
Micro Controller Basics

ROCHESTER INSTITUTE OF TECHNOLOGY
MICROELECTRONIC ENGINEERING

Micro Controller - Basics
(for Microsystems)

Dr. Lynn Fuller

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 1

2-15-11 MicroControllerBasics.ppt

Dr. Lynn Fuller
Webpage: http://people.rit.edu/lffeee/

Microelectronic Engineering
Rochester Institute of Technology

82 Lomb Memorial Drive
Rochester, NY 14623-5604

Tel (585) 475-2035

Email: Lynn.Fuller@rit.edu
MicroE webpage: http://www.microe.rit.edu

Micro Controller Basics

OUTLINE

Definitions
Microsystem
Microcontroller
Arduino Hardware
Software for Arduino IDE
Software for Processing PDE

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 2

Software for Processing PDE
Processing Graphical Output
Output Data File
References
C++ Primer
Example: Display of Analog Signals
Homework Questions

Micro Controller Basics

DEFINITIONS

Arduino – refers to a project that provides open source hardware
and software to learn by doing projects with micro controllers.

Uno – one of the several Arduino hardware platforms available
containing a micro controller, power regulator, USB interface
and interconnect pins and sockets.

Shield – an add on hardware board that plugs into the Arduino micro
controller platform and provides additional capabilities such as

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 3

controller platform and provides additional capabilities such as
blue tooth wireless, WiFi, etc.

Processing – a “C” based software programming tool to create
graphical output and communicate with hardware platforms
such as the Arduino Uno.

Sketch – name for the “C” programs used by “Processing” and by
“Arduino” software to make the hardware do something and
to process the results.

Micro Controller Basics

RIT MICROSYSTEM CONCEPT

Multi-Sensor MEMs Chip

Power
Management

C
o
m

m
u
n
ic

at
io

n

S
ig

n
al

 C
o

n
d

it
io

n
in

g

other

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 4

Signal Conditioning
Electronics

µP
.
.
.
.

.

.

.

.

Micro Controller

C
o
m

m
u
n
ic

at
io

n

S
ig

n
al

 C
o

n
d

it
io

n
in

g

Micro Controller Basics

MODULAR SYSTEM CONCEPT

Sensor PCB-1
Signal

Conditioning

PCB-2

Power

Conditioning,

Communication

Micro Controller

PCB-3

C
o

n
n

ecto
r 2

R

C
o

n
n

ecto
r 1

R

C
o

n
n

ecto
r 3

P

C
o

n
n

ecto
r 1

P

C
o

n
n

ecto
r 2

P

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 5

Eventually PCB-2 and PCB-3 should be combined into one PCB.
The Sensors and PCB-1 will need replacement in the field after an

unspecified time yet to be determined.

PCB-3

C
o

n
n

ecto
r 2

R

C
o

n
n

ecto
r 1

R

C
o

n
n

ecto
r 3

P

C
o

n
n

ecto
r 1

P

C
o

n
n

ecto
r 2

P

Micro Controller Basics

COMPLETE SYSTEM

To world wide web

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 6

Sensor PCB-1

Signal

Conditioning

PCB-2

Power

Conditioning,

Communication

Micro Controller

PCB-3

C
o
n

n
ecto

r 2
R

C
o
n

n
ecto

r 1
R

C
o
n

n
ecto

r

3
P C

o
n

n
ecto

r 1
P

C
o
n

n
ecto

r 2
P

Serial Interface
USB, Bluetooth, etc.

Micro Controller Basics

MICRO CONTROLLERS – MADE BY

Analog Devices
Atmel
Cirrus
Cypress
Fairchild
Freescale Semiconductor
Intel Maxim

ATmega329

~$5

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 7

Intel Maxim
Microchip Technologies
National Semiconductor
Silicon Laboratories
STMicroelectronics
Texas Instruments
Zilog
Others

Packages:
Surface Mount
Through hole

Chip Scale

Digikey carries ~6,000 microcontroller products
from 25 companies (4-bit to 32-bit)

8-bit micro controllers start at under $1

Micro Controller Basics

ATMEL MICRO CONTROLLER

The Arduino Project uses the Atmel ATMega328 micorcontroller.

It is a modified Harvard architecture 8-bit RISC single chip

microcontroller which was developed by Atmel in 1996. This

was one of the first microcontroller families to use on-chip flash

memory for program storage.

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 8

memory for program storage.

Micro Controller Basics

ARDUINO UNO

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14

(of which 6 provide PWM output)

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 9

(of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB (ATmega328)

of which 0.5 KB used by bootloader
SRAM 2 KB (ATmega328)
EEPROM 1 KB (ATmega328)
Clock Speed 16 MHz

Uno Development Board
2” x 2 ¾”

~$29

Micro Controller Basics

OTHER ARDUINO HARDWARE

http://arduino.cc/en/Main/Hardware

Bluetooth ~$150

Nano (smaller 0.73” x 1.70”) ~$35

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 10

http://arduino.cc/en/Main/Hardware

Lily Pad
2” diameter
~$22Mega ~$65

Micro Controller Basics

MORE ARDUINO HARDWARE

Pro Mini (smallest)
0.7” x 1.3” ~$19

h
tt

p
:/

/a
rd

u
in

o
.c

c/
en

/M
ai

n
/H

ar
d
w

ar
e

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 11

Fio (Xbee) ~$25
Pro ~$20

Duemilanove (replaced by Uno)

h
tt

p
:/

/a
rd

u
in

o
.c

c/
en

/M
ai

n
/H

ar
d
w

ar
e

Micro Controller Basics

INTRODUCTION TO THE SOFTWARE

Each company that sells micro controllers provide software to
create, compile and upload programs to the micro controller. The
software to work with output from the micro controller may be third
party. Lab View is an example of a third party software.

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 12

Micro Controller Basics

USER INTERFACE TO “ARDUINO” SOFTWARE

Text Editor Space to

Tool Bar - Run, Stop,
New, Open, Save,
Upload and
Serial Monitor buttons

Tabs

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 13

Text Editor Space to
create and edit “C”
code

Message Area

Dialog Text
active during run

Micro Controller Basics

PROCESSING DEVELOPMENT ENVIRONMENT

The Processing Development Environment (PDE) consists of a simple
text editor for writing code, a message area, a text console, tabs for
managing files, a toolbar with buttons for common actions, and a
series of menus. When programs are run, they open in a new window
called the display window.

Software written using Processing are called sketches. These sketches

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 14

Software written using Processing are called sketches. These sketches
are written in the text editor. It has features for cutting/pasting and for
searching/replacing text. The message area gives feedback while
saving and exporting and also displays errors. The console displays
text output by Processing programs including complete error messages
and text output from programs with the print() and println() functions.
The toolbar buttons allow you to run and stop programs, create a new
sketch, open, save, and export:

Micro Controller Basics

USER INTERFACE TO “PROCESSING” SOFTWARE

Text Editor Space to

Tool Bar - Run, Stop,
New, Open, Save,
Export buttons

Tabs

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 15

Text Editor Space to
create and edit “C”
code

Dialog Text
active during run

Message Area

Micro Controller Basics

GRAPHICAL OUTPUT USING “PROCESSING”

Display

Window

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 16

Window

Micro Controller Basics

OUTPUT TEXT FILE

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 17

Micro Controller Basics

OUTPUT EXCEL FILE – BEFORE & AFTER SORTING

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 18

Micro Controller Basics

FIXED, FORCE, TEMPERATURE, VARIABLE

10K

+5

Temperature

+5

Fixed

100K>R>1K

+5

Force

10K

+5

10K

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 19

1N4448

1N4448

100K
10K

10K

Variable

1K

Circuits used to give four analog inputs

Micro Controller Basics

SIGNAL CONDITIONING

+
Light

I

470K

+5

Vout

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 20

+
Light

NJU7024

Vishay BPW46

Digikey No. 751-1017-ND

Micro Controller Basics

FIXED, FORCE, TEMPERATURE, VARIABLE

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 21

Micro Controller Basics

USING DIFFERENT SENSORS

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 22

Micro Controller Basics

OSCILLATOR (MULTIVIBRATOR)

-

+
Vo

+V

R2R1
Vo

t
t1

VT

+V

-V

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 23

-
Vo

C

-V

R

-V

Bistable Circuit with Hysteresis and RC Integrator

Period = T = 2RC ln
1+Vt/V

1-Vt/V

Micro Controller Basics

SINGLE SUPPLY OSCILLATOR (MULTIVIBRATOR)

+

+V

R2R1

VT

+V
R3

Vo

t
+V

0

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 24

-

+
Vo

C
R

t1
0

Let R1 = 100K, R2=R3=100K

and +V = 3.3

Then VT = 2.2 when Vo = 3.3

VT = 1.1 when Vo = 0

Micro Controller Basics

OSCILLATOR

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 25

Micro Controller Basics

C++ PRIMER - Page 1 of 4

Arduino Programming in Brief: The Arduino is programmed in the C language.
This primer is for people who have a little bit of programming experience and just
need a briefing on C and Arduino IDE. For more help see www.Arduino.cc ,
especially the Reference link.

Structure: Each Arduino program (sketch) has two required functions (routines).
void setup() { } All the code between the two curly brackets will be run once

when the Arduino program first runs.

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 26

when the Arduino program first runs.
void loop () { } This function is run after setup has finished. After it has run once

it will be run again, and again, until power is removed.
Syntax:
// (single line comment) everything after the double slash to end of the line.
/* */ (multi line comment) everything between /* and */ is treated as a comment.
{ } (curly brackets) used to define when a block of code starts and ends, used in
functions as well as loops.

; (semicolon) each line of code must end with a semicolon.
Also: commands are case sensitive, space and tabs are ignored,
lines canonly be 64 characters long.

Micro Controller Basics

C++ PRIMER - Page 2 of 4

Variables:
int (integer) stores a number in 2 bytes (16 bits), has no decimal places, number is

between -32768 to +32768
long (long) used when an integer is not large enough, 5 bytes (32 bits), number is

between –2,147,483,648 and +2,147,483,648
boolean (boolean) simple True or False, uses one bit
float (float) floating point math (uses decimals) 4 bytes (32 bits), number is

between -3.4028235E+38 and + 3.4028235E+38

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 27

between -3.4028235E+38 and + 3.4028235E+38
char (character) stores one character using ASCII code, 1 byte (8 bits)

Math Operators:
= assignment, makes something equal to something
% modulo gives the remainder, eg 12 % 10 gives 2
- subtraction
+ addition
* multiplication
/ division
more see www.arduino.cc especially the Reference link

Micro Controller Basics

C++ PRIMER - Page 3 of 4

Comparison Operators: used for logical comparison
= = equal < less than
!= not equal > greater than
< = less than or equal to
> = greater than or equal to
more see www.arduino.cc especially the Reference link

Control Structure:

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 28

Control Structure:
if (condition) { } this will execute the code between the curly brackets if
else if (condition) { } the condition is true, and if not it will test the else if
else { } condition if that is also false the else code will execute

for (int i = 1; i < #repeats; i++) { } used when you want to repeat a chunk of code
a number of times

Micro Controller Basics

C++ PRIMER - Page 4 of 4

Digital:
pinMode (pin, mode); // pin is the pin number, 0-19, (analog 0 to 5 are 14-19) mode

is either INPUT or OUTPUT
digitalWrite(pin, value); //once a pin is set as an OUTPUT, it can be set either

HIGH (pulled to +5 volts) or LOW (pulled to ground)
int digital Read (pin); //once a pin is set as an INPUT, you can use this function to

return whether it is HIGH or LOW

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 29

return whether it is HIGH or LOW

Analog:
int analogWrite (pin, value); // some of the Arduino’s pins support pulse width

modulation (3,5,6,9,10,11). The value is any number between 0 (0% duty
cycle) and 255 (100% duty cycle)

int analogRead (pin); // when analog pins are set to input you can read their value
between 0 (zero volts) and 1024 (5 volts)

see www.arduino.cc especially the Reference link

Micro Controller Basics

PROCESSING PROGRAMMING

Processing Programming:

The sketch file must be in a folder with same name. Other associated
files and data are also in that folder. For example font data folder,
output files, etc.

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 30

Micro Controller Basics

PROCESSING CODE – PART 1 of 5

// Processing_Display_Analog_Signal_Fuller.pde
// Graphing sketch for multiple analog signals
// This program takes ASCII-encoded strings from the serial port at 9600 baud
// and graphs them. It expects values in the range 0 to 1023, followed by a newline
// Version 16 Dec 2010
// by Dr. Lynn Fuller, Professor, Microelectronic Engineering, Rochester Institute of Technology
// This code is in the public domain.
import processing.serial.*;
Serial myPort; // The serial port
int xPos = 1; // horizontal position of the graph

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 31

int xPos = 1; // horizontal position of the graph
PrintWriter output;

void setup () {
output=createWriter("Output_Data_File.txt"); //file name in sketch directory for output
// set the window size, define (width - 0 on left, height - 0 on top):
size(500,400);

// List all the available serial ports
println(Serial.list());
//Open whatever port is the one you're using. It is COM3 on my computer
myPort = new Serial(this, Serial.list()[2], 9600);//The [2] means COM3
// don't generate a serialEvent() unless you get a newline character:
myPort.bufferUntil('\n');

background(204);// set inital background color, 0=black, 255=white, 204=gray
loadFont("Arial-BoldMT-36.vlw"); // Load Font used on graph

}

Micro Controller Basics

PROCESSING CODE – PART 2 of 5

void draw () { ;
// make axis, color is set by stroke(v1), v1=0 is black, or stroke(R,G,B)
stroke(0,0,0); // Black
strokeWeight (0); // thin line for x and y axis
line(0,height/2,width,height/2); // x-axis, line(x1,y1,x2,y2)
line(width/2,0,width/2,height); // y-axis, line(x1,y1,x2,y2)
int tics=10; // tic marks, tics is the number of tic marks on y axis
for (int k=0; k<tics; k=k+1) {

line(width/2-5,k*height/tics,width/2+5,k*height/tics);

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 32

line(width/2-5,k*height/tics,width/2+5,k*height/tics);
line(k*width/tics,height/2-5,k*width/tics,height/2+5);
int Scale=5000/tics;// Full scale is 5 volts or 5000 mV for Arduino A to D
// Scale in mV / div
fill(0,0,250);// Blue
text(" mV / div ",width/2+5, height-10);
text(Scale,width/2-30,height-10);// print vertical scale on graph
int pix=5;// increment the horizontal position by "pix" pixels after reading data pts
text(" sec / div",width-50,height/2-10);
text(width/pix/tics,width-65,height/2-10);
text(month()+" / "+day()+" / "+year(),width-125,height-10);// Date Stamp
text(hour()+" : "+ minute()+" : "+second(),width-125,height-20);// Time Stamp

}
}

Micro Controller Basics

PROCESSING CODE – PART 3 of 5

// everything happens in the serialEvent()
// The data collection/display rate is set by the delay in the Arduino code
int N=4; //the number of different analog signals to plot, can be up to 6
int i=0;
void serialEvent (Serial myPort) {
String inString = myPort.readStringUntil('\n');// get the ASCII string
if (inString != null) {

inString = trim(inString);//trim off any whitespace
// convert to an int and map to the screen height

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 33

// convert to an int and map to the screen height
float inByte = float(inString);
inByte = map(inByte, 0, 1023, 0, height);
fill(204); // same color as background color
rect(50+(width/N)*i,30,60,10); //blank out previous displayed number
stroke(253/(N-1)*i,253/(N-1)*i,253/(N-1)*i);
fill(253/(N-1)*i,253/(N-1)*i,253/(N-1)*i);

Micro Controller Basics

PROCESSING CODE – PART 4 of 5

// give names for plots
String [] names={"Temperature","Humidity ","Brightness ","Shock "};
print("A"+i+" "+names[i]+" ");//print to dialog box
println(height-inByte);//print to dialog box
output.print("A"+i+" "+names[i]+" ");//print to file
output.print(month()+" "+day()+" "+year());// Date
output.print(" "+hour()+" : "+ minute()+" : "+second()+” “);// Time
output.println(height-inByte);//print to file plus new line
if (keyPressed == true){

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 34

if (keyPressed == true){
output.flush();// writes the remaining data to the file
output.close();// Finishes the file
exit ();
}

// print text (names, x position, y position)
text(names[i],50+(width/N)*i,20);
text(inByte*5000/height,50+(width/N)*i,40);

//draw rectangle data point at x=xPos, y=height-inByte, size=2x2 pixels
rect(xPos,height-inByte,2,2);

Micro Controller Basics

PROCESSING CODE - PART 5 of 5

if (i<N-1){
i=i+1;

}
else {
i=0;
int pix=5;// increment horizontal by "pix" pixels after reading data pts
xPos=xPos+pix;

}

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 35

}
}

// at the edge of the screen, go back to the beginning:
if (xPos >= width) {

xPos = 0;
background(204);

}
}
// all done with processing code

Micro Controller Basics

ARDUINO CODE

//Arduino code "ArduinoAnalogSendFuller.pde"
// Reads multiple analog signals connected to inputs A0...A3
// Sends ASCII-encoded strings out the USB serial port at 9600 baud
// Created 4 Dec 2010
// Updated 11 Dec 2010
// by Dr. Lynn Fuller, Professor, Microelectronic Engineering, Rochester Institute of Technology
// This code is in the public domain.
void setup() {
// initialize the serial communication:
Serial.begin(9600);

}
void loop() {
// send the value of analog input 0:

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 36

// send the value of analog input 0:
Serial.print(analogRead(A0));
// to send as an array [A0,A1,A2,A3]
// use Serial.print(' ')between reads and Serial.println()at end;
// send the value of analog input 1:
Serial.println();
Serial.print(analogRead(A1));
Serial.println();
// send the value of analog input 2:
Serial.print(analogRead(A2));
Serial.println();
// send the value of analog input 3:
Serial.print(analogRead(A3));
Serial.println();
// wait a bit for the analog-to-digital converter
// to stabilize after the last reading:
// use the serial monitor 7th icon to see what sent
delay(100); //this delay sets how often the analog data is sent (in milli-seconds)

}

Micro Controller Basics

ARDUINO CODE FOR OSCILLATOR FREQUENCY

/*
Capacitive Measurement Tool via RC Oscillation Circuit
Measure frequency generatred by a 741 Op Amp and read
the period using the Aurduino pulseIn() function

Created by: Dan Smith, Masters of Microelectrics Student
Rochester Institute of Technology
Version 1.0 | 06 Feb 2011

*/
int freqPin = 7; //Input pin for frequency
int period = 0; //Initilize period measuremtn to zero
int cap = 0; //[pF]
int res = 10.3; //[Mohm]

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 37

int res = 10.3; //[Mohm]
//Might want to make cap/res into long
void setup() {
Serial.begin(115200); //baud rate
pinMode(freqPin, INPUT); //set pin for input

}
void loop() {
Serial.print("Period = ");
period = pulseIn(freqPin,HIGH);
//Reads time [us] for high square wave to go LOW
Serial.print(period*2);
//Only half the period, do double it
Serial.println(" us");
cap = period/(res); //T=2RC
Serial.print("Capicator is: ");
Serial.print(cap);
Serial.println("pF");
delay(1000);

}

Micro Controller Basics

ARDUINO MULTI-SENSOR MOVIE

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 38

Micro Controller Basics

REFERENCES

1. Spark Fun Products, http://sparkfun.com

2. Arduino Home Page, www.arduino.cc

3. Processing Home Page, http://processing.org

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 39

Micro Controller Basics

HOMEWORK – MICRO CONTROLLERS

1. Modify the Arduino code to alarm (turn on a red LED) if one of

the analog signals is above 4 volts.

2. Modify the Arduino code to increase the data rate if one of the

analog signals is above 2 volts.

3. Modify the Processing code to place a small round indicator on

the graph. It should be green if one of the analog signals is

© February 15, 2011 Dr. Lynn Fuller, Professor

Rochester Institute of Technology

Microelectronic Engineering

Page 40

the graph. It should be green if one of the analog signals is

below 3 volts but red if above 3 volts.

4. Design an operational amplifier circuit to give a 0 to 5 volt

analog output from a photodiode.

