ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

MEMS Microphone Design and Signal Conditioning

Dr. Lynn Fuller, Erin Sullivan

Webpage: http://people.rit.edu/lffeee

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

4-4-2012 MicrophoneDesign.ppt

© May 4, 2012 Dr. Lynn Fuller

ADOBE PRESENTER

This PowerPoint module has been published using Adobe Presenter. Please click on the Notes tab in the left panel to read the instructors comments for each slide. Manually advance the slide by clicking on the play arrow or pressing the page down key.

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

OUTLINE

Introduction Basic Capacitive Microphone Pressures Diaphragm Calculations Microphone Design Microphone Fabrication Signal Conditioning Microphone Evaluation Results

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

INTRODUCTION

This document presents theoretical and experimental results for capacitive microphone design, fabrication and evaluation. The microphone was fabricated using a PCB for the rigid backing capacitor plate of the microphone. Aluminum foil was used for the flexible sensing capacitor plate of the microphone. Simple signal conditioning electronics converts the change in capacitance to a change in voltage. The analog output was obtained for various frequency audio tones generated using speakers connected to a personal computer.

COMMERCIAL MICROPHONES

Akustica **Analog Devices** Boesch **Emkay Sisonic** Futurlec Infineon Knowles Motorola **STMicroelectronics** TI Others

© May 4, 2012 Dr. Lynn Fuller

YOLE CONSULTING REPORTS

Akustica AKU230

It uses a free-floating diaphragm, and a capacitive sensing based on a silicon circuit combining the MEMS process on the ASIC process in a single die. This microphone targets high end consumer applications: notebooks, laptops...

Epcos T4060

Manufactured in the EPCOS "Chip Size MEMS Package" technology, the component targets high end consumer applications: mobile phones, MP3 players and digital cameras.

Knowles SPU0410LR5H

It uses free floating diaphragm with capacitive sensing. It is the 4th generation of MEMS microphones from Knowles. This device is found in high volume consumer applications: cell & smart phones (iPhone4)...

AAC Acoustic iPhone 4

This MEMS Microphone uses a free floating diaphragm & a capacitive sensing and offers a full integration of a MEMS microphone and ASIC, both provided by Infineon. It is for consumer applications: cell & smart phones...

Analog Devices ADMP421

It uses a free floating diaphragm and a capacitive sensor and offers a full integration of a MEMS microphone & ASIC. It targets high end consumer applications: tablets, smart phones.

STM MP45DT01

The MP45DT01 microphone uses a MEMS die manufactured by Omron using a free floating diaphragm, and a capacitive sensing. It is for high-end consumer applications: note book, tablets...

Yole Developpement David Jourdan - jourdan@vole.fr

Le Quartz, 75 Cours Emile Zola - 69100 Villeurbanne - Lyon - FRANCE

© May 4, 2012 Dr. Lynn Fuller

AKU1126 MICROPHONES

AKUSTI(A

Datasheet

September 2009

AKU1126 Single-Chip Analog Microphone

GENERAL DESCRIPTION

The AKU1126 is the world's smallest, analog-output microphone that uses standard semiconductor packaging technology and materials. While other microphones degrade in performance as they shrink in size, the AKU1126 maintains superior performance in an ultra-small form factor.

The AKU1126's gain select feature, accessed by use of a single external resistor, allows the microphone to be used in both near-ear applications as well as farfield applications - such as speaker phones or headsets - without the use of additional amplifiers.

The AKU1126 is the first microphone product to leverage Akustica's 1mm x 1mm CMOS MEMS microphone die – a monolithic solution which integrates the acoustic transducer and accompanying electronics in a single chip of silicon. In contrast to other silicon microphones, Akustica's one die approach eliminates the need for inter-die wirebonds, allowing for smaller, higher performance, more reliable products.

AKU1126 MICROPHONE

1mm x 1mm MEMS Chip

AKU1126 MICROPHONE

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

POSSIBLE MICROPHONE STRUCTURE

FIG. 21

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

DIAPHRAGM EXAMPLE CALCULATIONS

Diaphragm 20 mm diameter 50 um thickness Aluminum foil material

Baking plate rigid copper PCB 9 vent holes air gap = double sided tape ~50um thickness around outer ring

Pressure is ~0.1Pa or ~0.15E-4 lb/in2

DC voltage 5 volts

Rochester Institute of Technology

Microelectronic Engineering

<u>Microphone Design</u>

PRESSURE UNITS

Table of Pressure Conversions

1 atm = 14.696 lbs/in² = 760.00 mmHg 1 atm = 101.32 kPa = 1.013 x 10⁶ dynes/cm² 1Pascal = 1.4504 x 10⁻⁴ lbs/in² =1 N/m² = 10 dyne/cm²

1SPL (Sound Pressure Levels) = 0.0002 dynes/cm² Average speech = 70 dB_{SPL} = 0.645 dynes/cm² Pain = 130 dB_{SPL} = 645 dyne/cm² Whisper = 18 dB_{SPL} = 1.62 x 10⁻³ dyne/cm²

Rochester Institute of Technology

Microelectronic Engineering

DIAPHRAGM EXAMPLE CALCULATIONS

Rochester Insti	tute o	of Technolo	ogy					1-Apr-12	
Dr. Lynn Fuller		Microelect	ronic Engir	ieering, 82	Lomb Mer	norial Dr., Roche	ster, NY 14	4623	
To use this spread sheet enter values in the white boxes. The rest of the sheet is protected and should r								not be	
changed unless you are sure of the consequence					The results	are displayed in	the purple	e boxes.	
Diaphragm					,				
Deflection Ymax = 0.0151 P L4(1			1-Nu ²)/EH ³		Ymax=	2.61E-02	μm		
P = Pressure				P=	1.50E-05	lbs/in2			
L = Length of side of		square dia	phragm	L=	20000	μm			
E = Youngs Modulus				E =	6.80E+10	N/m2			
Nu = Poissons Ratio				Nu =	0.33				
H = C	H = Diaphragm Thick		mess		H =	50	μm		
					P =	1.03E-01	Pascal		
Diaphragm									
Stress = 0.3 P (Stress = 0.3 P (L/H) ² (at center)			ge)	Stress =	4.96E+03	Pascal		
P = Pressure			Yield	Strength =	1.70E+08	Pascal			
L = Square Diaphragm Side Le			ngth						
H = Diaphragm Thick			mess				1N/m2 = 1	Pascal = 10c	lyne/cm2
Two Parallel Pla	ates								
Capacitance = (eoer	Area/d			C =	5.56E-11	F		
eo = Permitivitty of free space = 8.85E-1					7cm				
er = relative permitivitty = 1 for a			r	Area =	3.14E+00	cm2			
Area = area of plates >			x number o	of plates	N =	1			
d = d	istan	<u>ce betweer</u>	n plates		d =	50	μm		
			lf roun	d plates, D)iameter =	20000	μm		
			lfs	quare plat	es, Side =	0	μm		
		Capacitano	e Change	for Ymax D	eflection =	2.90E-14	F		
Two Parallel Pla	ates								
Electrostatic Force= eoer Area V ² /2d ²				Felec =	1.39E-05	N			
V = applied voltage					V =	5	volts		
Single Plate									
Pressure Force = Pressure x Area				Fpress =	4.14E-05	N			
© May 4, 2012 Dr. Lynn Fuller Page 14									

LAYOUT FOR PCB MICROPHONE DEMO

3" x 3" PCB

Microphone Diameter = 20 mm

© May 4, 2012 Dr. Lynn Fuller

amplitude of Vo

Rochester Institute of Technology Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

<u>Microphone Design</u>

EXAMPLE CALCULATIONS

Vo = - i R = -
$$2\pi f V R Cm \cos(2\pi f t)$$

Let f = 5 Khz, V=5, Cm= 100fF, R=1MEG Vo = - 0.0157 cos (2π ft) volts (15.7 mV amplitude sinusoid)

PICTURES OF FABRICATED PCB MICROPHONE

© May 4, 2012 Dr. Lynn Fuller

Puff of air causes 100's of fF capacitance change Calculated = 100's fF

Rochester Institute of Technology

Microelectronic Engineering

MAKING THE LOW NOISE AMPLIFIER

V = +/-9 Volts, R=5.6 MEG

http://people.rit.edu/lffeee/Tones.wmv

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

MOVIE OF MICROPHONE AND AMP OUTPUT

Agilant Technologies DSO3202A Diorral Stomage Oscal Os	Video
	Condenser Microphone Dr. Lynn Fuller Erin Sullivan

RITMicrophone.wmv

Vout = $\sim 20 \text{mV p-p}$

http://people.rit.edu/lffeee/RITMicrophone.wmv

Rochester Institute of Technology

Microelectronic Engineering

MEASURED VOUT VS FREQUENCY (HZ)

© May 4, 2012 Dr. Lynn Fuller

<u>Microphone Design</u>

CONCLUSION

This document presents theoretical and experimental results for capacitive microphone design, fabrication and evaluation. The microphone was fabricated using a PCB for the rigid backing capacitor plate of the microphone. Aluminum foil was used for the flexible sensing capacitor plate of the microphone. Simple signal conditioning electronics converts the change in capacitance to a change in voltage.

The analog output was obtained for various frequency audio tones generated using speakers connected to a personal computer. The amplified microphone output voltage was measured at various frequencies. The microphone was used to make a voice recording.

Rochester Institute of Technology

Microelectronic Engineering

Rochester Institute of Technology

Microelectronic Engineering

© May 4, 2012 Dr. Lynn Fuller

HOMEWORK – RIT MICROPHONE

- 1. Write an expression for the output of the single supply version of the capacitor microphone amplifier circuit.
- 2. Make an accurate calculation of the microphone capacitance, change in capacitance and amplifier output voltage for pressures corresponding to loud speech. Let V = 9 volts, R = 5.6 MEG and f=2000 hz.
- 3. "Mr. Watson... come here ... I want to see you" is a famous statement. Who made this statement, when and why.
- 4. Find a data sheet for a commercial MEMS microphone. What is the sensitivity at 2000 Hz, what is the price for small quantities.

Rochester Institute of Technology

Microelectronic Engineering