ROCHESTER INSTITUTE OF TEHNOLOG MICROELECTRONIC ENGINEERING

Microelectromechanical Systems (MEMS) Actuators

Dr. Lynn Fuller and Ivan Puchades

Webpage: http://people.rit.edu/lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel(716) 475-2035 Fax (716) 475-5041 Email: Lynn.Fuller@rit.edu MicroE Dept Webpage: http://www.microe.rit.edu

Rochester Institute of Technology

April 18, 2011 MEM_Actuators.ppt

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

OUTLINE

Polycrystalline Silicon Thermal Actuators Heated Polyimide Mirrors **Polyimide Thermal Actuators** A Walking Silicon Micro-Robot **Electrostatic Force Electrostatic Impact-Drive Microactuator** Shuffle Motor **Electrostatic Comb Drive** Diaphragms Magnetic Actuators on a Diaphragm Heaters on a Diaphragm

Rochester Institute of Technology

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

THERMAL PROPERTIES

	MP	Coefficient	Thermal	Specific
	°C	of Thermal	Conductivity	Heat
		Expansion		
		ppm/°C	w/cmK	cal/gm°C
Diamond	3825	1.0	20	0.169
Single Crystal Silicon	1412	2.33	1.5	0.167
Poly Silicon	1412	2.33	1.5	0.167
Silicon Dioxide	1700	0.55	0.014	
Silicon Nitride	1900	0.8	0.185	
Aluminum	660	22	2.36	0.215
Nickel	1453	13.5	0.90	0.107
Chrome	1890	5.1	0.90	0.03
Copper	1357	16.1	3.98	0.092
Gold	1062	14.2	3.19	0.031
Tungsten	3370	4.5	1.78	0.031
Titanium	1660	8.9	0.17	0.043
Tantalum	2996	6.5	0.54	0.033
Air			0.00026	0.24
Water	0		0.0061	1.00
			1 watt – $0'$	730 cal/sec
Kocnester Ins Microelectron	nic Engineering		1 watt = 0.2	
				/
	© April	18, 2011 Dr. Lynn Fuller	Page 7	

FINITE ELEMENT ANALYSIS OF THERMAL BENDING

THERMAL ACTUATOR MOVIE

Rochester Institute of Technology

Microelectronic Engineering

COEFFICIENTS OF THERMAL EXPANSION

The	ermal Expansion
Silicone Elastomers	275-300 ppm/°C
Unfilled Epoxies	100-200
Filled Epoxies	50-125
Epoxy, glass laminates	100-200
Epoxy, glass laminate, xy axis	12-16
Aluminum	20-25
Copper	15-20
Alumina Ceramic	6.3
Type 400 Steels	6.3-5.6
Glass Fabric	5.1
Borosilicate Glass	5.0
Silicon	2.4
Inconel	2.4
Nickel-iron alloy (30 Ni - 61 Fe)	1.22
Quartz	0.3
Rochester Institute of Technology	
Microelectronic Engineering	
© April 18, 2011 Dr. Lynn Fuller	Page 13

EMs – Actuators **POLYIMIDE ON HEATER** Movie Rochester Institute of Technology Microelectronic Engineering © April 18, 2011 Dr. Lynn Fuller Page 14

A WALKING SILICON MICRO-ROBOT

Presented at The 10th Int Conference on Solid-State Sensors and Actuators (Transducers'99), Sendai, Japan, June 7-10, 1999, pp 1202-1205.

A WALKING SILICON MICRO-ROBOT

Thorbjörn Ebefors*, Johan Ulfstedt Mattsson, Edvard Kälvesten and Göran Stemme

Department of Signals, Sensors and Systems (S3), Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden *Phone: +46 8 7907785 Fax: +46 8 10085 *E-mail: Thorbjorn.Ebefors@s3.kth.se

ABSTRACT

The first walking batch fabricated silicon micro-robot able to carry loads has been developed and investigated. The robot consists of arrays of movable robust silicon legs having a length of 0.5 or 1 mm. Motion is obtained by thermal actuation of robust polyimide joint actuators using electrical heating. Successful walking experiments have been performed with the $15x5 \text{ mm}^2$ sized micro-robot. Walking speeds up to 6 mm/s with high load capacity has been achieved. The robot could carry a maximum external load of 2500 mg on its back (> 30 times the dead-weight of the robot).

© April 18, 2011 Dr. Lynn Fuller

<u>Rochest</u>

Microel

the joint a horizontal displacement, Δx , is obtained due to larger absolute thermal expansion of the polyimide at the top of the V-groove than at the bottom ($\alpha_T \cdot \Delta T \cdot a > \alpha_T \cdot \Delta T \cdot b$).

http://www.s3.kth.se/mst/staff/thorbjorne.html Professor Goran Stemme

> Kungliga Tekniska Hogskolan Stockholm, Sweden

Rochester Institute of Technology

Microelectronic Engineering

A WALKING SILICON MICRO-ROBOT

Fig. 2. Operation principle for the asynchronous driven micro-robot. A displacement equal to $2 \cdot \Delta x$ is obtained during one period due to the fixed phase difference of 90 degrees between the two sets of legs (x^* and x^{-}). A 180 degrees phase-shift between x^+ and x^* will results in walking in the opposite direction.

Rochester Institute of Technology Microelectronic Engineering

MEMs-Actuators

A WALKING SILICON MICRO-ROBOT

Fig. 3. An up-side down view of the micro-robot with two set of legs (four of each x^+ and x^-). With three bonding pads the robot can walk forward and backward. By driving the legs on the left and right side at different speeds or stroke length like a caterpillar (requires 5 wires) the robot can make left-right turns. The SEMphotos show silicon leg with a length of 500 µm and a close-up of a five V-groove polyimide joint.

Rochester Institute of Technology

Microelectronic Engineering

A WALKING SILICON MICRO-ROBOT

FABRICATION

The fabrication process is schematically shown in Fig. 4 [10, 14]. The key steps are: (a) forming the integrated heater using LPCVD-deposited poly-silicon encapsulated in low-stressed silicon nitride and anisotropic KOH etching of 30 μ m deep V-grooves. (b) local silicon dioxide (LOCOS) growth, forming via holes to the heaters, patterning the 1.5 μ m thick aluminium conductors deposited by sputtering. (c) spinning and patterning the polyimide in the V-grooves, a backside 500 μ m KOH silicon etch. (d) dicing the robot (from the back-side), a BHF oxide etch and solvent cleaning to release the 30 μ m thick silicon legs and the protecting wafer, finally a polyimide curing in an oven to erect the legs.

Several different versions of the micro-robot have been fabricated:

- Polyimide joint actuator variants: with 3 and 4 V-grooves
- Leg variants: 2x6 with a length of 500 μm and 2x4 with a length of 1000 μm
- Steering variants: two groups of four or six legs (3 bonding pads for back and forth) and four groups of two or three legs (5 bonding pads for back and forth + right and left)
- Two DOF-legs (both knee and ankle joint) for walking up/down steps or on rough surfaces.

Fig. 3. An up-side down view of

© April 18, 2011 Dr. Lynn Fuller

A WALKING SILICON MICRO-ROBOT

Fig. 5. The micro-robot during a load test. The load of 2500 mg is equivalent to maximum 625 mg/leg (or more than 30 times the weight of robot itself). The power supply is maintained through three 30 μ m thin and 5 to 10 cm long bonding wires of gold.

Rochester Institute of Technology

Microelectronic Engineering

Table 1.	Characteristic	measurements	of	the
polyimide jo	oint actuators.			

Curing temp, T / shrinkage, ε	350 °C / 40% (3 V-grooves) 280 °C / 30% (4 V-grooves)				
Life-time	> 2.108 load cycles				
Stroke length, $\Delta x / power consumption, P$	< 340 µm / < 175 mW (for 1 mm leg with 4 V-grooves)				
Cut-off frequency, f_c	3-4 Hz (-3 dB)				
Force / displacement (before plastic deform.)	50-100 mN / 250-400 μm				

© April 18, 2011 Dr. Lynn Fuller

A WALKING SILICON MICRO-ROBOT

CONCLUSION

This paper has presented the first batch fabricated walking silicon micro-robot capable of carrying loads. The polyimide joint based robot could carry loads more than 30 times the dead-weight of the robot itself. The maximum measured walking speed was 6 mm/s with potential to improve by modifying the steering. The challenge for the future is to create teleoperated and autonomous micro-robots on a single silicon chip.

Rochester Institute of Technology

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

ELECTROSTATIC FORCE MOVIE

EMs – Actuators **DIGITAL LIGHT PROJECTION SYSTEM TIR** prism www.TI.com (optional) R,G,B DMD (R,G,B) Integrator rod (optional) Color disc (R,G,B) 1-Chip **InFocus** DMD projector - 0 Page 27

TI DLP - ELECTROSTATIC MIRRORS

17 4 M 64	Manager R.	20200.410	1992.	The second	276222
•					
			•	•	•
•		-			

www.TI.com

Torrisonal Mirrors Can Tilt Along One Axis

> Rochester Institute of Technology Microelectronic Engineering

> > © April 18, 2011 Dr. Lynn Fuller

ELECTROSTATIC MIRROR

MOEMs - Micro Optical Electro Mechanical Systems

Lucent Technologies–Lambda Router (256 mirror fiber optic multiplexer)

Nested Torrisonal Mirrors Can Tilt Along Three Axis

Rochester Institute of Technology

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

© April 18, 2011 Dr. Lynn Fuller

trostatic version of the impact-drive actuator.

ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

- 1. Actuator can generate high power
- 2. Maintain a position precisely

Page 33

3. Move a long distance.

ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

Figure 4: SEM view of the actuator

Rochester Institute of Technology

Microelectronic Engineering

FABRICATION PROCESS

Figure 3 shows the fabrication process. We made the actuator from a silicon wafer by using dry bulk micromachining.

(a) First, we apply an aluminum layer on the 255μ mthick silicon wafer and patterned aluminum to define an external wall and fixed electrodes. The same pattern was formed on the backside by photolithography for fixed parts like anchor and driving electrode.

(b) We perform ICP-RIE from the backside of the wafer and define the recess to release the movable structure. In this time, fixed parts are not etched.

(c) After photoresist removal by O_2 plasma ashing, the wafer is bonded on a Pyrex glass by anodic bonding.

(d) The second lithography on the front side defines the mass and suspensions.

(e) After dicing the wafer into individual samples, ICP-RIE is performed from the front side.

(f) We remove the photoresist mask and perform ICP-RIE again. (delay-masking process [3]) Movable parts can be released from top glass.

(g) Finally, a glass is bonded on top of the sample to encapsulate the structures completely.

© April 18, 2011 Dr. Lynn Fuller

ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

Testing

Figure shows test results for 1Hz actuation, each impact gives 20 nm displacement

Lifetime looks good. Test for 1 month, 550 million collisions, no visible problems

Energy was supplied to actuator by wireless RF transmision

Figure 7: Displacement of one impact

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

Ms – Actuators **ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR** EIM for X -axis RF Y-axis Controler control X-axis Antenna EIM and rails Multi-mass EIM Rails for Y-axis for Y-axis Figure 9: Wireless energy supply system Figure 10: Micro X-Y stage Rochester Institute of Technology Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

Conclusion A New type of actuator is described Diven by electrostatic force ~15 nm per impact at 100 Volts Speed of 2.7 um/sec at 200 Hz Life greater than 550 million impacts

Rochester Institute of Technology

Microelectronic Engineering

SHUFFLE MOTOR MOVIES

PICTURES & MOVIES OF ELECTROSTATIC COMB DRIVE

Movies at <u>www.sandia.gov</u>

Rochester Institute of Technology

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

PICTURES & MOVIES OF ELECTROSTATIC COMB DRIVE

Movies at <u>www.sandia.gov</u>

Rochester Institute of Technology Microelectronic Engineering

MECHANICAL PROPERTIES

	Densi	ity Youngs	s Yield	Ultimate	Knoop	Poisson's
		Modul	is Sti	rength	Hardn	less Ratio
£	gm/cm ³	10 ¹² dyne/cm ²	10^{10}	dyne/cm ²	Kgm/m	m^2
Single Crystal Silicon	2.33	1.9	12	15	850	0.28
Poly Silicon	2.33	1.5	12	18	850	0.28
Silicon Dioxide	2.19	0.73	8.4	16	570	0.3
Silicon Nitride	3.44	3.85	14	28	3486	0.3
Aluminum	2.7	0.68	17		150	0.334
Nickel	8.9	2.07	59	310	112	0.31
Chrome	7.19	2.54		83	170	0.3
Copper	8.96	1.20	33	209		0.308
Gold	19.3	0.78		103		0.44
Tungsten	19.3	4.1	4	98	350	0.28
Titanium	4.5	1.05	140	220	100	0.34
Tantalum	16.6	1.86		35	124	0.35
Rochester Institute	of Technology			10 dyne/cr	$m^2 = 1 m^2$	ewton/m ²
Microelectronic En	gineering		_		Metals	sHandbook 🅢
	© Ap	ril 18, 2011 Dr. Lynn	Fuller	- Pa	nge 45	

CALCULATOR FOR DIAPHRAGM DEFLECTIONS

Rochester Institute of	of Technol	ogy					5-Apr-06	
Dr. Lynn Fuller	Iller Microelectronic Engineering, 82 L				orial Dr., Roches	ster, NY 14	4623	
Deflection Ymax = 0	.0151 P L ⁴	(1-Nu ²)/EH ³	}	Ymax =	0.17	μm		
P = Pressu	ure			P =	15	lbs/in2		
L = Length	of side of s	square diap	hragm	L =	1000	μm		
E = Young	s Modulus			E =	1.90E+11	N/m2		
Nu = Poiss	sons Ratio			Nu =	0.32			
H = Diaphr	agm Thickr	ness		H =	35	μm		
				P =	1.03E+05	Pascal		
Stress = $0.3 P (L/H)^2$	(at center	of each ed	lge)	Stress =	2.53E+07	Pascal		
P = Pressu	Pressure Yield			Strength =	1.20E+10	Pascal		
L = Square	Diaphragn	n Side Leng	th					
H = Diaphr	agm Thickr	ness						
Capacitance = eoer	Area/d			C =	7.97E-11	F		
eo = Perm	itivitty of fre	e space = 8	3.85E-14 F	/cm				
er = relativ	e permitivitt	y = 1 for air		Area =	9.00E-02	cm2		
Area = are	a of plates :	x number o	f plates	N =	1			
d = distanc	d = distance between plates			d =	1	μm		
		If round plates, [0	μm		
		lf :	square plat	es, Side =	3000	μm		
Rochester	r Institute of T	Technology						
Microelec	tronic Engin	eering						

DIAPHRAGM DEFORMATION MOVIE

DIAPHRAGM STRESS MOVIE

MAGNETIC TORSIONAL MIRROR

MAGNETIC DEVICES

Magnetic flux density of a permanent magnet B is given by the manufacturer in units of weber/sq.meter or Tesla. (some of the magnets we use in MEMS are 2mm in diameter and have B=0.5 Tesla)

Magnetic flux density **B** in the center of a coil

$$B_{coil} = N * B_{loop}$$
 where $B_{loop} = \frac{\mu_0}{4\pi} \left(\frac{2\pi R^2 I}{(z^2 + R^2)^{3/2}} \right)$

The magnetic pole strength is m (webers) = BA where A is the pole area

The force between two poles is Force = $\frac{\text{m1 m2}}{\mu \text{o z}}$

 $\mu o = 4\pi x 10^{-7} \text{ w}^2/\text{Nm}^2$

MAGNETIC DEVICES

Force on a straight conductor in a uniform magnetic field.

$\mathbf{F} = \mathbf{I} \quad \mathbf{L} \mathbf{X} \mathbf{B}$

Force on a coil with current I in a uniform magnetic field

$$F = \frac{(m_m m_{coil})}{\mu_o z} = \frac{\frac{\mu_0}{4\pi} \left(\frac{2\pi R^2 I}{(z^2 + R^2)^{3/2}}\right) (LW) B_m}{\mu_o z}$$

Rochester Institute of Technology

Microelectronic Engineering

CALCULATOR FOR DIAPHRAGM DEFLECTIONS

Pressure F	ressure Force = Pressure x Area Fpress =		1.03E-01	Ν					
Bectroma	gnetic For	ce = I L B		Fn	nagnetic =	1.88E-03	N		
Assuming	a constant	field streng	th B from a	Rma	ax of Coil =	1000	μm		
permanent	magnet th	en, Lorentz	Force = 1L	B Rm	nin of Coil =	500	μm		
where I is t	<u>he current i</u>	in a coil of l	ength L, I	Number of t	turns (N) =	40	turns		
L =~ 2 pi l	Rave x N, F	Rave = (Rma	ax+Rmin)/2	Length	of coil (L) =	1.88E-01	m		
				0	Current (I) =	0.02	amperes		
			Magne	et Field Stre	ength (B) =	0.5	Tesla		
Electroma	gnetic For	rce =							
		distar	nce betweer	n magnet a	nd coil, d =	300	μm		
		(• 1	radius o	fcoil,Rc =	750	μm		
F = -	3d	$\frac{\mathrm{NI}\mu_0\pi\mathrm{Rc}^2}{\mathrm{(B_mA_m)}}$		radius c	of magnet =	2000	μm		
• 2	$(d^2 + Rc^2)^{5/2}$	^{5/2} [μ ₀ π]		Fn	nagnetic =	3.70E+00	N		
Where d is distance between coil and magnet									
N is nut	N is number of turns								
I is curr Bm is m	I is current Bm is magnet field strength								
Am is n	nagnet area	5. C.		Cheng eq.	6-196				
Materials	Materials Mechanical Properties			10 dynes/ci	<u>m2 = 1 N/n</u>	n2 = 1 Pascal			
	Yield Stren	igth	Youngs Modulus		Nu				
0 10111	xE10 dyne	s/cm2	xE12 dynes/cm2			Select only one	e		
Si3N4	14		3.85		0.3	0			
SiO2	8.4		0.73		0.3	0			
Si	12		1.9		0.32	1			

Rochester Institute of Technology

Microelectronic Engineering

© April 18, 2011 Dr. Lynn Fuller

ls – Actuators **MEMS THERMAL ACTUATOR AND POSITION SENSOR** AGif - UNREGISTERED Date: 12/11/200 **3-Dimensional Interactive Display** Time: 13:47:07 f . UNREGISTERED Veeco Date: 12/11/200 **3-Dimensional Interactive Display** Veeco Time: 14:20:21 29.7 Surface Stats: 25.0 irface Stats: Ra: 4.67e+000 um 20.0 a: 2.29e+000 um Rq: 5.97e+000 um 20.0 15.0 q: 3.12e+000 um Rt: 5.17e+001 um : 4.82e+001 um 10.0 Measurement Info: 50 Magnification: 2.51 easurement Info: agnification: 2.51 Measurement Mode: Sampling 3.95e+000 u easurement Mode. V impling: 3.95e+000 u Array Size: 1207 X 119 10.0 rray Size: 1184 X 118 -15.0 4.7 mm -15.0 4.7 mm Title: 'itle: Note: ote: AGif - UNREGISTERED Date: 12/11/200 **3-Dimensional Interactive Display** Veeco Time: 10:37:50 6-00-0 Surface Stats: Ra: 3.15e+000 um Rq: 4.20e+000 um Rt: 1.02e+002 um 3 Measurement Info: Magnification: 2.51 Measurement Mode: 1 Sampling: 3.95e+000 ur Array Size: 1170 X 1189 4.7 mr Title: Note: Rochester Institute of Technology Microelectronic Engineering © April 18, 2011 Dr. Lynn Fuller Page 58

VERTICAL DISPLACEMENT

Iheat (mA)	Vout (mV)	Z-deflection (um) vecco
0	11.8	-4
20	11.3	-2.75
30	10.6	-1.6
40	8.7	-0.65
50	6.2	0.35
60	1.3	2.65
66	-17.4	17.5
70	-21.7	22.2

Veeco NT1100 Increase heater current Measure z-displacement and Vout

Rochester Institute of Technology

Microelectronic Engineering

REFERENCES

- 1. "Microsensors," Muller, Howe, Senturia, Smith and White, IEEE Press, NY, NY 1991.
- 2. "Sensor Technology and Devices," Ristic, L.J., Artech House, London, 1994.
- 3. IEEE Journal of Microelectromechanical Systems
- 4. "Electrostatic Impact-Drive Microactuator", M.Mita, et.el., University of Tokyo, IEEE, 2001
- 5. "A walking Silicon Micro-Robot", Thorbjorn Ebefors, et.el., Department of signals, sensors and Systems, Royal Institute of technology, Stockholm, Sweden, 10th Int. conference on solid-State Sensors and Actuators, Sendai Japan, June 7-10, 1999.
- 6. MEMs Wing Technology for a battery-Powered Ornithopter, T. Nick Pornsin-sirirak, Caltech Micromachining Laboratory, Pasadena, CA, 91125, IEEE, 2000.

V	ochester Institute of Technology
Mi	licroelectronic Engineering
	© April 18, 2011 Dr. Lynn Fuller Page 61

HOMEWORK - ACTUATORS

- 1. What makes the shuffle motors shown in this lecture move?
- 2. Go to <u>www.sandia.gov</u> and explore their Center for Integrated Nanotechnologies activity. Write a sentence about what you find.
- 3. Visit www-mtl.mit.edu/semisubway and visit "Laboratories", MEMS Clearing House, and MEMS Exchange. Write a sentence about what you find.

Rochester Institute of Technology

Microelectronic Engineering