication Laboratory

Maskmaking Order Request

Name Company Department	Dr Fuller RIT	Design File Name (.gds) mems-2014-final.gds Number of Mask Levels to be Written 7 Cell Layout Size 16.5mm x 16.5mm Name of Cell in Design File to be used mems-2014-final.gds Mask Type Needed mems-2014-final.gds			
Street Address City, State and Zip Code		Contact Aligner • Max field size – 105mm x 105mm	Defaults	Scale: Mask Size:	1X 5″ × 5″ × 0.09″ Soda Lime
Phone Number SMFL Project Code	() -			Orientation: Fracture Resolution:	0.5um
Email Address		GCA Stepper	Defaults	Scale:	5X
		Max field size – 20mm x 20mm		Mask Size: Orientation:	5" x 5" x 0.09" Soda Lime Mirror 135
Order Date	_			Fracture Resolution:	0.5um
Order Due Date					
		X ASML Stepper	Defaults	Scale:	5X
	L	Max field size - 22mm x 22mm		Mask Size:	6" x 6" x 0.12" Quartz
				Orientation: Eracture Recolution:	
	+	+		Fracture Resolution:	0.5011
	•	Single Field Array Plate		Yes	
				Array with columns	; (x) and rows (y)
		Array element size	×	: um Y: um	ו
		Nistan			
		<u>Notes:</u> If multiple design files are to be incorpo	rated into your	array – pleace coedify th	e array layout conarately
		Your designs will be butted together to from the array unless otherwise specified			
(Roche	ester Institute of Te		,		-
Micro	electronic Enginee	Multiple Field Array Plate		Yes	
	encenonice Engineer	Numbers of Levels on Plate			
		Please speaty which levels are to be gro	ouped together	on which plate on the D	etails Sheet
		© November 4, 2014 Dr. Lynn Fulle	er	Page 36	

ADDING PAD CELL AND LETTERS

From the banner at the top of the page choose **Objects>add>cell**. A tan pop-up window will appear at the bottom of the page. Type in the following cell name, all lower case, /tools/ritpub/padframes/ritpmos/ritpmos_12_pads and click the left mouse button on the location button. Then position the cursor at the origin 0,0 and click the left mouse button. Click the left mouse button on the cancel button on the tan pop-up box. Press SHIFT and F8 to View All. You should see a white box with ritpmos_12_pads written inside it. Type flatten and select, OK. Press F2 to unselect all.

MEBES - Manufacturing Electron Beam Exposure System

Rochester Institute of Technology Microelectronic Engineering

Maskmaking Tool

© November 4, 2014 Dr. Lynn Fuller

FILE FORMATS

Mentor- ICGraph files (filename.iccel), all layers, polygons with up to 200 vertices

GDS2- CALMA files (old IC design tool) (filename.gds), all layers, polygons

MEBES- files for electron beam maskmaking tool, each file one layer, trapezoids only

Rochester Institute of Technology

Microelectronic Engineering

REFERENCES

- 1. <u>Principles of CMOS VLSI Design</u>, 2nd Ed., Neil H.E.Weste, Kmran Eshraghian, Addison Wesley, 1993.
- 2. <u>Physical Design Automation of VLSI Systems</u>, Bryan Preas, Michael Lorenzeti, Benjamin/Cummings, 1988.
- 3. <u>VLSI Engineering</u>, Thomas Dillinger, Prentice Hall, 1988.

Rochester Institute of Technology

Microelectronic Engineering

HOMEWORK VLSI-CAD

This assignment can be done using the tools in the VLSI lab. Ideally the switch level simulation and SPICE simulations are also done with the tools in the VLSI Lab.

Design a 4 to 1 multiplexer. Two inputs (Input A and Input B) select which one of four other digital inputs (I1 I2 I3 I4) is output (Vout)

Document the following items, Truth Table, Gate Level Schematic, Gate Level Simulation, Transistor Level Schematic, Transistor Level Simulation, Layout using Gate Array, Including connections to 12-pad Pad Frame.

Rochester Institute of Technology

Microelectronic Engineering

4 TO 1 MULTIPLEXER

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

4 TO 1 MUX - GATE LEVEL SIMULATION

4 TO 1 MUX – TRANSISTOR LEVEL SIMULATION

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

4 TO 1 MUX – LAYOUT

Rochester Institute of Technology Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller

4 TO 1 MUX – PEEKED AND ZOOM

Rochester Institute of Technology

Microelectronic Engineering

© November 4, 2014 Dr. Lynn Fuller