ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

# SPICE Model Parameters for RIT MOSFET's

## Dr. Lynn Fuller

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

Dr. Fuller's Webpage: <u>http://people.rit.edu/lffeee</u> Email: <u>Lynn.Fuller@rit.edu</u> Dept Webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

11-15-2013 SPICE.ppt

© November 15, 2013 Dr. Lynn Fuller



### SIMULATION PROGRAM FOR INTEGRATED CIRCUIT ENGINEERING

Device models used by SPICE (Simulation Program for Integrated Circuit Engineering) simulators can be divided into three classes: First Generation Models (Level 1, Level 2, Level 3 Models), Second Generation Models (BISM, HSPICE Level 28, BSIM2) and Third Generation Models (BSIM3, Level 7, Level 48, etc.) The newer generations can do a better job with short channel effects, local stress, transistors operating in the sub-threshold region, gate leakage (tunneling), noise calculations, temperature variations and the equations used are better with respect to convergence during circuit simulation.



Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller

### **SPICE LEVEL-1 PARAMETERS FOR MOSFET's**

If we understand the Level 1 model we can better understand the other models. The Level 1 model by Schichman and Hodges uses basic device physics equations for MOSFET threshold voltage and drain current in the saturation and non-saturation regions of operation. Mobility is assumed to be a function of total doping concentration only and a parameter called LAMBDA is used to model channel length modulation.

Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller









### LAMBDA VERSUS CHANNEL LENGTH



Rochester Institute of Technology

Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller



### **SPICE LEVEL-1 PARAMETERS**

SPICE LEVEL 1 MODEL FOR MOS TRANSISTORS:

| 1. LEVEL=1 | 7. RD   | 13. CGSO | 19. CJSW | 25. NFS |
|------------|---------|----------|----------|---------|
| 2. VTO     | 8. RS   | 14. CGDO | 20. MJSW | 26. TPG |
| 3. KP      | 9. CBD  | 15. CGBO | 21. JS   | 27. XJ  |
| 4. GAMMA   | 10. CBS | 16. RSH  | 22. TOX  | 28. LD  |
| 5. PHI     | 11. IS  | 17. CJ   | 23. NSUB | 29. UO  |
| 6. LAMBDA  | 12. PB  | 18. MJ   | 24. NSS  |         |

30.-41. PARAMETERS FOR SHORT CHANNEL AND NOISE (Use Defaults)

Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller







© November 15, 2013 Dr. Lynn Fuller













### SPICE 2<sup>ND</sup> GENERATION MODELS AND PARAMETERS

2<sup>ND</sup> generation MOSFET models improve over the Level 1 models because they model sub-threshold current, mobility as a function of vertical and lateral electric field strength, threshold voltage reduction as a function drain voltage or drain induced barrier lowering (DIBL). This model has separate equations for drain current for different regions of operation. The discontinuity at the transition points can make problems in program convergence during circuit simulation.















### **PARAMETERS FOR SPICE LEVEL 3**

SPICE LEVEL 3 MODEL PARAMETERS FOR MOS TRANSISTORS:

| Control | Level=3 |                                                   |
|---------|---------|---------------------------------------------------|
| Process | TPG=1   | 1 if gate is doped opposite of channel, -1 if not |
| Process | TOX     | Gate Oxide Thickness                              |
| Process | NSUB    | Channel doping concentration                      |
| Process | XJ      | Drain/Source Junction Depth                       |
| Process | PB      | PB is the junction built in voltage               |
| W and L | LD      | Drain/Source Lateral Diffusion                    |
| W and L | WD      | Decrease in Width from Drawn Value                |
| DC      | UO      | Zero Bias Low Field Mobility                      |
| DC      | VTO     | Measured threshold voltage, long wide devices     |
| DC      | THETA   | Gate Field Induced Mobility Reduction             |
| DC      | DELTA   | Narrow Channel Effect on the Threshold Voltage    |
| DC      | VMAX    | Maximum Carrier Velocity                          |
| DC      | ETA     | DIBL Coefficient                                  |
| , DC    | KAPPA   | Channel Length Modulation Effect on Ids           |
| DC      | NFS     | Surface State Density                             |
|         |         |                                                   |



### **BSIM3 MODELS**

Berkeley SPICE third generation SPICE models are called BSIM3. Theses models for transistors use equations that are continuous over the entire range of operation (sub-threshold, linear region and saturation region). The equations for mobility are improved. Equations for temperature variation, stress effects, noise, tunneling have been added and/or improved. BSIM3 is presently the industry standard among all these models. It represents a MOSFET with many electrical and structural parameters, among which, only *W* and *L* are under the control of a circuit designer. All the rest are fixed for all MOSFETs integrated in a given fabrication technology, and are provided to the designer as an "untouchable" deck of device parameters. (There are over 200 parameters in some versions of BISM3 models)



Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller



© November 15, 2013 Dr. Lynn Fuller



## SPICE LEVEL-49 EQUATIONS FOR ID

#### Effective Vds

$$\mathbf{V}_{dsoff} = \mathbf{V}_{dsat} - \frac{1}{2} \cdot \left(\mathbf{V}_{dsat} - \mathbf{V}_{ds} - \mathbf{DELTA} + \sqrt{\left(\mathbf{V}_{dsat} - \mathbf{V}_{ds} - \mathbf{DELTA}\right)^2 + 4 \cdot \mathbf{DELTA} \cdot \mathbf{V}_{dsat}}\right)$$

#### Drain Current

$$I_{ds} = \frac{I_{dso}}{1 + \frac{R_{ds} \cdot I_{dso}}{V_{dseff}}} \cdot \left(1 + \frac{V_{ds} - V_{dseff}}{V_{A}}\right) \cdot \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ASCBE}}\right)$$

$$I_{dso} = \frac{W_{eff} \cdot \mu_{eff} \cdot COX \cdot V_{gsteff} \cdot \left(1 - A_{bulk} \cdot \frac{V_{dseff}}{2 \cdot (V_{gsteff} + 2 \cdot V_{t})}\right) \cdot V_{dseff}}{L_{eff} \cdot [1 + V_{dseff} / (E_{sat} \cdot L_{eff})]}$$

$$V_{A} = V_{Asat} + \left(1 + \frac{PVAG \cdot V_{gsteff}}{E_{sat} \cdot L_{eff}}\right) \cdot \left(\frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBLC}}\right)^{-1}$$

$$V_{ACLM} = \frac{A_{bulk} \cdot E_{sat} \cdot L_{off} + V_{gsteff}}{PCLM \cdot Ab_{bulk} \cdot E_{sat} \cdot I_{itl}} \cdot (V_{ds} - V_{dseff})$$

$$\frac{UTMOST III Modeling Manual-Vol.1}{Ch. 5. from Silvaco International.}$$



### PARAMETERS FOR SPICE BSIM3 LEVEL 49

### SPICE BSIM3 LEVEL 49 MODEL PARAMETERS FOR MOS TRANSISTORS:

10

IEVEL

| Control | LEVEL=49 |                                           |
|---------|----------|-------------------------------------------|
| Control | MOBMOD=1 | Mobility model selector choice            |
| Control | CAPMOD=1 | Capacitor model selector choice           |
| Process | TOX      | Gate Oxide Thickness                      |
| Process | XJ       | Drain/Source Junction Depth               |
| Process | NCH      | Channel Surface doping concentration      |
| Process | NSUB     | Channel doping concentration              |
| Process | XT       | Distance into the well where NCH is valid |
| Process | NSF      | Fast Surface State Density                |
| Process | NGATE    | Gate Doping Concentration                 |
| W and L | WINT     | Isolation Reduction of Channel Width      |
| W and L | LINT     | Source/Drain Underdiffusion of Gate       |
|         |          |                                           |



 $\mathbf{\Omega}$  =  $\mathbf{1}$ 

Note: only some of the few hundred parameters

© November 15, 2013 Dr. Lynn Fuller

### **PARAMETERS FOR SPICE BSIM3 LEVEL 49**

| DC          | VTH0        | Threshold voltage, Long, Wide Device, Zero Substrate     |
|-------------|-------------|----------------------------------------------------------|
|             |             | Bias = VTO in level $3$                                  |
| DC          | U0          | Low Field Mobility, UO in level 3                        |
| DC          | PCLM        | Channel Length Modulation Parameter                      |
| Diode & Res | sistor RSH  | Drain/Source sheet Resistance                            |
| Diode & Res | sistor JS   | Bottom junction saturation current per unit area         |
| Diode & Res | sistor JSW  | Side wall junction saturation current per unit length    |
| Diode & Res | sistor CJ   | Bottom Junction Capacitance per unit area at zero bias   |
| Diode & Res | sistor MJ   | Bottom Junction Capacitance Grading Coeficient           |
| Diode & Res | sistor PB   | PB is the junction built in voltage                      |
| Diode & Res | sistor CJSW | Side Wall Junction Capacitance per meter of length       |
| Diode & Res | sistor MJSW | Side Wall Junction Capacitance Grading Coeficient        |
| AC          | CGSO        | Zero Bias Gate-Source Capacitance per meter of gate W    |
| AC          | CGDO        | Zero Bias Gate-Drain Capacitance per meter of gate W     |
| AC          | CGBO        | Zero Bias Gate-Substrate Capacitance per meter of gate L |
|             |             |                                                          |



© November 15, 2013 Dr. Lynn Fuller

### EXCEL SPREADSHEET SPICE PARAMETER CALCULATOR

| _                                                                        | A B C D E F G H I J K L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 R0                                                                     | CHESTER INSTITUTE OF TECHNOLOGY SPICE Parameter_Calculatorxls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 MI                                                                     | CROELECTRONIC ENGINEERING 1/18/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                          | LCULATION OF MOSFET SPICE PARAMETERS DR. LYNN FULLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5<br>6 To                                                                | use this presedence the values in the white hoves. The sect of the cheat is protected and should not be chearded where                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 7 70                                                                   | use and spreaksible trange are varies in the wine outes. The test of the surfectes and should not be tranged whese                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8 900                                                                    | and succonfine consequences. The encourage states and substraining pupple boxes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9 00                                                                     | INSTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11                                                                       | T= 300 K Boron D0 0.76 cm2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                                       | KT/q = 0.026 volts BoronEa 3.46 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13                                                                       | ni = 1.45E+10 cm-3 Phosphorous D0 3.85 cm2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14                                                                       | Eo = 8.85E-14 F/cm Phosphorous Ea 3.66 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15                                                                       | Er si = 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16                                                                       | Er SiO2 = 3.9 Carrier V elocity Saturation occurs at ~ 5E6 to 2E7 cm/s, extracted values can be artificially 2 times higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                                                                       | E affinity = 4.15 volts Critical value of electric field & of ~8E3 to 3E4 V/cm for electrons, ~2E4 to IE5 V/cm for holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                       | $\mathbf{q} = 1.124  \text{mode}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                                                                       | SPICE Parameter Calculator v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20<br>21 IN                                                              | INCLUTATION STICL TATAINCUL CALCUIATOLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23 Thi                                                                   | s spreadsheet calculates nm os or pm os level one, three and BSIM3 SPICE parameters from details known about the process parameters, device layout and                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24 fab:                                                                  | rication history. Level one spice parameters assume mobility is a function of total impurity concentration and temperature only. Level one uses the parameter                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 LA                                                                    | MBDA for channel length modulation. Different equations are used to calculate Ids in the saturation and non-saturation regions of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 27 The                                                                   | elevel three SPICE model is derived from the level one model with some additional parameters to better account for the decrease in carrier mobility for                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28 hig                                                                   | h vertical and lateral electric fields. The level three model also allows the user to account for narrow channel effects, drain induced barrier lowering (DIBL),                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29 and                                                                   | gives better sub threshold characteristics. For example the parameter LAMBDA is replaced by a more complex model using the parameter V MAX and                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 K.A                                                                   | PPA. The low held mobility value UO is modified for men gate electric neigh with parameter THETA and modified for might lateral electric fields through                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32 mine                                                                  | A INLAY Baranceel. Durerent editations are used to canoniate saturation from saturation and scionnestion refloms of obstanting                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33 Th                                                                    | a BSM3 SPICE parameters are derived from the level one and three parameters. BSIM models have hundreds of parameters used to fully describe DC and AC                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                          | vce operation temperature effects, noise, stress effects and more. Most of the parameters can only be determined from measured device performance. In                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34 dei                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 34 dei<br>35 this                                                        | spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34 dei<br>35 this<br>36 inv                                              | s preadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are oken of the single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit                                                                                                                                                                                                                                                                  |
| 34 dei<br>35 this<br>36 inv<br>37 sim                                    | s preadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>ulation more reliable.                                                                                                                                                                                                                                       |
| 34 dei<br>35 this<br>36 inv<br>37 sim<br>38                              | s spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>ulation more reliable.                                                                                                                                                                                                                                      |
| 34 dei<br>35 this<br>36 inv<br>37 sim<br>38<br>39                        | s spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>ulation more reliable.                                                                                                                                                                                                                                      |
| 34 dei<br>35 this<br>36 inv<br>37 sim<br>38<br>39<br>40 Ref              | s spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>ulation more reliable.<br>erences: <u>MOSFET Modeling with SPICE</u> , Daniel Foty, 1997, Prentice Hall, ISBN-0-13-227935-5                                                                                                                                 |
| 34 deir<br>35 this<br>36 inv<br>37 sim<br>38<br>39<br>40 Ref<br>41       | s spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>valation more reliable.<br>erences: <u>MOSFET Modeling with SPICE</u> , Daniel Foty, 1997, Prentice Hall, ISBN-0-13-227935-5<br><u>Operation and Modeling of the MOS Transistor</u> . 2nd E dition, Y annis Tsividis, 1999, McGraw-Hill, ISBN-0-07-065523-5 |
| 34 deir<br>35 this<br>36 inv<br>37 sim<br>38<br>39<br>40 Ref<br>41<br>42 | s spreadsheet the BSIM3 parameters are derived from level one and level three parameters. All other parameters are not specified and the default values are<br>oked. The single equation for Ids is used that is valid in saturation, non-saturation and subthreshold regions of operation, making convergence during circuit<br>valation more reliable.                                                                                                                                                                                                                                     |

### **INPUTS AND RESULTS**

|    |                                           |                         |                        |            | 1              | 1                   |              |                    |                           |                 |                         |             |        |
|----|-------------------------------------------|-------------------------|------------------------|------------|----------------|---------------------|--------------|--------------------|---------------------------|-----------------|-------------------------|-------------|--------|
|    | A                                         | В                       | C                      | D          | E              | F                   | G            | Н                  |                           |                 | J                       | К           |        |
| 44 | LAY OUT PARA                              | AMETERS                 |                        |            |                |                     |              | VALUE              | SCALCU                    | JLA'            | fed from p              | ROCESS PARA | AMET   |
| 45 | (assume source and drain are symmetrical) |                         |                        |            |                |                     |              |                    |                           |                 |                         |             |        |
| 46 | L                                         |                         |                        | 2          | um             |                     | D            | iffusion Co:       | nstant at T               | emp             | of Well Drive           | 1.43E-13    | cm2    |
| 47 | w                                         |                         |                        | 16         | um             |                     |              | Starting wa        | fer doping                | g = 1/          | (quantax Rho)           | 4.42E+14    | cm-    |
| 48 | Area of Drain/So                          | urce                    |                        | 96         | um2            | W                   | ell Surface  | Concentrati        | .om=Ns=1                  | Dose            | /(piDt)^0.5             | 1.45E+17    | cm-    |
| 49 | Perimeter of Drai                         | in/Source               |                        | 44         | um             | Well D              | )epth = ((41 | DdTd/Dose)         | ) ln(N sub(†              | piD đ           | rano.5)) no.5           | 3.75        | um     |
| 50 | # squares betwee                          | n Contact an            | nd Channel             | 0.143      | 1              |                     | • ••         | Well ave           | rage dopin                | ng, N           | ave = Dose/xj           | 5.33E+16    | cm-    |
| 51 | # squares betwee                          | nLDD/N+ a               | and Channel            | 0.025      | 1              |                     | Bulk W       | ell Majorita       | Carrier M                 | Iobil:          | tvat N=Nave             | 394.32      | cm2    |
| 52 |                                           |                         |                        |            | _              |                     | Bulk W       | ell Minorita       | Carrier M                 | Iobil:          | ty at N=Nave            | 1004.52     | cm2    |
| 53 | PROCESS PAR                               | AMETERS                 | 5                      | 1=ves.0=No |                |                     | Well         | 1 Sheet Resi       | stance = 1,               | Ка́сц           | (Nave))Dose)            | 792.50      | ohr    |
| 54 | Aluminum gate                             |                         |                        |            | 1)             | Wei                 | ll surface n | nobility at S      | urface Dor                | ping            | Concentration           | 725.76      | cm2    |
| 55 | n+Polv gate                               |                         |                        | 1          | select one     |                     |              | Wdmax =            | = (4 eoesi                | ds/1            | /Nave)^0.5              | 0.143       | um     |
| 56 | p+ Polv gate                              |                         |                        |            | -              |                     |              |                    | Metal V                   | Nork            | Function dan            | 4.12        | volt   |
| 57 | N well (nMOSFF                            | (T)                     |                        |            | ] select one   | Magnitud            | le of Semic  | onductor P         | ntential (Fe              | ermi.           | Intrinsic) ds           | 0.419       | volt   |
| 58 | P well (nMOSFE                            | .T                      |                        | 1          | }              |                     |              | 0                  | ride Canac                | citano          | $e/cm2 = Cox^{\dagger}$ | 2.30E-07    | F/ci   |
| 59 | V t adjust Dose (H                        | For Boron               | -forPhosì              | 0.008+00   | cm-2           |                     |              | Metal Se           | emi Work I                | Func            | ion Diff dans           | -0.170      | volt   |
| 00 | Gate Oxide Thick                          | checc                   | 141100                 | 1.50       | Å              |                     |              | 1010041 101        | Flat Bar                  | nd V.           | ultage VFB =            | _0.379      | volt   |
| 61 | NSS                                       | 110.00                  |                        | 3.00E+11   | cm-2           |                     |              |                    | Thresh                    | old V           | oltage VTO              | 1 33        | volt   |
| 62 | Starting Wafer R                          | esistivity              |                        | 10         | ohm-cm         |                     |              | Threshol           | d Adjust /                | ∆V =1           | Dose/2/Cox'             | 0.00        | volt   |
| 63 | Well Dose                                 |                         |                        | 2.00E+13   | cm-2           |                     | Ion Im-      | nlanted Adi        | usted Thre                | shold           | Woltage WT              | 1 33        | volt   |
| 64 | Well Drive Time                           |                         |                        | 710        | min            |                     | D            | iffusion Cor       | ustant at Te              | em n            | of D/S Appeal           | 1 17F-14    | - cm   |
| 65 | Well Drive Temr                           | neratume                |                        | 1100       | c              |                     | 2.           |                    | D/S Ju                    | nctio           | n Denth XI =            | 0.18        | 111m   |
| 66 |                                           |                         |                        | 2 50E+13   | cm-2           |                     |              | D.S. ave           | race donin                | σΝ              | ave = Dose/vi           | 1 36E+18    | cm.    |
| 67 | LDD D/S Drive 1                           | Time                    |                        | 30         | min            |                     |              | Bul                | k Mohility                | -6, -,<br>rin D | /S at N=Nave            | 230.94      | cm2    |
| 68 | LDD D/S Drive 1                           | Femnerature             |                        | 1000       | C              |                     | D/S          | Sheet Resi         | stance = 1                | Katu            | (Nave))Dose)            | 1082.55     | ohn    |
| 69 | Field Oxide Thic                          | kness                   |                        | 6000       | Ă              |                     | Dire         | Late               | ral Diffusi               | (40P            | LD = 0.8*Xi             | 0.15        | - um   |
| 70 | MinorityCarrier                           | Lifetime in t           | the well               | 1          |                |                     |              | Can                | acitance/cr               | m7 fc           | r Field Ovide           | 5.75E-09    | E le   |
| 71 | DS Dose (N+ or                            | P+)                     | LIC WOII               | 2.008+15   | cm-2           | D/S                 | Width of S   | oup<br>Inace Charo | e I aver at               | 7e*0            | Bias Xdeo =             | 0.152       | 1.101  |
| 72 | D 10 D 000 (11 ) 01                       | • •                     |                        | 2.002.115  | cm-2           | D/0                 | S Wedth of   | Space Cha          | rone I avver a            | at V d          | d Bias Yds=             | 0.192       | - um   |
| 73 |                                           |                         |                        |            |                | 27                  | 6 **10#11 01 | I of               | rec Dayor c<br>F = I maek | <br>            | D - 2*X deo             | 1 400       | - um   |
| 74 |                                           |                         |                        |            |                |                     |              | Built it           | v Voltege f               | οr D            | S pp junction           | 0.05        | wolf   |
| 75 |                                           |                         |                        |            |                |                     |              | Junction re        | veree hiee                | .01 L.          | nt deneitre IS          | 3.23E-08    | - A /m |
| 76 |                                           |                         |                        |            |                |                     | ,            | lunction Ca        | verbe erab<br>veritence f | own.<br>Yor D   | S at zero hise          | 6 20E 02    | E les  |
| 77 |                                           |                         |                        |            |                |                     | ,<br>Is      | mhda Calci         | Jated ((] +               | maví            | min)_1)Wdd              | 0.002-00    | 1/37   |
| 78 | MFASURED TI                               | RANSISTO                | R VALUES               |            |                |                     | 24           | шоац, о шо         | * an a, (( E1             | mun.            | 511119-1)/ 4 44         | 0.001       |        |
| 79 | VAA                                       |                         | ic milels              | 5          | wolte          |                     | CALCI        | ULATED S           | DICE DAI                  | DAM             | FTFDSFDA                | MMEASUPEI   | 1 V 41 |
| 80 | Macroitude of ID9                         | 3. at Vara≕Va           | Ac=V dd                | 5.41       | m Amne         | = I <sup>t</sup> de | Haff         | mobility to        | motch IDS                 | tersin<br>tat U |                         | 786 AA      |        |
| 81 | Magnitude of ID                           | Jatvgs−vi<br>SotVara=Va | is−vuu<br>id VdæVdest  | 5.12       | m Amos         | =Ideet              | 0611         | moonnty to         | III atomico<br>I 4        |                 | DA measured             | 280.44      | 1.62   |
| 82 | WTO (+ for nmos                           | s and _ for m           | ru, vuə−vusat<br>mosìì | 11         | volts          | Iddat               |              |                    | Lr                        | T.              | TO measured             | 1 1         | vol+   |
| 82 | I anh min                                 | s and - for pr          |                        | 0.001      | voris<br>nAmna |                     |              | IS = Levis         | min/Arco                  | of D            | io measured             | 1.04E.02    |        |
| 84 | D& Sheet Desist.                          |                         |                        | 20.2       | obma           |                     |              | 5 G - 1500         | minvarea                  |                 | SU measured             | 20.2        | A/II   |
| 85 | Lono oneet Resist:<br>Lombdo              | ance                    |                        | 0.02       | 1 froite       | Page 2              |              |                    |                           | r               | .511 measured           | 39.2        | John   |
| 00 | Lanoua                                    |                         |                        |            | Tryons         | rugez               |              |                    |                           |                 |                         |             |        |

© November 15, 2013 Dr. Lynn Fuller

H

### **PARAMETERS FOR SPICE LEVEL 1**

|     | А           | В                | С                 | D                 | E                    | l F                | G                  | Ιн             |                |                    | <u> </u>  | J                                | К             |         | L      |
|-----|-------------|------------------|-------------------|-------------------|----------------------|--------------------|--------------------|----------------|----------------|--------------------|-----------|----------------------------------|---------------|---------|--------|
| 87  | SPICE PARA  | <b>METERS FO</b> | R LEVEL ON        | EMODEL            | •                    |                    |                    |                | _              |                    | 1         |                                  |               |         |        |
| 88  |             | 1 The parame     | ters in the vello | ow boxes are c    | alculated from       | n the other parms  | ters and ti        | hus should n   | ot be e        | entered in         | n the SPI | CE mod                           | e1            |         |        |
| 89  |             | 2 If the SPICE   | E parameters fr   | om measured v     | values are diff      | erent than the ca  | lculated S         | PICE param     | eters y        | oumight            | twant to  | use ther                         | n instead.    |         |        |
| 90  |             | 3 We assume      | the model defin   | nition has L. W   | . AD. AS. PI         | ), PS, NRS, NRI    | ) specified        | i for calcula  | tion of        | f some of          | the para  | um et ers i                      | n the vellov  | w boxe: | s      |
| 91  |             | 4 Lambda is d    | lifferent for eve | erv different le: | ngth transisto       | r in the level one | model, sc          | adifferent     | model          | is needed          | d for eac | h differe                        | nt length m   | nosfet  |        |
| 92  |             |                  |                   | -                 | 0                    |                    |                    |                |                |                    |           |                                  |               |         |        |
| 93  | SPICE       | Name             | SPIC              | CE Parameters     |                      |                    |                    |                |                |                    |           |                                  |               |         |        |
| 94  | Parameter   |                  | UsingProce        | ess Parameters    |                      | note: most para    | meters us          | e O not 0 at   | end of         | paramet            | er nam e  | ("oh" n                          | ot "zero")    |         |        |
| 95  | 1           | Level            | Ŭ                 | 1                 |                      | Schichman and      | Hodges P           | vlode1         |                | -<br>-             |           | 1                                | 1 - C         |         |        |
| 96  | 2           | V TO             |                   | 1.33              | volts                | Zero Bias Thre     | shold V ol         | tage, enter v  | alue if        | threshol           | d adjust  | im plant :                       | is used       |         |        |
| 97  | 3           | KP               |                   | 2.50E-04          | F/s-volt             | Transconducta      | nce Param          | eter, KP = l   | 10 <b>E</b> si | εo /Tox            |           |                                  |               |         |        |
| 18  | 4           | GAMMA            |                   | 9.52E-01          | (volt) <sup>12</sup> | Bulk Threshold     | l Paramete         | er, GAMMA      | A = [2 q       | q Esi Eo I         | NSUB/C    | 0x <sup>2</sup> ] <sup>1/2</sup> |               |         |        |
| 99  | 5           | PHI              |                   | 0.419             | volts                | PHI is the semi    | conductor          | potential, I   | ntrinsio       | c Level to         | o Fermi   | Level dif                        | fference      |         |        |
| 100 | 6           | LAMBDA           |                   | 0.031             | 1/volts              | Channel length     | modulati           | on paramete    | r              |                    |           |                                  |               |         |        |
| 101 | 7           | RD               |                   | 27.06             | ohms                 | Series Drain R     | esistance          |                |                |                    |           |                                  |               |         |        |
| 102 | 8           | RS               |                   | 27.06             | ohms                 | Series Source F    | Resistance         |                |                |                    |           |                                  |               |         |        |
| 103 | 9           | CBD              |                   | 7.08E-14          | F                    | CBD zero bias b    | ulk todrain        | junction capa  | citance,       | , CBD = Cu         | JAD+CJ    | SW PD                            |               |         |        |
| 104 | 10          | CBS              |                   | 7.08E-14          | F                    | CBD zero bias b    | ulk to sourc       | e junction cap | acitano        | ce,CBD = I         | CJ AD +I  | CJ SW PD                         |               |         |        |
| 105 | 11          | IS               |                   | 3.10E-18          | А                    | D/S junction le    | akage cur:         | rent           |                |                    |           |                                  |               |         |        |
| 106 | 12          | PB               |                   | 0.95              | volts                | PB is the junction | built in volt      | age, PB = (KT  | /q)In (N       | SUB <i>i</i> hi) + | 0.56      |                                  |               |         |        |
| 107 | 13          | CGSO             |                   | 3.40E-10          | F/m                  | G-to-S overlap I   | C (perm cl         | hannel width   | CGS            | 0=Cox′(m           | nask ove  | rlap in L                        | direction + l | LD)     |        |
| 108 | 14          | CGDO             |                   | 3.40E-10          | F/m                  | G-to-Doverlap      | C (perm d          | hannel width   | CGD            | 0=Cox1r            | naskove   | rlap in L                        | direction + I | LD)     |        |
| 109 | 15          | CGBO             |                   | 5.75E-10          | Fm                   | G-to-well overla   | pC (perma          | eter channel l | ength)         | CGSO=C             | ox'(masl  | k overlap :                      | in W directi  | on)     |        |
| 110 | 16          | RSH              |                   | 1082.33           | ohms                 | Sheet resistanc    | e of D/S           |                |                |                    |           |                                  |               |         |        |
|     | 17          | CJ               |                   | 6.80E-04          | F/m2                 | D/S Bottom jus     | nction cap         | acitance/m2    | ,<br>          |                    |           |                                  |               |         |        |
| 112 | 18          | MJ               |                   | 0.3               | <b>.</b>             | Junction Gradu     | ngCoefici          | ent for botto  | m of L         | D/S Junct          | uon .     |                                  |               |         |        |
| 113 | 19          | CJSW             |                   | 1.26E-10          | F/m                  | D/S side wall j    | anction ca         | pacitance pe   | ermete         | erofD/S            | permete   | er -                             |               |         |        |
| 114 | 20          | IVIJS VV         |                   | 0.5               |                      | Junction Gradu:    | ng coen ci         | ent for side   | or Dis         | Junction           | 1         |                                  |               |         |        |
| 110 | 21          | JS               |                   | 3.23E-08          | Am2                  | Cote Oride Th      | akage cur:         | rent           |                |                    |           |                                  |               |         |        |
| 117 | 22          | NSUP             |                   | 1.50E-08          | am 2                 | Wall Doping h      | lorro              |                |                |                    |           |                                  |               |         |        |
| 118 | 25          | NSS              |                   | 3.008+11          | cm-2                 | Simface State T    | i ave<br>Ieneitzee | lon awn from   | nr.000         | ee knowle          | edae      |                                  |               |         |        |
| 119 | 24          | NES              |                   | 0                 | 0111-2               | Fact Surface St    | atee Almo          | we set to zer  | proce:         | 55 MIGWIE          | - 46°     |                                  |               |         |        |
| 120 | 25          | TPG              |                   | 1                 |                      | +1 if gate done    | d opposite         | of channel     | _1 if ∈        | zate done          | d same    | as chann-                        | el N if cate  | isalım  | nimum  |
| 121 | 20          | XI               |                   | 0.18              | 11+n                 | D/S. Junction D    | enth               | , от спанны,   | -1 11 6        | sale cope          | G Ballie  |                                  | cr, o 11 Barc | 18 0104 |        |
| 122 | 28          | LD               |                   | 0.15              | 1111                 | Lateral Diffusi    | n of D/S           | into the cha   | nnel ar        | hitrarly s         | et to 204 | % of XJ                          |               |         |        |
| 123 | 20          | 110              |                   | 363               | cm2/32.5             | Well surface m     | inority ca         | rrier mobilit  | z at we        | ell surface        | e concet  | ntration d                       | fivided by t  | wo      |        |
| 124 | MODEL RITS  | SUBN1 NMOS       | CLEVEL=1          |                   | Journal              |                    | MOD                | EL RITSUB      | P1 PM          | IOS/LE             | VEL=1     |                                  |               |         |        |
| 25  | +VTO=1.0 LA | MBDA= 0.031      | PB=0.95 CGS       | SO=3.4E-10 C      | GDO=3.4E-1           | 0                  | +V TO              | =1.0 LAMB      | DA= 0          | 0.05 PB=           | 0.94 CC   | SO=5.0                           | 8E-10 CGI     | 00=5.0  | 08E-10 |
| 126 | +CGBO=5.75E | 2-10 RSH=108     | 2 CJ=6.8e-4 M     | U=0.5 CJSW=       | -1.26e-10            |                    | +CGB               | O=5.75E-10     | RSH=           | =33.7 CJ           | =5.01 e-4 | 4 MJ=0.5                         | CJSW=1        | .38e-10 | )      |
| 127 | +MJSW=0.5 J | S=3.23e-8 TO2    | X=150E-10 NS      | SUB=1.45e17       | NSS=3E11             | Page 3             | +MJSV              | N=0.5 JS=6     | 43e-8          | TOX=1              | 50E-10    | NSUB=1                           | 7.23e16 N     | SS=1E   | 11     |
| 128 | +TPG=+1 XJ= | 0.18U LD=0.1     | 5U UO=363)        |                   |                      |                    | +TPG:              | =+1 XJ=0.23    | ULD            | ⊨0.22U t           | UO=363    | )                                |               |         |        |
|     |             |                  |                   |                   | mber 15              | 2012 Dr            | Lypp               | Fullor         |                |                    |           |                                  |               | 0       |        |
|     |             |                  |                   |                   | inder 13             | , 2013 DI          | суш                |                |                |                    |           |                                  | rage 3        | ð       |        |

### **PARAMETERS FOR SPICE LEVEL 3**

|     | A             | В               | C C                              | D                  | E                  | F                                      | G                                                      | Н                           |                                 | J                   | К                 | L              |
|-----|---------------|-----------------|----------------------------------|--------------------|--------------------|----------------------------------------|--------------------------------------------------------|-----------------------------|---------------------------------|---------------------|-------------------|----------------|
| g   | SPICE PAR.    | AMETERSFO       | OR LEVEL TH                      | REE MODEI          | L                  |                                        |                                                        |                             |                                 |                     |                   |                |
| 30  |               | 1 WD is estin   | mated to be 1/2                  | the field oxide    | thickness for      | a LOCOS process                        |                                                        |                             |                                 |                     |                   |                |
| 31  |               | 2 THETA is      | calculated from                  | Ueff = UO/(1       | +THETA(Vg          | s-V ti)) and Ids=U eff                 | (C ox'/2)                                              | (W/L)(V gs                  | -                               | is) using meas      | ured Ids and Vt v | values         |
| 32  |               | 3 DELTA is      | calculated = a*i                 | Nave*(Xds)^2       | / (so ssi (2 da    | ະ                                      | </td <td></td> <td></td> <td></td> <td></td> <td></td> |                             |                                 |                     |                   |                |
| 33  |               | 4 KAPPA is      | calculated = [(a                 | N sub/(2.20.20))   | ((1-1/1))(L-2L)    | ~~<br>D-Xdso-Xdsì)へ2)が3                | / ds-V ds/                                             | th1^0.5                     |                                 |                     |                   |                |
| 34  |               | 5 VMAX is       | calculated from                  | effective mobi     | lity times elec    | tric field at Vors=V                   | ds=V dsat                                              | t where E=V                 | / dsat/Leff                     |                     |                   |                |
| 135 |               | 6 FTA is cal    | culated from the                 | ratio of charg     | e in the chan      | el et Vdæ Vdd to d                     | herge in i                                             | the channel                 | et V de= zero                   |                     |                   |                |
| 136 |               | 0 111113 04     |                                  | , range or criange | ,e ili ule cildin. | note: Peremeters i                     | n Red co                                               | me directizz                | from SPICE I                    | evel One            |                   |                |
| 137 | Parameter     | Name            |                                  | V alue             | Ilmits             | note: most narami                      | ters use l                                             | nno oarooary<br>⊃not0ate    | nd of paramet                   | ername ("oh"        | not "zero")       |                |
| 138 | 1             | Level           |                                  | 3                  | 1                  | noo noo palan                          |                                                        | - 11070 <b>1</b> 70.        | an or paramon                   |                     |                   |                |
| 139 | 2             | TPG             |                                  | 1                  | 1                  | Trans of Gate Mat                      | arial                                                  |                             |                                 |                     |                   |                |
| 140 | 2             | TOY             |                                  | 1 50 8 0 8         | -                  | Gate Oxide Thick                       |                                                        |                             |                                 |                     |                   |                |
| 1/1 | 1             | ID              |                                  | 2.058.07           | -                  | Channel Length R                       | aduction                                               | from Draw                   | o V oluno                       |                     |                   |                |
| 142 | 4             | WD              |                                  | 2.992-07           |                    | Channel W&dth D                        | duction                                                | From Draws                  | u v alue<br>V alue              |                     |                   |                |
| 142 | 6             | UO              |                                  | 776                | cm2/V c            | Zero Bieg I ow Ei                      | ald Mobi                                               | litz                        | I V altre                       |                     |                   |                |
| 144 | 7             | V TO            |                                  | 1.33               | v                  | Measured thresho                       | 1d voltog                                              | e for long y                | ide deviceou                    | with your on the tw | ata hiar          |                |
| 145 | ,<br>Q        | THETA           |                                  | 0.303              | 1.77               | Gate Field Induas                      | A Mobili                                               | e rorrong «<br>Fr Deduction | Poromotor                       | THI ZELO SCIOSU     | die Olds          |                |
| 146 | 0             | DQ              |                                  | 27.06              | ohm                | In level 2 only 1                      | u mod rodi                                             | dence is en                 | iiabla aadad                    | ifferent width      | FFT has a differe | ent model      |
| 47  | 10            | DA<br>DA        |                                  | 27.00              | ohm                | In level 3 only lut                    | npeuresi<br>npedresi                                   | stance is av                | maure, each d<br>aileble each d | ifferent width .    | FET has a differe | ent model      |
| 48  | 11            | DELTA           |                                  | 27.00              |                    | Merror Cherrel F                       | lipeurea<br>Iffect on                                  | the Threeho                 | id V oltege                     | anter chi whath     |                   | 5116 111 0 461 |
| 29  | 12            | NSUB            |                                  | 1.45E+17           | cm_3               | Effective Substrat                     | e Doning                                               |                             | ite o otrage                    |                     |                   |                |
| 150 | 12            | YI              |                                  | 1.40E+17           |                    | Drein/Source jund                      | tion dent                                              | h                           |                                 |                     |                   |                |
| 151 | 14            | UMAY            |                                  | 1.04E-07           | m/a                | Maximum Carrier                        | Velocit                                                | u<br>Contraction            | con orgin 1.2 t                 | o? times area       | ated astruction w | n locitrà      |
| 152 | 14            | V MAA<br>Eta    |                                  | 0.927              | m/s                | DIRI Coefficient                       | v elocity                                              | (exuaciion                  | can gvie i .z i                 | to z umes expe      | cted saturation v | erocity)       |
| 153 | 16            | VADDA           |                                  | 0.500              | 1.77               | Chernel Length N                       | loch 1 atio                                            | n E ffect on                | the Drein Car                   | rant                |                   |                |
| 154 | 17            | NES             |                                  | 3.005+11           | cm 2               | Simfore State Der                      | oitz                                                   | III. II. CL OII             |                                 | ICID.               |                   |                |
| 155 | 19            | CGSO            |                                  | 3.408.10           | E len              | Zaro Biog Goto Si                      | ању<br>Сан                                             |                             |                                 |                     |                   |                |
| 156 | 10            | CGDO            |                                  | 3.40E-10           | E fm               | Zero Bies Gete D                       | rain Can                                               | acitance                    |                                 |                     |                   |                |
| 157 | 20            | CGBO            |                                  | 5.75E-10           | Fán                | Zero Bias Gate-Si<br>Zero Bias Gate-Si | ihstrate (                                             | anacitance.                 |                                 |                     |                   |                |
| 158 | 20            | PD              |                                  | 0.05               | U                  | PB is the junction but                 | iltin voltar                                           | o PR = (KT /o               | ne (NSLIB #0 ±1                 | 0.55                |                   |                |
| 50  | 21            | XOC             |                                  | 0.95               | ť                  | Charge Partitionia                     | nt in vonag                                            | otor (from V                | Zard and Datt                   | 0.00<br>0m)         |                   |                |
| 60  | 4 different - | ogen si laha    | for each trans                   | istor of differen  | ent length or      | width Example w                        | odels ski                                              | wn helow                    |                                 | 011)                |                   |                |
| 61  | ramerent m    | ouer is need eu | Tor cause traits                 | Stor or unlere     | our rengin or      | n mar i sample m                       | oucus site                                             | In a below.                 |                                 |                     |                   |                |
| 62  | * MODEL PI    | TSUBN3 NM       | OS (IEVEL=3 )                    |                    | 15F8ID=2           | 0.5F7 137D=3.00F                       | 7                                                      |                             |                                 |                     |                   |                |
| 63  | *+II0= 726 V  |                 | CD (LE VEL-D )<br>FA=0 303 RS=2' | 7 RD=27 DFI        | T A=2 27 NSI       | UB=1.45F17                             | ,                                                      |                             |                                 |                     |                   |                |
| 63  | *+VI=1 245    | 7 VMAY=1 10     | NE7 ET & = 0.927                 | V A PP A=0 50      | 0 NES=2E11         | 56-1.4561)                             |                                                        |                             |                                 |                     |                   |                |
| 165 | *+CGSO=3.4    |                 | 2/2F 10 CGBO                     | = 5.75F 10.9B      |                    | 0.40                                   |                                                        |                             |                                 |                     |                   |                |
| 166 | 10000-0.4     | 2-10 0000-1     | J.48E-10 00 DO                   | -9.95-1010         | -0.99 AQO-1        | 0.4)                                   |                                                        |                             |                                 |                     |                   |                |
| 167 | * MODEL RI    | TSUBP3 PMO      | NS (I FV FI = 3 T                |                    | 5E-8 I D=3 6       | 1E-7 WD=3E-7                           |                                                        |                             |                                 |                     |                   |                |
| 168 | +UO=377 UT    | .U= 0 03 THE1   | TA=0 37 PS=22                    | 7 RD=33 7 D        |                    | ISUB=7 12F16                           |                                                        |                             |                                 |                     |                   |                |
| 169 | +XI=2.26F 7   | WMAY=3 9/1      | F6 FTA=0.207 1                   | CAPPA=4 /121       | NES=3E11           | 1000-1.12010                           |                                                        |                             |                                 |                     |                   |                |
| 170 | +CGSO=4.15    | F-10 CGD0=4     | L15E-10.000 P                    | =575F-10PP         | =0.94 YOC=0        | 140) Page 4                            |                                                        |                             |                                 |                     |                   |                |
| +   | 10060-4.10    | 2-10 0000-4     | .192-10 COBO                     | -9.79E-10FB        | -0.94 AQC-L        | .40) 10gc1                             |                                                        |                             |                                 |                     |                   |                |
|     |               |                 |                                  |                    |                    |                                        |                                                        |                             |                                 |                     |                   |                |
|     |               |                 |                                  |                    | her 15             | 2013 Dr Lv                             | nn Fu                                                  | ller                        |                                 |                     | 0000 20           |                |
|     |               |                 |                                  |                    | 1001 10,           | LOID DILLY                             |                                                        |                             |                                 | I I                 | age Jy            |                |

### **PARAMETERS FOR SPICE LEVEL 49**

|       | A                 | В              | C [                    | )       | E              | F                     | G           | ΗΙ            | I             |                | J            |              | К           | L        |   |
|-------|-------------------|----------------|------------------------|---------|----------------|-----------------------|-------------|---------------|---------------|----------------|--------------|--------------|-------------|----------|---|
| 172   | SPICE PARAM       | ETERS FOI      | R BISIM3 VER 3.1,      | LEVE    | EL 49          |                       |             |               |               |                |              |              |             |          |   |
| 173   | BSIM3V3 is the    | industry stan  | dard, physics-based, d | eep sut | bmicron MOS    | FET SPICE model f     | or digital  | and analog    | g circuit des | sign from      | n the Dev    | ice Grou     | up at the   |          |   |
| 174   | University of Cal | ifornia at Ber | keley. Level 8 is the  | origion | nal Berkeley w | ersion, Level 81 is a | slightlyr   | n odified Si  | lvaco versi   | ion, Leve      | el 49 and .  | 53 are H     | spice ver:  | sions.   |   |
| 175   | -                 |                |                        | _       |                |                       |             |               |               |                |              |              |             |          |   |
| 176   |                   |                |                        |         |                | note: most paramet    | ters use O  | not O at en   | nd of param   | neter nam      | ne ("zero'   | " not " ob   | ı")         |          |   |
| 177   |                   |                |                        |         |                | note: Parameters in   | n Red con   | ne directly f | from SPICI    | E Level        | One and/     | or Three     |             |          |   |
| 178   | Parameter         | Name           | Va                     | lue     | Units          |                       |             |               |               |                |              |              |             |          |   |
| 179   | Control           | Level          | 4                      | 9       | ]              | Level 8, 81, 49 or    | 53          |               |               |                |              |              |             |          |   |
| 180   | Control           | VERSION        | 3.                     | .1      |                | 3.0, 3.1 or 3.2 vers  | ions, defe  | ault is the n | ewest versi   | ion            |              |              |             |          |   |
| 181   | Control           | MOBMOD         | 1                      | 1       |                | Mobility model sel    | lector (1,2 | 2,3,4 sele    | ets slightly  | y differen     | nt equation  | nsfor ca     | lculation   | of U eff | 6 |
| 182   | Control           | CAPMOD         |                        | 2       |                | Capacitance model     | l selector  | (1,2,3,4      | selects slig  | shtly diff     | erent equ    | ations fo    | r gate C ef | ff)      |   |
| 183   | Process           | TOX            | 1.50                   | E-08    | m              | Gate oxide thickne    | ss          |               |               |                |              |              |             |          |   |
| 184   | Process           | XJ             | 1.84                   | E-07    | m              | Junction Depth        |             |               |               |                |              |              |             |          |   |
| 185   | Process           | NCH            | 1.45                   | E+17    | cm-3           | Well surface dopin    | ng concen   | tration       |               |                |              |              |             |          |   |
| 186   | Process           | NSUB           | 5.331                  | E+16    | cm-3           | Well doping conce     | intration b | elow the su   | æface         |                |              |              |             |          |   |
| 187   | Process           | XT             | 1.43                   | E-07    | m              | Distance into well    | where su    | face conce:   | ntrationis    | valid, D       | efault = 1   | .5E-7m       |             |          |   |
| 100   | Process           | N33            | 3.001                  | E+11    | cm-2           | Surface State Den:    | ály, Leve   | l 3 NF3 or I  | Level 1 NG    | 33 lieale      | d as equal   | 1            |             |          |   |
| 189   | W and L           | XWREF          | 2.0E                   | 2-07    | m              | Isolation Reduction   | n of Char   | nel Width (   | (from proce   | ess know       | vledge)      |              |             |          |   |
| 190   | W and L           | XLREF          | 2.95                   | E-07    | m              | Source/Drain Und      | erdiffusio  | n of Gate     |               |                |              |              |             |          |   |
| 191   | DC                | VTH0           | 1.:                    | 33      | V              | Threshold voltage,    | Long W      | ide Device,   | , Zero Subs   | strate Bi      | as = V TO    | ) in level   | 13          |          |   |
| 192   | DC                | UO             | 725                    | 5.76    | cm2/v-s        | Low Field Mobility    | У           |               |               |                |              |              |             |          |   |
| 193   | DC                | WINT           | 2.0E                   | 2-07    | m              | Isolation Reduction   | n of Char   | nel Width (   | (from proce   | ess knov       | vledge)      |              |             |          |   |
| 194   | DC                | LINT           | 1.84                   | E-07    | m              | Source/Drain Und      | erdiffusio  | n of Gate (:  | set equal to  | o XJ)          |              |              |             |          |   |
| 195   | DC                | PCLM           | 5.1                    | 00      | -              | Channel Length M      | octulation  | Parameter,    | , default =   | 1.3 (sele      | ct to fit Io | ds vs. V (   | is family)  |          |   |
| 196   | DC                | NGATE          | 5.001                  | E+20    | m-3            | Gate Doping (5E2)     | ] if Diffu  | sion Doped    | , Dose/Poly   | ly Thickr      | nessiflor    | ı Implar     | nted with I | D/S)     |   |
| 197   | Diode/Resistor    | RSH            | 108                    | 2.55    | ohm/sq         | Drain/Source sheet    | t Resistan  | .ce           |               |                |              |              |             |          |   |
| 198   | Diode/Resistor    | JS             | 3.23                   | E-08    | A/m2           | Bottom junction se    | turation (  | current per 1 | unit area     |                |              |              |             |          |   |
| 199   | Diode/Resistor    | JSW            | 3.23                   | E-08    | A/m            | side wall junction    | saturation  | current per   | r unit lengt  | th             |              |              |             |          |   |
| 200   | Diode/Resistor    | Cl             | 6.80                   | E-04    | F/m2           | Bottom Junction C     | apacitano   | e per unit a  | urea atzero   | obias          |              |              |             |          |   |
| 201   | Diode/Resistor    | MJ             | 0.                     | .5      |                | Bottom Junction C     | apacitano   | e Grading (   | Coefficient   | (NOL 10)       |              |              |             |          |   |
| 202   | Diode/Resistor    | PB             | 0.9                    | 95      | V              | PBisthejunction       | built in v  | ottage, PB :  | = (KT/q)ln i  | (NSUB/         | nı) + U.56   |              |             |          |   |
| 203   | Diode/Resistor    | CJSW           | 1.26                   | E-10    | F/m            | Side Wall Junction    | n Capacita  | ince per me   | ter of leng   | th at zero     | o bias       |              |             |          |   |
| 204   | Diode/Resistor    | MJSW           | 0.                     | .5      |                | Side Wall Junction    | n Capacita  | ince Gradin   | ig Coeficie   | ent<br>Do 4/20 |              |              | 0.50        |          |   |
| 205   | Diode/Resistor    | PBSW           | 0.9                    | 95      | V<br>R         | HBSW is the side      | wall junc   | tion built in | voltage, P    | -13 = (KT,     | /q)in (NSI   | 0B/ni) +     | 0.56        |          |   |
| 206   | AC                | CGSU           | 3.40                   | E-10    | F/m            | Zero Bias Gate-So     | urce Cap    | acitance per  | meter of a    | gate widt      | h            |              |             |          |   |
| 207   | AC                | CGD0           | 3.40                   | E-10    | F/m            | Zero Bias Gate-Dr     | ain Capa    | itance per i  | meter of ga   | ate width      |              |              |             |          |   |
| 208   | AC                | CGB0           | 5.75                   | E-10    | F/m            | Zero Bias Gate-Su     | bstrate C   | apacitance p  | permeter o    | of gate le     | ngth         |              |             |          |   |
| 209   |                   |                |                        |         |                |                       |             |               |               |                |              |              |             |          |   |
| 210   |                   |                |                        |         |                |                       |             |               |               |                |              |              |             |          |   |
| 211   |                   |                |                        |         |                |                       |             |               |               |                |              |              |             |          |   |
| 212   |                   |                |                        |         |                | Dogo F                |             |               |               |                |              |              |             |          |   |
| 213   |                   |                |                        |         |                | Mage 5                |             |               |               |                |              |              |             |          |   |
| [214] |                   |                |                        |         |                |                       |             |               |               |                |              |              |             | _        |   |
|       |                   |                | © Nov                  | emb     | per 15, 20     | 13 Dr. Lynn           | Fulle       | r             |               | Ħ              | Pag          | 7e 4N        |             | ⊨        |   |
|       |                   |                | -                      |         | , -            | /                     |             |               |               |                | Iαζ          | <u>, т</u> и |             |          |   |

### **RESULTS USING SPICE LEVELS 49, 3, 1**



### SILVACO ATHENA SIMULATIONS OF D/S IMPLANT







### SILVACO ATHENA (SUPREM)









### SILVACO ATLAS (DEVICE SIMULATOR

# load in temporary file and ramp vds load infile=solve\_temp1 log outf=vg\_1.log solve name=drain vdrain=0 vfinal=-5 vstep=-0.5

# load in temporary file and ramp vds load infile=solve\_temp2 log outf=vg\_2.log solve name=drain vdrain=0 vfinal=-5 vstep=-0.5

# load in temporary file and ramp vds load infile=solve\_temp3 log outf=vg\_3.log solve name=drain vdrain=0 vfinal=-5 vstep=-0.5

# load in temporary file and ramp vds load infile=solve\_temp4 log outf=vg\_4.log solve name=drain vdrain=0 vfinal=-5 vstep=-0.5

# load in temporary file and ramp vds load infile=solve\_temp5 log outf=vg\_5.log solve name=drain vdrain=0 vfinal=-5 vstep=-0.5

# extract max current and saturation slope extract name="pidsmax" max(abs(i."drain")) extract name="p\_sat\_slope" slope(minslope(curve(abs(v."drain"), abs(i."drain")))

tonyplot –overlay vg\_0.log vg\_1.log vg\_2.log vg\_3.log vg\_4.log vg\_5.log –setmos1ex09\_1.set quit

Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller

Sweep drain voltage from 0 to -5 volts in -0.5 volt steps



### SILVACO ATHENA > ATLAS > UTMOST > SPICE

#### Extraction of SPICE Model Parameters from ATLAS Device Simulation Using UTMOST

Many users would like to extract SPICE models from their process and device simulation using ATHENA and ATLAS to be used in actual circuit simulation without actually fabricating the device.

Using SILVACO's UTMOST you can extract SPICE model parameters from the simulation results of ATHENA and ATLAS.

To guide users on how to go about extracting SPICE model parameters an example which extracts BSIM3v3 model from process/device simulation is used in this article.

All these commands can be executed from a single software – DeckBuild.

The commands are heavily commented so that you know their functions and purpose.

Here we will concentrate on the UTMOST batch mode commands. Here we only cover a very simple case and there is no local optimization. The UTMOST interactive mode can be used save the UTMOST setup into a file . UTMOST interactive cannot be executed from DeckBuild.

![](_page_50_Picture_9.jpeg)

Figure 1. TonyPlot of Decice structure.

----- start of deckbuild commands ------

![](_page_50_Picture_12.jpeg)

### SILVACO ATHENA GENERATED IMPURITY PROFILES

![](_page_51_Figure_2.jpeg)

### **ATLAS GENERATED DEVICE CHARACTERISTICS**

![](_page_52_Figure_2.jpeg)

**UTMOST GENEREATED SPICE PARAMETERS** 

NMOS PARAMETER DECK: \*2-27-2007 UTMOST EXTRACTIONS.MODEL CMOSN NMOS (LEVEL=49) VERSION=3.1 CAPMOD=2 MOBMOD=1+TOX=328.4E-10 XJ=3.5E-7 NCH=7.0E19 VTH0=0.8627+K1=0.5 K2=-0.0186 K3=80 WO=2.5E-6 NLX=1.740E-7+DVT0W=0 DVT1W=0 DVT2W=-0.032 DVT0=2.2 DVT1=0.53 DVT2=0.1394+U0=670 UA=2.25E-9 UB=5.87E-19 UC=-4.65E-11 VSAT=80000+A0=1 AGS=0 B0=0 B1=0 KETA=-0.047 A1=0 A2=1+RDSW=0 PRWG=0 PRWB=0 WR=1 WINT=2.58E-8 LINT=1.86E-8+XL=0 XW=0 DWG=0 DWB=0 VOFF=-0.06464 NFACTOR=1.3336+CIT=0 CDSC=0.00024 CDSCD=0 CDSCB-0 ETA0=0.08 ETAB=-0.07+DSUB=0.56 PCLM=1.39267 PDIBLC1=0.39 PDIBLC2=0.0086 PDIBLCB=0 +DROUT=0.19093 PSCBE1=4.00E8 PSCBE2=6E-6 PVAG=0 DELTA=0.01 PRT=0+UTE=-1.5 KT1=0 KT1L=0 KT2=0 UA1=4.3E-9 UB1=-7.6E-18+UC1=-5.6E-11 AT=3.3E4 WL=0 WLN=1 WW=0 WWN=1+WWL=0 LL=0 LLN=1 LW=0 LWN=1 LWL=0+XPART=0 +CGD0=1.99E-10 CGS0=1.99E-10 CGB0=5.75E-10 CJ=4.23E-4+PB=0.99 MJ=0.4496 CJSW=3.83 PBSW=0.1083 MJSW=0.1084+PVTH0=0.02128 PRDSW=-16.155 PK2=0.0253 WKETA=0.01886 LKETA=0.0205)\*\*

![](_page_53_Picture_3.jpeg)

Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller

UTMOST GENEREATED SPICE PARAMETERS FROM ATHENA SIMULATED DEVICE CHARACTERISTICS

**PMOS PARAMETER DECK:** \*2-27-2007 UTMOST EXTRACTIONS.MODEL CMOSP PMOS (LEVEL=49) VERSION=3.1 CAPMOD=2 MOBMOD=1+TOX=328.7E-10 XJ=3.5E-7 NCH=3.0E19 VTH0=-0.6322+K1=0.6423 K2=-0.0856046 K3=80 K3B=0 WO=2.0E-6 NLX=1.0E-7+DVT0W=0 DVT1W=0 DVT2W=-0.032 DVT0=1.5 DVT1=0.50 DVT2=-0.0193+U0=187.362 UA=1.1762E-9 UB=1.0E-22 UC=5.003E-3 VSAT=4.835E6+A0=3.9669 AGS=0 B0=0 B1=0 KETA=-0.0385 A1=0.19469 A2=0.40150+RDSW=0 PRWG=0 PRWB=0 WR=1 WINT=1.67E-8 LINT=3.150E-7+XL=0 XW=0 DWG=0 DWB=0 VOFF=-0.06464 NFACTOR=1.3336+CIT=0 CDSC=0.00024 CDSCD=0 CDSCB=0 ETA0=0.08 ETAB=-0.07+DSUB=0.56 PCLM=1.39267 PDIBLC1=0 PDIBLC2=1E-5 PDIBLCB=0 +DROUT=0.19093 PSCBE1=4E8 PSCBE2=6E-6 PVAG=0 DELTA=0.01 PRT=0+UTE=-1.5 KT1=0 KT1L=0 KT2=0 UA1=4.3E-9 UB1=-7.6E-18+UC1=-5.6E-11 AT=3.3E4 WL=0 WLN=1 WW=0 WWN=1+WWL=0 LL=0 LLN=1 LW=0 LWN=1 LWL=0+XPART=0 +CGD0=2.4E-10CGS0=2.4E-10 CGB0=5.75E-10 CJ=7.27E-4+PB=0.97 MJ=0.496 CJSW=3.115 PBSW=0.99 MJSW=0.2654+PVTH0=0.00942 PRDSW=-231.3 PK2=1.397 WKETA=1.863 LKETA=5.729)\*

![](_page_54_Picture_3.jpeg)

Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller

UTMOST GENERATED SPICE DECK FROM MEASURED SMFL CMOS PROCESS DEVICE CHARACTERISTICS

\*1-15-2007 FROM ROB SAXER UTMOST EXTRACTIONS .MODEL RITSMFLN49 NMOS (LEVEL=49 VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=310E-10 XJ=9.0E-7 NCH=8.2E16 VTH0=1.026 +K1=1.724 K2=-0.1212 K3=0 K3B=0 WO=2.5E-6 NLX=4.80E-9 +DVT0W=0 DVT1W=0 DVT2W=-0.032 DVT0=0.1466 DVT1=0.038 DVT2=0.1394 +U0=687.22 UA=2.34E-9 UB=-1.85E-18 UC=-1.29E-11 VSAT=1.64E5 +A0=0.4453 AGS=0 B0=0 B1=0 KETA=-0.0569 A1=0 A2=1 +RDSW=376.9 PRWG=0 PRWB=0 WR=1 WINT=2.58E-8 LINT=1.86E-8 +XL=0 XW=0 DWG=0 DWB=0 VOFF=-0.1056 NFACTOR=0.8025 +CIT=0 CDSC=-2.59E-5 CDSCD=0 CDSCB-0 ETA0=0 ETAB=0 +DSUB=0.0117 PCLM=0.6184 PDIBLC1=0.0251 PDIBLC2=0.00202 PDIBLCB=0 +DROUT=0.0772 PSCBE1=2.77E9 PSCBE2=3.11E-8 PVAG=0 DELTA=0.01 PRT=0 +UTE=-1.5 KT1=0 KT1L=0 KT2=0 UA1=4.3E-9 UB1=-7.6E-18 +UC1=-5.6E-11 AT=3.3E4 WL=0 WLN=1 WW=0 WWN=1 +WWL=0 LL=0 LLN=1 LW=0 LWN=1 LWL=0+XPART=0 +CGD0=1.99E-10 CGS0=1.99E-10 CGB0=5.75E-10 CJ=4.23E-4 +PB=0.99 MJ=0.4496 CJSW=3.83 PBSW=0.1083 MJSW=0.1084 +PVTH0=0.02128 PRDSW=-16.155 PK2=0.0253 WKETA=0.01886 LKETA=0.0205)

Rochester Institute of Technology Microelectronic Engineering

© November 15, 2013 Dr. Lynn Fuller

UTMOST GENERATED SPICE DECK FROM MEASURED SMFL CMOS PROCESS DEVICE CHARACTERISTICS

\*1-15-2007 FROM ROB SAXER UTMOST EXTRACTIONS .MODEL RITSMFLP49 PMOS (LEVEL=49 VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=310E-10 XJ=8.8E-7 NCH=3.1E16 VTH0=-1.166 +K1=0.3029 K2=0.1055 K3=0 K3B=0 WO=2.5E-6 NLX=2.01E-8 +DVT0W=0 DVT1W=0 DVT2W=-0.032 DVT0=2 DVT1=0.5049 DVT2=-0.0193 +U0=232.53 UA=4E-9 UB=-2.26E-18 UC=-6.80E-11 VSAT=4.40E4 +A0=0.6045 AGS=0 B0=0 B1=0 KETA=-0.0385 A1=0 A2=1 +RDSW=1230 PRWG=0 PRWB=0 WR=1 WINT=1.67E-8 LINT=6.50E-8 +XL=0 XW=0 DWG=0 DWB=0 VOFF=-0.0619 NFACTOR=1.454 +CIT=0 CDSC=-4.30E-4 CDSCD=0 CDSCB-0 ETA0=0 ETAB=0 +DSUB=0.2522 PCLM=5.046 PDIBLC1=0 PDIBLC2=1E-5 PDIBLCB=0 +DROUT=0.2522 PSCBE1=2.8E9 PSCBE2=2.98E-8 PVAG=0 DELTA=0.01 PRT=0 +UTE=-1.5 KT1=0 KT1L=0 KT2=0 UA1=4.3E-9 UB1=-7.6E-18 +UC1=-5.6E-11 AT=3.3E4 WL=0 WLN=1 WW=0 WWN=1 +WWL=0 LL=0 LLN=1 LW=0 LWN=1 LWL=0+XPART=0 +CGD0=2.4E-10 CGS0=2.4E-10 CGB0=5.75E-10 CJ=7.27E-4 +PB=0.97 MJ=0.496 CJSW=3.115 PBSW=0.99 MJSW=0.2654 +PVTH0=0.00942 PRDSW=-231.3 PK2=1.397 WKETA=1.863 LKETA=5.729)

> Rochester Institute of Technology Microelectronic Engineering

> > © November 15, 2013 Dr. Lynn Fuller

SMFL CMOS PROCESS "HOT & COLD" SPICE MODELS

All parameters the same except those listed are changed to give more transistor current for the hot models:

.model hot nmos ( LEVEL = 11 VERSION = 3.1**TOX** = 2.70E-8 **VTH0** = 0.926 **U0** = 750 **RDSW** = 330) .model **hot** pmos (LEVEL = 11 VERSION = 3.1TOX = 2.70E-8 **VTH0**= -1.066 U0 = 250 **RDSW** = 1.00E3)

.model cold nmos ( LEVEL = 11 VERSION = 3.1**TOX** = 3.50E-8 **VTH0** = 1.126 **U0** = 620 **RDSW** = 410) .model cold pmos (LEVEL = 11 VERSION = 3.1**TOX** = 3.50E-8 **VTH0**= -1.266

```
U0 = 200 RDSW = 1.45E3)
```

| Rocheste | · Institute of Technology           |         |   |
|----------|-------------------------------------|---------|---|
| Microele | etronic Engineering                 |         | / |
|          |                                     |         |   |
|          |                                     |         |   |
|          | © November 15, 2013 Dr. Lynn Fuller | Page 58 |   |

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)