ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Resist Exposure and Development (Development Rate Monitor)

Dr. Lynn Fuller

Motorola Professor Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 <u>LFFEEE@rit.edu</u> http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

3-29-2005 lec_drm.ppt

© 29 March, 2005 Dr. Lynn Fuller, Motorola Professor

OUTLINE

Introduction Modeling of Exposure in Photoresist ABC Parameters Modeling of Development Measurement of Development Rate Signal vs Time Thickness vs Time Thickness vs Exposure Gamma Development Rate Monitor References Homework

Rochester Institute of Technology

Microelectronic Engineering

INTRODUCTION

Measurement of the development rate of photoresist versus time gives a host of information about the resist, developer, reflections from the substrate and system parameters such as gamma.

© 29 March, 2005 Dr. Lynn Fuller, Motorola Professor

A,B,C PARAMETERS FOR EXPOSURE

A,B,C Exposure Parameters for AZ 1350J

1	A B	С	n
	(μm ⁻¹) (μm	⁻¹) (cm ² /mj)
436nm	0.54 0.0	0.014	1.68
405nm	0.86 0.0	07 0.018	1.70
365nm	0.74 0.2	20 0.012	1.72

Rochester Institute of Technology

Microelectronic Engineering

© 29 March, 2005 Dr. Lynn Fuller, Motorola Professor

PERKIN ELMER DRM

Rochester Institute of Technology Microelectronic Engineering

© 29 March, 2005 Dr. Lynn Fuller, Motorola Professor

RAW DATA FROM 256 PHOTO DIODES

=		Reduce Data Wafer ID is 825/934		-
Setup Template is	standard.		Reduction by Weighted 7 Point	Average
Reduce Template is	standard.			
				1 12 33 44 55 16 17 18 19 100 111 112 113 14
Cursor At Scan 807 of Pixel 255 of 251	857(684.800 Secs) 6 (Intensity 29)	Zone Texposure Energy 0.00 mj	Include Exclude	Mark elect
Paduaa	Templates Match <u>L</u> eft M	love Up Move Down Match F	Light Cancel	
Rochester I	nstitute of Technology			
Microelectre	onic Engineering			

PIXEL #100 SIGNAL VERSUS TIME

ZONE THICKNESS VERSUS TIME

THICKNESS VERSUS TIME FAMILY

THICKNESS VERSUS LOG DOSE

DISSOLUTION RATE VERSUS THICKNESS

THICKNESS TIMES GAMMA VERSUS TIME

TIME TO CLEAR VERSUS ZONE POSITION

INITIAL THICKNESS VERSUS ZONE POSITION

LOG EXPOSURE VERSUS TIME

REFERENCES

1. Introduction to Microlithography, Second Edition, Edited by Larry F. Thompson, C.Grant Willson and Murrae J. Bowden, ACS Professional Reference Book, American Chemical Society, Washington, DC 1994. 2. "Resist Modeling and Profile Simulation", A.R.Neureuther, W.G.Oldham, Solid State Technology, May 1985. 3. "A General Simulator for VLSI Lithography and Etching Processes: Part I - Application to Projection Lithography", W. G. Oldham, S.N. Nandgaokar, A.R.Neureuther, M.O'Toole, IÉEE Transactions on Electron Devices, Vol. ED-26, No.4, April 1979. 4. "A General Simulator for VLSI Lithography and Etching Processes: Part II - Application to Deposition and Etching", W. G. Oldham, A.R.Neureuther, C. Sung, John L. Reynolds, Š.N. Nandgaonkar, IEEE Transactions on Electron Devices, Vol. ED-27, No.8, August 1980. 5. "Optical Lithography", Frederick H. Dill, IEEE Transactions on Electron Devices, Vol. ED-32, No.7. July 1975. 6. Microlithography, Sheats and Smith

Rochester Institute of Technology

Microelectronic Engineering

© 29 March, 2005 Dr. Lynn Fuller, Motorola Professor

