ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Power Conditioning Electronics

Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology Microelectronic Engineering 1-20-20012 Power_Conditioning.ppt

© January 20, 2012 Dr. Lynn Fuller

Page 1

INTRODUCTION

The design of microsystems involves the integration of MEMS, on chip custom integrated circuits, off chip electronics, such as power supply chips, microcontrollers and communication components. The integration is often done at the printed circuit board (PCB) level.

This document will look at the power management electronics used in these systems.

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

Page 3

MICROSYSTEM

Multi-Sensor MEMs Chip

POWER SUPPLY COMPONENTS

Description	Digikey Part Number	Package	~Price
POS Lin Regulator Variable	LM317MBSTT3GOS CT-ND	SOT-223	\$0.72
POS Lin Regulator 3.3 Volt	576-1151-ND	8-SOIC	\$1.11
Voltage Converter CMOS SW-CAP	MAX1044CPA+-ND	8-DIP	\$2.68
Voltage Converter CMOS SW-CAP	MAX1044CSA+-ND	8-SOIC	\$3.26
NEG Lin Regulator	296-11417-5-ND	8-SOIC	\$5.60

© January 20, 2012 Dr. Lynn Fuller

З

Page 7

8-SOIC

VERSION 2 OF TWO PHASE NON OVERLAPPING CLOCK

WINSPICE SIMULATION FOR VERSION TWO

For current flowing to the right (ie V1>V2) the PMOS transistor will be on if V1 is greater than the threshold voltage, the NMOS transistor will be on if V2 is <4 volts. If we are chargeing up a capacitor load at node 2 to 5 volts, initially current will flow through NMOS and PMOS but once V2 gets above 4 volts the NMOS will be off. If we are trying to charge up V2 to V1 = +1 volt the PMOS will never be on. A complementary situation occurs for current flow to the left. Single transistor switches can be used if we are sure the Vgs will be more than the threshold voltage for the specific circuit application. (or use larger voltages on the gates)

Rochester Institute of Technology Microelectronic Engineering

(+V to -V) ANALOG SWITCH WITH (0 to 5 V) CONTROL

SWITCHED CAPACITOR VOLTAGE CONVERTER

MAX1044 VOLTAGE CONVERTER

Figure 4. MAX1044 and ICL7660 Functional Diagram

