ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING

# Microelectromechanical Systems (MEMs) Physical Fundamentals -Part 1 - Mechanical Fundamentals

#### Dr. Risa Robinson Dr. Lynn Fuller

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>



Rochester Institute of Technology Microelectronic Engineering Revision: 3-19-2011 mem\_mech.ppt

© March 19, 2011, Dr. Lynn Fuller, Professor

Page 1

## **OUTLINE**

Force Pressure Stress, Strain and Hooke's Law Poisson's Ratio Simple Cantilever Springs Thermal Strain Bi-metalic Actuator Diaphragm

Rochester Institute of Technology

Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor

Page 2





**PRESSURE UNITS** 

# **Table of Pressure Conversions**

1 atm = 14.696 lbs/in<sup>2</sup> = 760.00 mmHg 1 atm = 101.32 kPa = 1.013 x 10<sup>6</sup> dynes/cm<sup>2</sup> 1Pascal = 1.4504 x 10<sup>-4</sup> lbs/in<sup>2</sup> =1 N/m<sup>2</sup> 1 mmHg = 1 Torr (at 0°C)

1SPL (Sound Pressure Levels) =  $0.0002 \text{ dynes/cm}^2$ Average speech = 70 dB<sub>SPL</sub> =  $0.645 \text{ dynes/cm}^2$ Pain = 130 dB<sub>SPL</sub> =  $645 \text{ dyne/cm}^2$ Whisper =  $18 \text{ dB}_{SPL}$  =  $1.62 \times 10^{-3} \text{ dyne/cm}^2$ 

**Example:** 

5mmHg x  $\frac{14.696 \text{ lbs/in}^2}{760.00 \text{ mmHg}} = 0.0967 \text{ lbs/in}^2 = 0.00658 \text{ atm}$ =666.60 Pascals =5 Torr

Rochester Institute of Technology

Microelectronic Engineering

## GAUGE PRESSURE – ABSOLUTE PRESSURE

Gauge pressure is a differential pressure measured relative to an ambient pressure. The output of a gauge pressure sensor is not sensitive to a changing barometric pressure

Absolute pressure is differential pressure measured relative to an absolute zero pressure (perfect vacuum). The output of the absolute sensor will change as a result of barometric pressure change and thus can be used as a barometer.

Rochester Institute of Technology

Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor

## HOOKE'S LAW



## **POISSON'S RATIO**

Poisson's ratio (v) gives the relationship between lateral strain and axial strain. In all engineering materials the elongation produced by an axial tensile force in the direction of the force is accompanied by a contraction in any transverse direction.





## **HARDNESS**

Hardness is a well known physical parameter, but many different methods have been derived for the measurement and classification of materials on a hardness scale. The Knoop scale is the most commonly used, others being: Moh, Vickers, Rockwell and Brinell.

The experimental procedure for the derivation of a value on the Knoop scale is to use a pyramidal diamond point which is pressed into the material in question with a known force. The indentation made by

the point is then measured and the Knoop number calculated from this measurement. A soft material would have a Knoop number of 4, whereas a hard material like sapphire has a Knoop number of 2000 and the Knoop number for diamond is 7000.



Rochester Institute of Technology Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor

Page 10



## **STRESS IN SPUTTERED FILMS**

Compressively stressed films would like to expand parallel to the substrate surface, and in the extreme, films in compressive stress will buckle up on the substrate. Films in tensile stress, on the other hand, would like to contract parallel to the substrate, and may crack if their elastic limits are exceeded. In general stresses in films range from 1E8 to 5E10 dynes/cm2.



# **MEASUREMENT OF STRESS IN Si3N4**

Kenneth L. Way, Jr. did his senior project on stress in silicon nitride films as a function of the ratio of ammonia to dichlorosilane. Samples were coated with various flows and stress was measured at ADE corporation. The silicon nitride was etched off of the backside of the wafer so that the stress curvature was due to the layer on the front side only. Dr. Lane said the nitride runs at 1:10 (ammonia:dichlorosilane) ratios are rough on the pumping system.

**Compressive Stress** 



Dr. Grande sent samples to Kodak for stress measurement. He found stress of 900 MPa Tensile for the standard Nitride recipe for 1500 A thickness, 1-29-2000



LOW STRESS SILICON RICH Si3N4

ADE Measured stress for various Ammonia:Dichlorosilane Flow Ratios

FlowStress x E 9 dynes/cm210:1+ 14.635:1+ 14.812.5:1+ 12.471:1+ 10.131:2.5+ 7.79\*1:5+ 31:100r\*standard recipe

Stress;  $\sigma = (E/(6(1-v)))^*(D^2/(rt))$ where E is Youngs modulus, v is Poissons ratio, D and t are substrate and film thickness r is radius of curvature (+ for tensile)

T.H Wu, "Stress in PSG and Nitride Films as Related to Film Properties and Annealing", Solid State Technology, p 65-71, May '92

 Rochester Institute of Technology
 10 dyne/cm² = 1 ne wton/m² = 1 Pascal

 Microelectronic Engineering



# STRESS IN SPUTTERED TUNGSTEN FILMS

### Tungsten

CVC 601 4" Target 500 Watts 50 minutes 5 mTorr Argon Thickness ~ 0.8 μm

**Rochester Institute of Technology** 

Microelectronic Engineering

**Compressive Stress** 





2. Estimate the height difference for a 1mm length near the center of a wafer caused by the resulting curvature from stress for the standard 1500 A nitride deposition after removing nitride from one side of the wafer.

| Rochester Institute of Technology            | Answer ~ 10 um |
|----------------------------------------------|----------------|
| Microelectronic Engineering                  |                |
| © March 19, 2011, Dr. Lynn Fuller, Professor | Page 17        |









STRESS IN CANTILEVER BEAM EXAMPLE

Example: Find the maximum stress in a simple polysilicon cantilever with the following parameters. Ymax = 1  $\mu$ m, b=4  $\mu$ m, h=2 $\mu$ m, L=100  $\mu$ m

$$\sigma_{x=0} = \frac{12 \text{ F L}}{2b \text{ h}^2}$$

$$\sigma_{x=0} = \frac{12 (1.4e-6) (100e-6)}{2 (4e-6) (2e-6)^2}$$

 $\sigma_{x=0} = 5.6e7$  newton/m2 = 5.6e8 dyne/cm2

# Compare to the given table value for yield strength of 7e10 dyne/cm2

Rochester Institute of Technology Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor





## **CANTILEVER.XLS**



Page 25





## **SPREAD SHEET FOR ACCELEROMETER CALCULATIONS**

|          | Accele          | rometer, cantileve | r beam bending             | Ymax =                       | 7.03E-01               | μm    |  |
|----------|-----------------|--------------------|----------------------------|------------------------------|------------------------|-------|--|
|          |                 |                    | _                          | L=                           | 2000                   | μΠ    |  |
|          | Ymax = F        | FL13/3EI           |                            | b=                           | 200                    | μm    |  |
|          |                 | $I = h h^{2}$      |                            | h =                          | 10                     | μm    |  |
|          |                 |                    |                            | Young's Modulus, E =         | 1.90E+11               | N/m2  |  |
|          | σ max = f       | FL h / 2l          |                            | Max Stress,σ max =           | 5.01E+03               | N/m2  |  |
|          |                 |                    |                            | Strain,s=σ/E =               | 2.64E-08               | րափա  |  |
|          | De sist         | - Caladatian -     |                            |                              | E400                   | _ ı   |  |
|          | Resisti         | or Calculations    | 6.4                        | Nominal Resistance, R =      | 0400<br>C0             | onms  |  |
|          | D. Dhe          | _1.0.2             | Ivieasured                 | Sheet Resistance, Knos =     | 60                     | onms  |  |
|          | H = Hho:        | SLYW               |                            | Resistor Length, L =         | 900                    | μπι   |  |
|          |                 |                    |                            | Hesistor Wiath, W =          | 10                     | μm    |  |
|          | H = H + I       | HNOS (L+ L SJrW    | Hesist                     | ance under IVIax Stress, H = | 0.000140075            | onms  |  |
|          |                 |                    | 743-107                    | Dekar=r-r=                   | 0.000142375            | onms  |  |
|          |                 |                    | Restrenal                  | Vaa = VSS =<br>Deutees el    | 10                     | VOIts |  |
|          |                 |                    | Vout                       | Hexternal =                  | 0400                   | onms  |  |
|          |                 |                    |                            | Nominal Yout =               | U<br>1 01000E 07       | VOIts |  |
|          | Constants.      |                    | 2 Receiveranter            | YOUUMAX=                     | 1.31023E-07            | voits |  |
|          | Constants:      |                    | Ver=107                    | Coloot Material IIcing       | 1 or 0                 |       |  |
|          | Young           | Modulus(N/m2)      | Densita (am/cm3)           | Fixture BI                   | r or o<br>I Acceromete |       |  |
|          | Silicon         | 1.9E+11            | 2.33                       | 0                            | 1                      |       |  |
|          | Silicondiozide  | 7.30E+10           | 2.19                       | 0                            | 0                      |       |  |
|          | Silicon Nitride | 3.85E+11           | 3.44                       | 0                            | 0                      |       |  |
|          | Aluminum        | 6.80E+10           | 3.9                        | 0                            | 0                      |       |  |
|          | Steel           | 2.00E+11           | 7.8                        | 1                            | 0                      |       |  |
|          | Brass           | 1.10E+11           | 8.55                       | 0                            | 0                      |       |  |
|          | Lead            |                    | 11.34                      |                              |                        |       |  |
| <u> </u> |                 | © Mar              | ch 19, 2011, Dr. Lynn Full | ler, Professor               | Page 28                |       |  |
|          |                 |                    |                            |                              | ··· ə· = -             |       |  |

## CALCULATED PLOT OF VOUT VS. TIME

















## **BI METALIC ACTUATORS**

Consider two materials bonded together forming a composite beam. Since the materials are bonded together the change in length for both materials is equal (at boundary)

#### • $\Delta L1 = \Delta L2$

each material experiences a thermal strain plus a strain due to the stress caused by the different thermal coefficients,

 $\Delta L/L = \alpha T + \sigma/E$ 

The material with the larger thermal coefficient will experience a compressive stress (-) while the other material will experience a tensile (+) stress. This results in:

$$\alpha_1 T + \sigma_1 / E_1 = \alpha_2 T + \sigma_2 / E_2$$
  
and  $\sigma_1 = -\sigma_2$ 

Rochester Institute of Technology

Microelectronic Engineering



## **EXAMPLE - BI METALIC ACTUATORS**

First find the radius of curvature to achieve a displacement of 1 µm



## **EXAMPLE - BI METALIC ACTUATORS**

The centroid is the neutral axis of the composite beam. The length of the neutral axis never changes,  $\sigma_{NA}=0$ , Y is the distance from the neutral axis to the junction thus Y and  $\Psi$  are equivalent.

Total Stress = Thermal Stress + Mechanical Stress Thermal Stress =  $\alpha \Delta T E$ Mechanical Stress =  $\epsilon E$  and  $\epsilon = Y/r$ 

```
Stress in Si must equal the Stress in Al

\alpha 1 \Delta T E1 + \epsilon E1 = \alpha 2 \Delta T E2 + \epsilon E2

\alpha 1 \Delta T E1 + (Y/r) E1 = \alpha 2 \Delta T E2 + (Y/r) E2

we can find Y
```

 $Y = \Psi = \frac{(Wsi/2)h1^2 - (Wal/2)h2^2}{(Wsi/2)h1 + (Wal/2)h2}$ 

for a given h1 we can find h2, let  $h1=2\mu m$  we find  $h2=8\mu m$ 

Rochester Institute of Technology Microelectronic Engineering



## RAISE TEMPERATURE FROM 20 TO 200 C



## **MOVIE OF TOTAL DEFORMATION**



## FINITE ELEMENT ANALYSIS OF THERMAL BENDING



#### **EXCELL SPREADSHEET FOR DIAPHRAGM CALCULATIONS**

| Rochester Institute of Technology                                                               |                                                                                                                |           |                     |             |         | 11-Jun-07 |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------------|---------|-----------|--|--|
| Dr. Lynn Fuller Microelectr                                                                     | eering, 82 l                                                                                                   | _omb Memo | orial Dr., Rocheste | er, NY 1462 | 23      |           |  |  |
|                                                                                                 |                                                                                                                |           |                     |             |         |           |  |  |
| To use this spread sheet enter va                                                               | To use this spread sheet enter values in the white boxes. The rest of the sheet is protected and should not be |           |                     |             |         |           |  |  |
| changed unless you are sure of the consequences. The results are displayed in the purple boxes. |                                                                                                                |           |                     |             |         |           |  |  |
|                                                                                                 |                                                                                                                |           |                     |             |         |           |  |  |
| Diaphragm                                                                                       |                                                                                                                |           |                     |             |         |           |  |  |
| Deflection Ymax = 0.0151 P L <sup>4</sup> (1-Nu <sup>2</sup> )/                                 |                                                                                                                |           | Ymax =              | 12.45       | μm      |           |  |  |
| P = Pressure                                                                                    |                                                                                                                |           | P =                 | 5000        | lbs/in2 |           |  |  |
| L = Length of side of s                                                                         | quare diapl                                                                                                    | nragm     | L =                 | 1500        | μm      |           |  |  |
| E = Youngs Modulus                                                                              |                                                                                                                |           | E =                 | 1.90E+11    | N/m2    |           |  |  |
| Nu = Poissons Ratio                                                                             |                                                                                                                |           | Nu =                | 0.32        |         |           |  |  |
| H = Diaphragm Thickn                                                                            | ess                                                                                                            |           | H =                 | 100         | μm      |           |  |  |
|                                                                                                 |                                                                                                                |           | P =                 | 3.45E+07    | Pascal  |           |  |  |
| Diaphragm                                                                                       |                                                                                                                |           |                     |             |         |           |  |  |
| Stress = 0.3 P $(L/H)^2$ (at center of each edge)                                               |                                                                                                                | lge)      | Stress =            | 2.33E+09    | Pascal  |           |  |  |
| P = Pressure                                                                                    |                                                                                                                | Yield     | Strength =          | 1.20E+10    | Pascal  |           |  |  |
| L = Square Diaphragm                                                                            | L = Square Diaphragm Side Length                                                                               |           |                     |             |         |           |  |  |
| H = Diaphragm Thickn                                                                            | kness                                                                                                          |           |                     |             |         |           |  |  |
| Two Parallel Plates                                                                             |                                                                                                                |           |                     |             |         |           |  |  |
| Capacitance = eoer Area/d                                                                       |                                                                                                                |           | C =                 | 7.97E-11    | F       |           |  |  |
| eo = Permitivitty of free space = 8.85E-14 F/cm                                                 |                                                                                                                |           |                     |             |         |           |  |  |
| Rochester Institut                                                                              | te of Technolog                                                                                                |           |                     |             |         |           |  |  |

Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor





# **DIAPHRAGM DEFORMATION MOVIE**



# **DIAPHRAGM STRESS MOVIE**





# **CALCULATION OF EXPECTED OUTPUT VOLTAGE**



The equation for stress at the center edge of a square diaphragm (S.K. Clark and K.Wise, 1979)

Stress =  $0.3 P(L/H)^2$  where P is pressure, L is length of diaphragm edge, H is diaphragm thickness

For a 3000 $\mu$ m opening on the back of the wafer the diaphragm edge length L is 3000 – 2 (500/Tan 54.74°) = 2246

\_\_\_\_ Page 51







## IF RESISTORS ARE SINGLE CRYSTAL SILICON

In addition to the effects of strain on the resistance if the resistor is made of single crystal silicon there is also a significant piezoresistive effect on the resistor value. Strain effects the mobility of holes and electrons in silicon. The resistors on the diaphragm of the pressure sensor drawn above have current flow longitudinal (R1 and R4) and transverse (R2 and R3) to the strain. The strain is tensile on the top surface of the diaphragm where the resistors are located if positive pressure is applied to the top of the diaphragm. The peizoresistive coefficient for R1 and R4 is 71.8 and for R2 and R3 is -66.3 E-11/Pa. The calculations above give the stress as 2.49E8 Pa thus the hole mobility will decrease in R1 and R4 (R increases in value) by  $2.49E8 \times 71.8e-11 = 17.9\%$  while R2 and R3 (decrease in value) because the mobility increases by  $2.49E8 \times 66.3E-11 = 16.5\%$ , thus the overall effect will be dominated by the piezoresistance rather than the effect of strain on the dimensions.

**Rochester Institute of Technology** 

Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor

**EXPRESSION FOR RESISTANCE** 

$$R = Ro \left[ 1 + \pi_L \sigma_{xx} + \pi_T (\sigma_{yy} + \sigma_{zz}) \right]$$

where Ro =  $(L/W)(1/(q\mu(N,T) \text{ Dose}))$ 

 $\pi_L$  is longitudinal piezoresistive coefficient  $\pi_T$  is transverse piezoresistive coefficient  $\sigma_{xx}$  is the x directed stress, same direction as current  $\sigma_{yy}$  is the y directed stress, transverse to current flow  $\sigma_{zz}$  is the z directed stress, transverse to current flow

## In the <110> direction









# CIRCULAR DIAPHRAGM FINITE ELEMENT ANALYSIS0





## DIAPHRAGM WITH CAPTURED VOLUME



© March 19, 2011, Dr. Lynn Fuller, Professor

Page 61



## **REFERENCES**

- 1. <u>Mechanics of Materials</u>, by Ferdinand P. Beer, E. Russell Johnston, Jr., McGraw-Hill Book Co.1981, ISBN 0-07-004284-5
- 2. <u>Electromagnetics</u>, by John D Kraus, Keith R. Carver, McGraw-Hill Book Co.1981, ISBN 0-07-035396-4
- 3. "Etch Rates for Micromachining Processing", Journal of Microelectromechanical Systems, Vol.5, No.4, December 1996.
- 4. "Design, Fabrication, and Operation of Submicron Gap Comb-Drive Microactuators", Hirano, et.al., Journal of Microelectromechanical Systems, Vol.1, No.1, March 1992, p52.
- 5. "There's Plenty of Room at the Bottom", Richard P. Feynman, Journal of Microelectromechanical Systems, Vol.1, No.1, March 1992, p60.
- 6. "Piezoelectric Cantilever Microphone and Microspeaker", Lee, Ried, White, Journal of Microelectromechanical Systems, Vol.5, No.4, December 1996.
- 7. "Crystalline Semiconductor Micromachine", Seidel, Proceedings of the 4th Int. Conf. on Solid State Sensors and Actuators 1987, p 104
- 8. "A survey of micro-actuator technologies for future spacecraft missions,"R.G. Gilbertson and J.D. Bausch, Conference on Practical Robotic Interstellar Flight, Aug. 12, 1994, New York City
  - Fundamentals of Microfabrication, M. Madou, CRC Press, New York, 1997

Rochester Institute of Technology

Microelectronic Engineering

© March 19, 2011, Dr. Lynn Fuller, Professor

Page 63

