ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

PMOS Testing at Rochester Institute of Technology

Dr. Lynn Fuller

webpage: <u>http://www.rit.edu/~lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 email: <u>LFFEEE@rit.edu</u> MicroE webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

Revised 11-11-2010 pmostest.ppt

© November 11, 2010. Dr. Lynn Fuller

Page 1

Testing at PN

OUTLINE

- Test Chip
- Test Equipment
- **Resistive Structures**
- **Transistors**
- **Integrated Circuits**
- Ring Oscillator
- **Digital Circuits**

Rochester Institute of Technology Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

THE TEST CHIP

- Alignment Marks
- CD Linewidth, Overlay
- Van Der Pauw, p+ DS, Metal

Rochester Institute of Technology Microelectronic Engineering

- MOSFET's,
- Inverters
- Ring Oscillator
- CBKR
- Digital Circuits

© November 11, 2010. Dr. Lynn Fuller

Page 3

PMOS TEST CHIP

TEST FACILITY

TEST EQUIPMENT

VAN DER PAUW TEST STRUCTURES FOR SHEET RESISTANCE

VAN DER PAUW TEST RESULTS

CBKR AND INVERTERS

PMOS TRANSISTORS

Microelectronic Engineering

Photograph

© November 11, 2010. Dr. Lynn Fuller

Page 14

PMOS TRANSISTOR TEST RESULTS

TRANSISTOR LINEAR REGION VT, GM

LINEAR REGION TEST RESULTS

TRANSISTOR SATURATION REGION VT, GM

© November 11, 2010. Dr. Lynn Fuller

Page 18

TRANSISTOR SUB THRESHOLD ID-VGS

INVERTERS

INVERTER TEST RESULTS

RING OSCILLATOR, td

9 STAGE RING OSCILLATOR

RING OSCILLATOR OUTPUT

DIGITAL CIRCUIT TESTING

© November 11, 2010. Dr. Lynn Fuller

PM **)S** Testing at

HARDWARE FOR OUTPUT

50-pin ribbon cable for any board with a 50 pin connector

 Connects to 50pin connector accessories

Download PDFs for compatibility charts, more detailed descriptions, and ordering information

Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

Page 28

HARDWARE FOR INPUT

AT-MIO-16E-10

Available for ISA computers

 Up to 16 analog inputs; 12-bit resolution; 100 kS/s sampling rate

 Two 12-bit analog outputs; 8 digital I/O lines; two 24-bit counters

Calibration certificate included for NIST traceability

 NI-DAQ driver with DAQ channel wizard for reduced configuration

16 Analog Inputs Ribbon Cable Terminal Board

R6868

68-pin flat ribbon cable terminated with TBX-68
two 68-pin connectors

1 m length available

 Download PDFs for compatibility charts, more detailed descriptions, and ordering information

Termination accessory with 68 screw terminals

 Easy connection of field I/O signals to 68-pinDAQ devices

 Mounted in plastic base; includes hardware for mounting on a standard DIN rail

• Dimensions: 12.50 by 10.74 cm (4.92 by 4.23 in.)

 Download PDFs for compatibility charts, more detailed descriptions, and ordering information

Rochester Institute of Technology Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

Page 29

FINAL SYSTEM

TESTING TWO INPUT ONE OUTPUT LOGIC GATES

PROBE CARD/WIRE CONNECTIONS

PMOS INVERTER GAIN=4

PMOS 2-INPUT NOR

Test for PMOS Two Input NOR, Gain = 4 or 8

PMOS 2-INPUT XOR

WAFER MAPS FOR MESA

row 1 is the first row in which a full die is located column 1 is the first column in which a full die is locatedd

Rochester Institute of Technology Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

Page 41

WAFER MAPS FOR MESA

Code

()

4

6

9

- no die
- value<(Target-40%)
- 2 (Target-40%)<value<(Target-30%)
- 3 (Target-30%)<value<(Target-20%)
 - (Target-20%)<value<(Target-10%)
- 5 (Target-10%)<value<(Target+10%)
 - (Target+10%)<value<(Target+20%)
 - (Target+20%)<value<(Target+30%)
- 8 (Target+30%)<value<(Target+40%)
 - (Target+40%)<value

Rochester Institute of Technology Microelectronic Engineering

WAFER MAP

FUTURE WORK

- More Automation
- Improved Wafer Mapping
- More Complete Testing

Rochester Institute of Technology Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

CONCLUSION

- A test specification has been developed
- A history data base has been developed
- Testing is very time consuming. It takes us 9 hours to do all the specified tests and even then we only test a few devices on a wafer.
- Currently we test about 1% of the devices

REFERENCES

1. LabView Software, National Instruments, http://www.natinst.com

Rochester Institute of Technology Microelectronic Engineering

© November 11, 2010. Dr. Lynn Fuller

Page 46

REVIEW QUESTIONS - PMOS TEST SPECIFICATION

1. How is Vt and gm found from the transistor family of curves.

2. Is the Vt and gm the same in the non-saturation region as in the saturation region?

3. What is the significance of the sub-threshold slope. What is the difference between sub-threshold slope and sub-threshold swing?

4. What is the significance of the noise margin.

5. What is the purpose of the ring oscillator test structure.

MUX LAYOUT AND GATE LEVEL SCHEMATIC

PMOS 4-INPUT MULTIPLEXER

MUX TEST RESULTS

In PMOS logic low is 0 volts, logic high is -Vcc

MUX TEST RESULTS

In PMOS logic low is 0 volts, logic high is -Vcc

PMOS FULL ADDER

PMOS CLOCKED DATA LATCH

