ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Optical Basics _MEMS

Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department Webpage: <u>http://www.microe.rit.edu</u>

4-2-2013 Optical_Basics_MEMS.ppt

Rochester Institute of Technology Microelectronic Engineering

© April 2, 2013 Dr. Lynn Fuller, Professor

© April 2, 2013 Dr. Lynn Fuller, Professor

SPECTRICAL DISTRIBUTION OF SOLAR RADIANT POWER

oxygen, water, and CO₂ absorption bands. After Benson (1992).

© April 2, 2013 Dr. Lynn Fuller, Professor

BLACK BODY, AM0 AND AM1.5

Figure 1.3. Spectral distribution of sunlight. Shown are the cases of AMO and AM1.5 radiation together with the radiation distribution expected from the sun if it were a black body at 6000 K.

© April 2, 2013 Dr. Lynn Fuller, Professor

RIT'S FIRST LED

GaP wafers with n-type epilayer, add gold metal, dice and wire bond to RIT thick film ceramic package.

Rochester Institute of Technology Microelectronic Engineering

© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS RELATIVE LUMINOSITY VS WAVELENGTH 1.0 0.8 Relative Luminosity 0.6 0.4 0.2 0.0 700 400 500 600 Wavelength (nm) Human eye perceives 550nm (green-yellow) as the brightest, the relative luminosity of other colors is give above **Rochester Institute of Technology** Microelectronic Engineering © April 2, 2013 Dr. Lynn Fuller, Professor Page 12

WIDTH	Optical Basics - MEMS OF SPACE CHARGE LAYE	' <i>R</i>
Width of space charge layer depends on the doping on both sides and the applied reverse bias voltage and temperature.	ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING CALCULATIONS FOR PN JUNCTION (ELECTROSTATICS) To use this spreadsheed change the values in the white boxes. protected and should not be changed unless you are sure of the calculated results are shown in the purple boxes. CONSTANTS VARIABLES K 1.38E-23 J/K q 1.60E-19 Coul Temp: 300 'K Eg 1.12 eV zo 8.85E-14 F/cm Nd = 1.45E+10 cm-3 5.00E+14 cm-3 ni 1.45E+10 cm-3 5.00E+14 cm-3 Breakdown E 3.00E+05 W/cm Vr = 0 Volts	4/13/2011 DR. LYNN FULLER The rest of the sheet is consequences. The
Rochester Institute of T Microelectronic Engine	CALCULATIONS: Eg = Ego - (aT^2/(T+B) ni^2 = A T^3 e^(-Eg/KT/q) KT/q = Vbi = (KT/q) In (NaNd/ni2) W = [(2z/q)(Vbi+Vr)(1/Na +1/Nd)]^0.5 W1 = W[Nd/(Na+Nd)] W2 = W[Na/(Na+Nd)] Eo = -[(2q/eoer)(Vbi+Va)(NaNd/(Na+Nd)]^0.5 Cj' = eoer/W © April 2. 2013 Dr. Lynn Fuller. Professor	1.075 eV 9.84E+20 cm-6 0.0259 Volts 0.58 Volts 1.25 μm 1.19 μm 0.06 μm -9.23E+03 V/cm 8.26E-09 F/cm2

CHARGE GENERATION IN SEMICONDUCTORS

$\mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c} / \lambda$

What wavelengths will not generate e-h pairs in silicon. Thus silicon is transparent or light of this wavelength or longer is not adsorbed?

Semiconductor	Bandgap (eV) 300 K	Bandgap (eV) 0 K	λmax (μm) 300 K
BN	7.500		0.165
С	5.470	5.480	0.227
ZnS	3.680	3.840	0.337
GaN	3.360	3.500	0.369
ZnO	3.350	3.420	0.370
Alpha-SiC	2.996	3.030	0.414
CdS	2.420	2.560	0.512
GaP	2.260	2.340	0.549
BP	2.000		0.620
CdSe	1.700	1.850	0.729
AlSb	1.580	1.680	0.785
CdTe	1.560	16.000	0.795
GaAs	1.420	1.520	0.873
InP	1.350	1.420	0.919
Si	1.120	1.170	1.107
GaSb	0.720	0.810	1.722
Ge	0.660	0.740	1.879
PbS	0.410	0.286	3.024
InAs	0.360	0.420	3.444
РЬТе	0.310	0.190	4.000
InSb	0.170	0.230	7.294
Sn		0.082	15.122 @ 0 K

From: Micromachined Transducers, Gregory T.A. Kovacs

Rochester Institute of Technology

Microelectronic Engineering

Table of various semiconductors in order of increasing λ_{max} . From Sze (1981).

© April 2, 2013 Dr. Lynn Fuller, Professor

giving a multiplication of carriers. Each photon can generate hundreds of electron hole pairs.

PIN, AVALANCE PHOTODIODES (APD)

resistance, very low capacitance, etc. ideal for high performance and standard applications like x-ray detection , scintillation detectors and more... Spectral response range between 190nm and 1100nm.

Quadrant Photodiodes

Small Gap, excellent uniformity, low dark current, high shunt resistance, high resolution

www.silicon-sensor.com

© April 2, 2013 Dr. Lynn Fuller, Professor

PHOTO DETECTORS

Device Type	Gain	Response Time (s)	Typical Temperature
Photomultiplier	> 106	10-7 to 10-9	300 (sometimes cooled)
Photoconductor	1 to 106	10-3 to 10-8	4.2 to 300
Metal-Semiconductor-Metal Photodetector	1 or less	10-10 to 10-12	300
p-n Photodiode	1 or less	10 ⁻⁶ to 10 ⁻¹¹	300 (sometimes cooled to 77 K)
p-i-n Photodiode	1 or less	10-6 to 10-9	300
Metal-Semiconductor Diode	1 or less	10 ⁻⁹ to 10 ⁻¹²	300
Avalanche Diode	10 ² to 10 ⁴	10-10	300
Bipolar Phototransistor	102	10-6 to 10-8	300
Bipolar Photo-Darlington	104	10-5 to 10-6	300
Field-Effect Phototransistor	10	10-7	300
CCD Cell (Metal-Insulator- Semiconductor Capacitor)	1 or less	10-5 to 10-8	300 (sometimes cooled)

From: Micromachined Transducers, Gregory T.A. Kovacs

Ro Gains and response times of some typical photodetectors (some are optimistic!).
Mi After Sze (1981). Note that the CCD cell, and some extrinsic photoconductors, are integrating detectors, and thus the response time figures can be somewhat misleading.

© April 2, 2013 Dr. Lynn Fuller, Professor

SOLAR CELL TUTORIAL

SOME TERMS AND DEFINITIONS:

Air Mass – amount of air between sun and solar cell. In space AM=0 at the equator at noon AM=1, if the sun is arriving at an angle θ , AM=1/cos θ . AM1.5 is the standard for most solar cell work in USA and gives a sum total of 1000w/m2 over the entire spectrum of wavelengths from 0.2um to 2.0um

Efficiency is the ratio of the power out of a solar cell to the power falling on the solar cell (normally 1000w/m2 with the AM1.5 spectrum) Since Si solar cells can not absorb much of the infrared spectrum from the sun, and other factors, typical efficiencies are limited to 26-29% for basic silicon solar cells.

Quantum Efficiency – normalized ratio of electrons and holes collected to photons incident on the cell at a single wavelength, given in %.

FF – Fill Factor, a figure of merit, the "squareness " of the diode I-V characteristic in 4^{th} quadrant with light falling on the cell.

© April 2, 2013 Dr. Lynn Fuller, Professor

I-V CHARACTERISTICS OF SOLAR CELL

SOLAR CELL – QUANTUM EFFICIENCY

93% between 550nm and 650nm

Ellen Sedlack 2011

Rochester Institute of Technology Microelectronic Engineering

© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS SOLAR CELL – POWER EFFICIENCY AM 1.5 Light Source Zachary Bittner Ivan **Puchades** Rochester Institute of Tec ----Microelectronic Engineer © April 2, 2013 Dr. Lynn Fuller, Professor Page 30

THERMOPILE SENSOR

Typical Transmission 5.5µm Filter

Thermopile				
Parameter	Typical Value	Unit	Condition	Remark
Element Size	0.6 x 0.6	mm ²		Active area
Voltage Response	13	Vmm²/W		
Sensitivity	36	V/W	Tobj=373K Tamb=298K	
Thermopile Resistance	86	kΩ	25 <i>°</i> C	
TC of Thermopile Resistance	20	ppm	Operating temp. range	
Thermopile Noise	38	nV/√Hz	25 <i>°</i> C	
Detectivity	5.6·10 ⁷	cm√Hz/W		
Time Constant	<6	ms	63%	

HMS Z11 - F5.5

www.heimannsensor.com

© April 2, 2013 Dr. Lynn Fuller, Professor

LASER AND FRESNEL LENS

OPTICAL SYSTEM

Optical Basics - MEMS SELF ASSEMBLY poly Si Polyimide **PSG** Si wafer Fig. 2. Basic model of the external skeleton. Three-dimensional structure is constructed by bending along the polyimide hinges. Rochester Institute of Technology Microelectronic Engineering © April 2, 2013 Dr. Lynn Fuller, Professor

ELECTROSTATIC COMB DRIVE

Movies at <u>www.sandia.gov</u>

Rochester Institute of Technology

Microelectronic Engineering

© April 2, 2013 Dr. Lynn Fuller, Professor

ELECTROSTATIC MIRROR

Specifications

	Mirror size:	520 μm across
	Reflective area:	510 µm across
	Shape:	Octagonal
	Mirror thickness:	13 μm
	Surface roughness:	< 8 Å rms
	Surface reflectivity:	> 95% at 630 nm (gold)
	Bias voltage:	35 to 55 Volts
	Drive voltage:	0 to 110 Volts (0 to 2X Bias)
Ŧ.	Resonant rotation frequency:	outer axis 1.3 kHz, inner axis 1.8 kHz
T.	Operating Temperature:	0 to 50 °C
-	Radius of Curvature:	> 0.4 meters within operating temperature
	Product number:	029157

www.memsoptical.com

© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS MIRRORS MOEMs - Micro Optical Electro Mechanical Systems Lucent Technologies -Lambda router, 256 mirror fiber optic multiplexer **Rochester Institute of Technology** Microelectronic Engineering © April 2, 2013 Dr. Lynn Fuller, Professor Page 42

TORSIONAL MIRRORS

TI MICROMIRROR PROJECTOR

FIELD EMISSION TIPS FOR FLAT PANNEL DISPLAYS

Alex Raub, 1995, now at National Semiconductor Santa Clara, CA

Rochester Institute of Technology Microelectronic Engineering

© April 2, 2013 Dr. Lynn Fuller, Professor

REFLECTIVE MECHANICAL LIGHT MODULATOR

Rochester Table comparing four basic surface micromachined reflective mechanical light Microelectimodulator designs. Each design has different sensitivities to geometries, thin-film properties, squeeze-film damping, etc.

© April 2, 2013 Dr. Lynn Fuller, Professor

RIT LIGHT MODULATOR - SENIOR PROJECT

