ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Single Supply Op Amp Circuits

Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

3-1-12 OpAmpSingleSupply.ppt

© March 1, 2012 Dr. Lynn Fuller

OUTLINE

Introduction Basic Dual Supply Op Amp Circuits Power Supplies NJU 703X Op Amp LTC 6078 Op Amp Single Supply Op Amp Circuits Virtual Ground Inverting Amplifier Non Inverting Amplifier Comparator Multivibrator Current to Voltage Converter Differential Amplifier

Rochester Institute of Technology

Microelectronic Engineering

© March 1, 2012 Dr. Lynn Fuller

INTRODUCTION

This document discusses single-supply, low-voltage, rail-to-rail, Operational Amplifier (Op Amp) circuits. Although all op amps can operate with single supply or dual supply, most engineers are familiar with dual-supply Op Amp circuits such as those shown on the following page. The dual supply allows the input and output to be easily referenced to zero volts. (analog ground = earth ground)

Single supply Op Amps usually refers to low voltage Op Amps using voltages of 5, 3.3 or smaller and ground. Some types of Op Amps will not work at these voltages. (some Op Amps use BJT current source biasing that takes a couple of diode drops of voltage to work thus the output voltage of these Op Amps can only get within 1.4 volts of the supply rails. For example at 5 volts, output is limited between 1.4 volts and 3.6 volts and with 3.3 volts supply some Op Amps may not work at all. With single supply Op Amp circuits we also can not have negative output voltages. There are several techniques for working with these limitations.

BASIC TWO STAGE CMOS OPERATIONAL AMPLIFIER

NJU703X OP AMP DATA SHEET

NJU7031/32/34

ABSOLUTE MAXIMUM RATINGS

			(Ta=25°C)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	18	V
Differential Input Voltage	VID	±18 (note1)	V
Common Mode Input Voltage	VIC	-0.3~18	V
Power Dissipation	PD	(DIP14)700 (DIP8)500 (DMP8,14)300 (SSOP8,14)300	mW
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	T _{stq}	-40~+125	°C

(note1) If the supply voltage (V_{DD}) is less than 18V, the input voltage must not over the V_{DD} level though 18V is limit specified.

■ ELECTRICAL CHARACTERISTICS

			(Ia=25°C,V _{DD} =10					
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
Input Offset Voltage	Vio	Rs=50Ω	-	-	10	m∨		
Input Offset Current	lio		-	1	-	pА		
Input Bias Current	IB		-	1	-	pА		
Input Impedance	RIN		-	1	-	ŤΩ		
Large Signal Voltage Gain	Av		80	95	-	dB		
Input Common Mode Voltage Range	VICM		0~9	-	-	V		
Maximum Output Swing Voltage	Vom	R _L =1MΩ	9.80	9.98	-	V		
Common Mode Rejection Ratio	CMR		60	75	-	dB		
Supply Voltage Rejection Ratio	SVR		60	75	-	dB		
Operating Current/Circuit	IDD		-	1	2	mA/Ci		
Slew Rate	SR		-	3.5	-	V/µs		
Unity Gain Bandwidth	F.	$A_V = 40$ dB.C ₁ = 10pF	-	1.5	-	MHz		

■ OFFSET ADJUSTMENT CIRCUIT (Only For NJU7031)

Microelectronic Engineering

Output Current vs. Operating Voltage

© March 1, 2012 Dr. Lynn Fuller

LTC6078 OP AMP

LTC6078/LTC6079

Micropower Precision, Dual/Quad CMOS Rail-to-Rail Input/Output Amplifiers

FEATURES

- Maximum Offset Voltage of 25µV (25°C)
- Maximum Offset Drift of 0.7µV/°C
- Maximum Input Bias: 1pA (25°C) 50pA (≤85°C)
- Micropower: 54µA per Amp
- 95dB CMRR (Min)
- 100dB PSRR (Min)
- Input Noise Voltage Density: 16nV/√Hz
- Rail-to-Rail Inputs and Outputs
- 2.7V to 5.5V Operation Voltage
- LTC6078 Available in 8-Lead MSOP and 10-Lead DFN Packages; LTC6079 Available in 16-Lead SSOP and **DFN Packages**

APPLICATIONS

- Photodiode Amplifier
- High Impedance Sensor Amplifier

DESCRIPTION

The LTC®6078/LTC6079 are dual/quad, low offset, low noise operational amplifiers with low power consumption and rail-to-rail input/output swing.

Input offset voltage is trimmed to less than 25µV and the CMOS inputs draw less than 50pA of bias current. The low offset drift, excellent CMRR, and high voltage gain make it a good choice for precision signal conditioning.

Each amplifier draws only 54µA current on a 3V supply. The micropower, rail-to-rail operation of the LTC6078/LTC6079 is well suited for portable instruments and single supply applications.

The LTC6078/LTC6079 are specified on power supply voltages of 3V and 5V from -40 to 125°C. The dual amplifier LTC6078 is available in 8-lead MSOP and 10-lead DFN packages. The quad amplifier LTC6079 is available in 16-lead SSOP and DFN packages.

C, LT, LTC and LTM are registered trademarks of Linear Technology Corporation All other trademarks are the property of their respective owners. Patent Pending.

- 2.7 to 5.5 Volt operation 1. Rail to Rail input and output voltages Low Input bias ~ 1pA Output Current ~5mA Unity Gain Bandwidth ~350Khz Power dissipation 54 uA at 3 V = 162uW 2. 3. 4. 5.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at T_A = 25°C. Test conditions are V⁺ = 3V, V⁻ = 0V, V_{CM} = 0.5V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			C, I SUFFIXES			H SUFFIX			UNITS
					MIN	ТҮР	MAX	MIN	ТҮР	MAX	1
V _{os}	Offset Voltage (Note 5)	LTC6078MS8, LTC6078AMS8 LTC6078DD, LTC6079DHC LTC6078AMS8 LTC6079SN LTC6079SN LTC6079DD LTC6079DHC	8, LTC6079GN V _{CM} = 0.5V, 2.5V V _{CM} = 0.5V, 2.5V V _{CM} = 0.5V V _{CM} = 0.5V	••••		±7 ±20 ±25 ±30 ±30 ±35	±25 ±30 ±70 ±97 ±115 ±120 ±150		±7 ±25 ±30 ±35	±25 ±95 ±135 ±165	Ψ Ψ Ψ Ψ Ψ Ψ Ψ
∆V _{OS} ∕∆T	Input Offset Voltage Drift (Note 5)	LTC6078AMS8 LTC6078MS8 LTC6078DD, LTC6079GN LTC6079DHC		•••••		±0.2 ±0.3 ±0.3	±0.7 ±1.1 ±1.4 ±1.8		±0.2 ±0.3	±0.7 ±1.1 ±1.4	μV/°C μV/°C μV/°C μV/°C
B	Input Bias Current (Note 6)	$V_{CM} = V^{+}/2$ $V_{CM} = V^{+}/2$		•		0.2 10	1 50		0.2 150	1 350	pA pA
los	Input Offset Current (Note 6)	$V_{CM} = V^{+}/2$ $V_{CM} = V^{+}/2$		•		0.1 0.5	25		0.1 10	100	pA pA
en	Input Noise Voltage	0.1Hz to 10Hz				1			1		μVр.р
	Input Noise Voltage Density	f = 1kHz f = 10kHz				18 16			18 16		nV/√Hz nV/√Hz
İn	Input Noise Current Density (Note 8)					0.56			0.56		fA/√Hz
	Input Common Mode Range			•	V-		V+	V-		V+	۷
C _{DIFF}	Differential Input Capacitance					10			10		pF
Ссм	Common Mode Input Capacitance					18			18		pF
CMRR	Common Mode Rejection Ratio	All Packages LTC6078AMS8 LTC6078AMS8 LTC6078MS8 LTC6078MS8 LTC60796N LTC60796N LTC60796N LTC6079D, LTC6079DHC LTC6078DD, LTC6079DHC	V _{CM} = 0V to 3V V _{CM} = 0V to 3V V _{CM} = 0V to 1.7V V _{CM} = 0V to 1.7V V _{CM} = 0V to 1.7V V _{CM} = 0V to 3V V _{CM} = 0V to 3V V _{CM} = 0V to 1.7V V _{CM} = 0V to 1.7V	•••••	95 87 91 85 89 84 88 83 83 87	110 105 103 102 102 102 102 102 100 102		95 87 91 85 89 84 88	110 103 103 100 102 100 102		dB dB dB dB dB dB dB dB dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.7V to 5.5V		•	100 97	120		100 97	120		dB dB
Vout	Output Voltage, High (Referred to V ⁺)	No Load I _{SOURCE} = 0.2mA I _{SOURCE} = 2mA		•	35 350	1 15 150		40 400	1 15 150		mV mV mV
	Output Voltage, Low (Referred to V ⁻)	No Load I _{SINK} = 0.2mA I _{SINK} = 2mA		•		1 10 100	30 300		1 10 100	35 350	mV mV mV
A _{VOL}	Large-Signal Voltage Gain	$R_{LOAD} = 10k, \ 0.5V \le V_{OUT} \le 2$	2.5V	٠	115	130		110	125		dB
SC	Output Short-Circuit Current	Source Sink		•	5 7	10 14		4 6	10 14		mA mA
SR	Slew Rate	A _V = 1				0.05			0.05		V/µs
GBW	Gain-Bandwidth Product (f _{TEST} = 10kHz)	R _L = 100k		•	420 360	750		420 320	750		kHz kHz
Φ ₀	Phase Margin	$R_L = 10k, C_L = 200pF$				66			66		Deg
ts	Settling Time 0.1%	A _V = 1, 1V Step				24			24		μs

(TLINEAR

Page 9

З

PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998

TLE2426 RAIL SPLITTER (COMMERCIAL VIRTUAL GND)

TLE2426, TLE2426Y THE "RAIL SPLITTER"

- 1/2 V_I Virtual Ground for Analog Systems
- Self-Contained 3-terminal TO-226AA Package
- Micropower Operation . . . 170 μA Typ, V_I = 5 V
- Wide V_I Range . . . 4 V to 40 V
- High Output-Current Capability
 - Source . . . 20 mA Typ
 - Sink . . . 20 mA Typ

description

In signal-conditioning applications utilizing a single power source, a reference voltage equal to one-half the supply voltage is required for termination of all analog signal grounds. Texas Instruments presents a precision virtual ground whose output voltage is always equal to one-half the input voltage, the TLE2426 "rail splitter."

The unique combination of a high-performance, micropower operational amplifier and a precision-trimmed divider on a single silicon chip results in a precise V_O/V_I ratio of 0.5 while sinking and sourcing current. The TLE2426 provides a low-impedance output with 20 mA of sink and source capability while drawing less than 280 μ A

- Excellent Output Regulation
 - $-45 \,\mu\text{V}$ Typ at I_O = 0 to $-10 \,\text{mA}$
 - +15 μV Typ at I_O = 0 to +10 mA
- Low-Impedance Output . . . 0.0075 Ω Typ
- Noise Reduction Pin (D, JG, and P Packages Only)

INPUT/OUTPUT TRANSFER CHARACTERISTICS

description (continued)

NC - No internal connecti

TLE2426Y chip information

This chip, properly assembled, displays characteristics similar to the TLE2426C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

of supply current over the full input range of 4 V to 40 V. A designer need not pay the price in terms of board space for a conventional signal ground consisting of resistors, capacitors, operational amplifiers, and voltage references. The performance and precision of the TLE2426 is available in an easy-to-use, space saving, 3-terminal LP package. For increased performance, the optional 8-pin packages provide a noise-reduction pin. With the addition of an external capacitor (C_{NR}), peak-to-peak noise is reduced while line ripple rejection is

Rochester Institute of Technology

Microelectronic Engineering

© March 1, 2012 Dr. Lynn Fuller

NON-INVERTING AMPLIFIER EXAMPLES

WHEATSTONE BRIDGE AND DIFFERENTIAL AMP

- 1. The R1=R2=R3=R4 make a Wheatstone bridge and are sensor resistors that will change in response to pressure. Vo+ and Vo- should be equal to each other and ~Vs/2 with no pressure. 2.

© March 1, 2012 Dr. Lynn Fuller

