ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

MEMS Resistor Laboratory

Dr. Lynn Fuller

webpage: <u>http://people.rit.edu/lffeee</u> Electrical and Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology Microelectronic Engineering 3-13-2013 Resistor_lab.ppt

© March 13, 2013 Dr. Lynn Fuller, Professor

OBJECTIVE

The objective of this lab is to investigate integrated MEMS resistors and their applications as heaters, sensors and actuators.

CLOSE UP OF RESISTORS AND THERMOCOUPLE

Aluminum – N+ Poly Thermocouple

Green P+ Diffused Resistor 200 um wide x 180 um long

Red N+ Polysilicon Resistor 60 um x 20 um + 30 to contact so $L/W \sim 6$

RESISTORS ON THIN DIAPHRAGM

With Vacuum Chuck On

Rochester Institute of Technology Microelectronic Engineering

© March 13, 2013 Dr. Lynn Fuller, Professor

MOVIE OF PROBE STATION SET UP

Probe Station Set Up

movie click to play

Rochester Institute of Technology Microelectronic Engineering

© March 13, 2013 Dr. Lynn Fuller, Professor

DATA COLLECTION AND RESISTANCE VALUE

Title

00000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

90000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

900000

90

movie click to play

Rocheste	er Institute of Technology	
Microele	ectronic Engineering	j)
	© March 13, 2013 Dr. Lynn Fuller, Professor	Page 8

SEEBECKEFFECT

When two dissimilar conductors are connected together a voltage may be generated if the junction is at a temperature different from the temperature at the other end of the conductors (cold junction) This is the principal behind the thermocouple and is called the Seebeck effect. $\Delta V = \alpha_1(T_{cold}-T_{hot}) + \alpha_2(T_{hot}-T_{cold}) = (\alpha_1-\alpha_2)(T_{hot}-T_{cold})$

Where α_1 and α_2 are the Seebeck coefficients for materials 1 and 2

or Selected Metals and for n- and p-Type Polysilicon					
	μV/K	μV/K			
Bi	-73.4	Ag	7.4		
Ni	-14.8	Cu	7.6		
Pa	-5.7	Zn	7.6		
Pt	0	Au	7.8		
Га	3.3	w	11.2		
Al	4.2	Mo	14.5		
Sn	4.2	n-poly (30 Ω/□)	-100		
Mg	4.4	n-poly (2600 Ω/□)	-450		
lr	6.5	p-poly (400 Ω/□)	270		

Table 2.6 The Seebeck Coefficients Relative to Platinum

Note: The sheet resistance is given for the 0.38-µm-thick polysilicon films. Polysilicon is an attractive material for the fabrication of thermocouples and thermopiles because of its large Seebeck coefficient.

Nadim Maluf, Kirt Williams, An Introduction to Microelectromechanical Systems Engineering, 2nd Ed. 2004

© March 13, 2013 Dr. Lynn Fuller, Professor

THERMAL RESISTANCE

Rth = 1/C L/Area

where

C=thermal conductivity L= length of thermal path between heater and ambient Area = cross sectional area of the path to ambient

Thickness ~ 30 um

Rth ~ $1/1.5 \ 1000/(500x30) = 444^{\circ}C/watt$ but 4 paths in parallel gives ~ $111^{\circ}C/watt$

> Rochester Institute of Technology Microelectronic Engineering

> > © March 13, 2013 Dr. Lynn Fuller, Professor

THERMAL PROPERTIES OF SOME MATERIALS

	MP	Coefficient	Thermal	Specific
	°C	of Thermal	Conductivity	Heat
		Expansion	,	
		ppm/°C	w/cmK	cal/gm°C
Diamond		1.0	20	
Single Crystal Silicon	n 1412	2.33	1.5	
Poly Silicon	1412	2.33	1.5	
Silicon Dioxide	1700	0.55	0.014	
Silicon Nitride	1900	0.8	0.185	
Aluminum	660	22	2.36	0.215
Nickel	1453	13.5	0.90	0.107
Chrome	1890	5.1	0.90	0.03
Copper	1357	16.1	3.98	0.092
Gold	1062	14.2	0.032	
Tungsten	3370	4.5	1.78	
Titanium	1660	8.9	0.17	
Tantalum	2996	6.5	0.54	
Air			0.00026	0.24
/ Water	0		0.0061	1.00
Rochester	Institute of Technology			
Microelect	ronic Engineering		1 watt = 0	0.239 cal/sec
	© March 13 ©	, 2013 Dr. Lynn Fuller, Pro	otessor Page 13	

COLLECT DATA VERSUS HEATER VOLTAGE

Heater Voltage, V	Heater Current, I mA	Poly Heater Power W	Poly Heater Resistance Ohms	TC Voltage V mV	Temp. from TC Voltage °C	Diffused Sensor Resistance, ohms
0	0		-	.001		207
2	5			.067		210
4	10			.237		214
6	15			.517		218
8	20			1.006		220
10	25			1.690		230
12	30			2.580		340
14	35			3.500		255
	Calculatior	ns: $P = I$	V			•

Temp = $25^{\circ}C$ + TC voltage / (α 1- α 2)

© March 13, 2013 Dr. Lynn Fuller, Professor

CALCULATION OF RESISTANCE

Calculation of Mobility of Single C	ystal Silicon				
CONSTANTS	VARIABLES		CHOICES		
Tn = T/300 1.14			<u>1=yes, 0=no</u>		
	Temp= 342	°K n-type	0		
Concentration from Dose / thicl	mess, N = Dose/t = $6.33E+17$	cm-3 p-type	1		
Kamine Muller and Chan: 3rd Ed. 200	3 ng 33				
	5, pg 55 mol	vility = u = 129	cm2/(W_sec)		
	1100	μ. <u>12</u>	CIII2A (1-300)		
Calculation of Resistance					
L ength is the	edrawn length	Length, L =	180	μm	
Width is the c	Irawn width	Width, W =	200	μm	
Thickness is	known if poly, or Xj from Diffu:	sion.XL B hickness, t=	3	μm	
Implanter setting if doped by ion in	nplant or from Diffusion.xls if (doped by c Dose =	1.90E+14	/cm2	
		Poly?	0	Yes=1 , No =0	
	resistance	/poly grain boundary	0.9	ohm	
Calculation of Resistance					
approx	(imate number of grain bound	laries in path = L / t =	60		
	Average Doping	= Dose/Thickness =	6.33E+17	atoms/cm3	
		Mobility, µ =	129	cm2N-sec	
q = 1.6e-19 coulomb / ion	Rhos = sheet resista	ance =1/(q µ Dose) =	254	ohms/sq	
	R	ho = bulk resistivity =	85	ohm-cm	
R = Rho L/W/t		Resistance =	229	ohms	
R = Rhos L/W	If Poly the effective	e sheet resistance =	254	ohms/sq	
We assume the grain size is equa	I to the poly film thickness/2. *	We calculate the num	nber of grain	s from the ler	igth, L
divided by the grain size, t/2. We a	so assume the grain bounda	ry adds a fixed resist	ance that is	not a function	of
temperature or doping. The resist	ance of a grain boundary is fo	und from resistance	measureme	nts of poly re	sistors
©	March 13, 2013 Dr. Lynn Fulle	er, Professor	Раде 1	6 –	
L	· · ·	•	I I age I	•	

PACKAGED SENSOR CHIPS

© March 13, 2013 Dr. Lynn Fuller, Professor

RESISTOR VS TEMPERATURE CALIBRATION

© March 13, 2013 Dr. Lynn Fuller, Professor

TEMPERATURE CALIBRATION DATA

Oven Temperature	ature Poly Resistance		Diffused Resistance	
° C	Ohms		Ohms	
	Measured	Calculated	Measured	Calculated
30	394		207	
35	394		209	
40	394		211	
45	395		215	
50	395		218	
55	395		221	
60	395		224	
65	395		227	
70	396		230	
75	396		232	
80	396		235	
85	396		237	
90	397		240	
95	397		243	
100	397		245	

╔╌┠╼╄╶╂╴

SEE IT MOVE – HEAR IT

movie click to play

movie click to play

Rochester Institute of Technology Microelectronic Engineering

© March 13, 2013 Dr. Lynn Fuller, Professor

INSTRUCTORS CHECK LIST

Show MEMS chip Take Picture Apply Vacuum Take Picture Measure Heater Resistance using HP4145 Measure Sensor Resistance using HP4145 Measure Sensor Resistance with and without light Measure Heater Resistor with voltmeter and current meter Measure Heater I and V at 50 mV applied (no self heating) Measure Heater I and V at 15 V applied (self heating ~1/4watt) Take picture of diaphragm deflection due to heating Take data for table Take data for Sensor Resistor in oven Take data for Heater Resistor in oven Evaluate frequency response of heat driven diaphragm movement **Rochester Institute of Technology**

Microelectronic Engineering