ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Testing of Digital Circuits at RIT

Dr. Lynn Fuller, *Professor*, Kekuut Hoomkwap, Suebphong Yenrudee, *MS MicroE*, Sushil Shayka, *BS MicroE*

> Dr. Fuller's Webpage: <u>http://www.rit.edu/~lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

Fax (585) 475-5041 Email: <u>LFFEEE@rit.edu</u> MicroE Webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

3-8-2007 test_dig.ppt

© March 8, 2007 Dr. Lynn Fuller, Professor

OUTLINE

Problem Statement
Digital Circuits
Tester Hardware
Tester Software
2 Input 1 Output
...
6 input 6 Output
Summary

References

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

PROBLEM STATEMENT

We design and build a variety of digital circuits which can not be tested using the HP-4145 Semiconductor Parameter Analyzer. These digital circuits often have a large number of inputs and outputs. For example a full adder has 3 inputs and 2 outputs. A 2bit multiplexer has 6 inputs and 1 output. The chip technology could be PMOS, NMOS, CMOS, TTL or Analog each requiring different supply voltages. It is desirable to have a test system that can be easily understood with a simple graphical interface that can exercise these digital circuits. Test results in a format similar to the simulation results would be useful.

Rochester Institute of Technology

Microelectronic Engineering

LIST OF DIGITAL CIRCUITS ON RIT TESTCHIPS

Inverters 2 Input NOR XOR 2 Input NAND **RS** Flip Flop Multiplexer Demultiplexer Encoder Decoder Adder PLA

For these types of devices a truth table type test at low frequencies would be sufficient.

NOR GATE AND NOR FLIP FLOP

PMOS 2 INPUT NOR

PMOS NOR RS Flip Flop

Rochester Institute of Technology

Microelectronic Engineering

PMOS TEST CHIP

© March 8, 2007 Dr. Lynn Fuller, Professor

1:4 DEMULTIPLEXER

 $Q_0 = A'B'I$ so that when I=0 $Q_0 = 0$ or when I=1 $Q_0 = 1$ similarly for Q_1 , Q_2 and Q_3 $Q_1 = A'BI$

NPUTS			OUTPUTS			
	Α	В	Q_0	Q_1	Q_2	Q_3
	0	0	Ι	0	0	0
	0	1	0	Ι	0	0
	1	0	0	0	Ι	0
	1	1	0	0	0	Ι

Rochester Institute of Technology

Microelectronic Engineering

FOUR INPUT MULTIPLEXER

DIGITAL CIRCUIT TESTING

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

LAB VIEW SOFTWARE

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

HARDWARE FOR OUTPUT

6 Analog Outputs Ribbon Cable Terminal Board

Rochester Institute of Technology

Microelectronic Engineering

HARDWARE FOR INPUT

AT-MIO-16E-10

Available for ISA computers

 Up to 16 analog inputs; 12-bit resolution; 100 kS/s sampling rate

 Two 12-bit analog outputs; 8 digital VO lines; two 24-bit counters

Calibration certificate included for NIST traceability

 N-DAG driver with DAQ channel wizard for reduced configuration

16 Analog Inputs Ribbon Cable Terminal Board

R6868

- 68-pin flat ribbon cable terminated with two 68-pin connectors
- 1 m length available
- Download PDFs for compatibility charts, more detailed descriptions, and ordering information

TBX-68

- Termination accessory with 68 screw terminals
- Easy connection of field I/O signals to 68-pinDAQ devices
- Mounted in plastic base; includes hardware for mounting on a standard DIN rail
- Dimensions: 12.50 by 10.74 cm (4.92 by 4.23 in.)
- Download PDFs for compatibility charts, more detailed descriptions, and ordering information

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

FINAL SYSTEM

© March 8, 2007 Dr. Lynn Fuller, Professor

CUSTOM SOFTWARE INTERFACE

Click on digital testing icon to invoke the lab view software and this main menu.

Click to select the type of test you wish to run.

© March 8, 2007 Dr. Lynn Fuller, Professor

TESTING TWO INPUT ONE OUTPUT LOGIC GATES

FOUR CHOICES FOR SUPPLY VOLTAGES

CLICK TO SELECT ONE

PMOS, Vcc = -10 Volts

CMOS/TTL Vcc = +5 Volts

NMOS, Vcc = +10 Volts

ANALOG, Vcc = +5 Volts, Vdd = -5 Volts

Rochester Institute of Technology

Microelectronic Engineering

PROBE CARD/WIRE CONNECTIONS

© March 8, 2007 Dr. Lynn Fuller, Professor

SWITCH MATRIX (MANUAL)

TESTING THREE INPUT TWO OUTPUT LOGIC GATES

3 Input OR, AND, NOR, NAND Full Adder

CMOS Full Adder

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

THREE INPUT TWO OUTPUT

DEFINE INPUT SIGNALS / SELECT SUPPLY VOLTAGE

ADDER TEST RESULTS

Multiplexer (6 inputs, 1 output) Demultiplexer (3 inputs, 4 outputs) Encoder Decoder

Rochester Institute of Technology

Microelectronic Engineering

MULTIPLEXER TEST SIGNALS

MUX LAYOUT AND GATE LEVEL SCHEMATIC

PMOS 4-INPUT MULTIPLEXER

MUX TEST RESULTS

In PMOS logic low is 0 volts, logic high is -Vcc

MUX TEST RESULTS

In PMOS logic low is 0 volts, logic high is -Vcc

SUMMARY

1. The system works great.

2. Direct comparison between QUICKSIM output and tester output is possible.

3. Easy to use graphical interface. (Freshman to Graduate Students have used the system successfully)

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor

REFERENCES

1. LabView Software, National Instruments, http://www.natinst.com

Rochester Institute of Technology

Microelectronic Engineering

© March 8, 2007 Dr. Lynn Fuller, Professor