ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Introduction to Reduction Steppers

Dr. Lynn Fuller

Webpage: <u>http://www.rit.edu/~lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: <u>LFFEEE@rit.edu</u> Department Webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Page 1

Revision Date: 10-12-2007 LEC STEP.PPT

GCA STEPPER

g-Line Stepper $\lambda = 436 \text{ nm}$ NA = 0.28 $\sigma = 0.6$ Resolution $0.6 \lambda / NA = \sim 1 \mu \text{m}$ $20 \ge 20 \text{ mm}$ Field Size Depth of Focus $= k_2 \lambda / (NA)^2 = 3 \mu \text{m}$

Rochester Institute of Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

CANON FPA-2000 i1 STEPPER

i-Line Stepper $\lambda = 365 \text{ nm}$ NA = 0.52, $\sigma = 0.6$ Resolution = 0.7 λ / NA = ~0.5 μ m 20 x 20 mm Field Size Depth of focus = $k_2 \lambda/(NA)^2$ = 0.8 μ m Rochester Institute bf Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

ASML 5500/90 STEPPER

KrF Excimer Laser Stepper $\lambda = 248 \text{ nm}$ NA = 0.52, $\sigma = 0.6$ Resolution = 0.7 λ / NA = ~0.3 μ m 20 x 20 mm Field Size Depth of Focus = $k_2 \lambda/(NA)^2$ ~ 0.64 μ m

Rochester Institute of Techn Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

OUTLINE

GCA Stepper X-Y Stage Laser Interferometer **GCA Reticle MEBES Mask Making User Interface Basic Stepper Jobs Advanced** Stepper Jobs **Irradiance** Measurement **Best Focus & Exposure Baseline Correction Automatic Wafer Alignment System** Canon APA 2000 i1 Stepper **Canon Reticle Canon Stepper Jobs Mini Operation Manual** ASML 5500/90 Stepper

Microelectronic Engineering

GCA STEPPER

g-Line Stepper $\lambda = 436 \text{ nm}$ NA = 0.28 $\sigma = 0.6$ Resolution 0.6 λ / NA = ~1µm 20 x 20 mm Field Size Depth of Focus = $k_2 \lambda/(NA)^2 = 3 \mu m$

Rochester Institute of Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

ELECTRONICS RACK

PLANE MIRROR INTERFEROMETR

MEBES

- 5. Bias or bloat patters as necessary
- 6. Add titles, barcodes and labels
- 7. Add Fiducial marks

Rochester Institute of Technology

Microelectronic Engineering

DATA PREP

© October 12, 2007 Dr. Lynn Fuller

Mentor- ICGraph files (filename.iccel), all layers, polygons with up to 200 vertices

GDS2- CALMA files (old IC design tool) (filename.gds), all layers, polygons

MEBES- files for electron beam maskmaking tool, each file one layer, trapezoids only

 $BIAS + 1 \mu m$

EXAMPLE OF A MEBES JOB DECK

SLICE EDIT, 14 OPTICON AA=0.5, BA=0.5, PA, SA=40, VA=10 14 means 5" by 5" glass AA means address all levels = $0.5 \mu m$ BA means beam size all levels = $0.5 \mu m$ PA means all levels positive resist SA means all levels spot current 40 nA VA means all levels acceleration = 10KV

MTITLE 1, PMOS DIFFUSION LAYER MTITLE 2, PMOS OXIDE LAYER MTITLE 3, PMOS CONTACT CUTS MTITLE 4, PMOS METAL LAYER DTITLE A, RIT SHORT COURSE MASK ITITLE A, BARCODE ORIENT A, ITITLE, TITLEROT=90, LOC=116000, 60000

CHIP1, (1,SHORT-LVL-01, RC=15), \$(2,SHORT-LVL-02, RC=15), \$(3,SHORT-LVL-03, RC=15), \$(4,SHORT-LVL-04, RC=15), ROWS 51918/51915,2,21170 first level of SHORTCOURSE CHIP maskset

center placed at y=5.1918 cm and repeated twice at x=5.1915 cm and 2.1170 cm

CHIP2, (1,TEST-LVL-01, RC=15), \$(2,TEST-LVL-02, RC=15), \$(3,TEST-LVL-03, RC=15), \$(4,TEST-LVL-04, RC=15), ROWS 51918/51915,2,21170

END Rochester Institute of Technology

Microelectronic Engineering

first level of PMOS TESTCHIP

center placed at y=7.3082 cm and repeated twice at x=5.1915 cm and 2.1170 cm

© October 12, 2007 Dr. Lynn Fuller

Steppers an ohs

EXAMPLE OF A MEBES PLOT JOB

2/25/93 9:12:23 MEBES 967 **REV**, 4.6 **SPECIFICATION FILE: JOB:SHORT.JB DTITLE: RIT SHORT COURSE MASK ITITLE: BARCODE MTITLE: PMOS DIFFUSION LAYER** CASSETTE TYPE ID:14 **LEVEL PLOTTED: 1 JOB SCALE: 1 JOB SCALE: 1.000000** ADDRESSING: 0.500000 MICRONS PLOT SCALE: 1.00 TO 1 CM

ID PATTERN

2.

TESTLVL.01

SHORTLVL.01 20000.00

3. GCA6700F1.05 2000.00

Rochester Institute of Technology

20000.00

X DIMENSION

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

20000.00

20000.00

2000.00

HUMAN INTERFACE TO STEPPER

LOG IN

LOG IN [10,10] password OPER LOG IN [13,35] password CLASS

BASIC COMMANDS

IASLOAD - Loads Integrated Alignment System Software

RESET - Resets Reticle Management Hardware

LISTF[XX,YY] - Lists Job Filenames in [XX,YY]account

SPEC jobname- Creates a Job File

EDIT filename - Change a Job File

- EXPO jobname Exposure Matrix with Different Exposue and Focus in Each Die Site
- EXEC jobname Executes a Job, Only One Exposue Sequence (Pass)

EXEC jobname\passname1,passname2 - Executes a Job, More Than One Exposue Sequence (Pass)

COPY [XX,YY]jobname [WW,ZZ]newjobname – copies a Job to a new jobname

Rochester Institute of Technology

Microelectronic Engineering

GCA ALIGNMENT KEYS

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

SECONDARY ALIGNMENT MARKS

Alignment marks must be 76.2 mm apart to match the spacing on the alignment microscope.

BASIC STEPPER JOBS

Wafer Diameter **Step Size in X How Many Columns Step Size in Y How Many Rows Right Alignment Die Right Key Offset** Left Alignment Die Left Key Offset Pass 1 Exposure Focus Shift **Aperture Setting Aperture Offset**

100 mm 76.2mm/5mm=15.24 and 76.2mm/15=5.08 mm 100/5.08 = 19 minus 1 because of flat = 18 5.08mm 18 **R**: 11 **C:** 16 **Y:** 1.88468 mm **X:** -1.94205 mm **C: R**: 2 11 **Y**: **X:** 1.88468 mm -1.94205 mm 0.6 seconds 250 **X: Y**: 0 0 XL=37.5 mm, XR=37.5, YF=37.5, YR=37.5 XL=0, XR=0, YF=0, YR=0

Rochester Institute of Technology

Microelectronic Engineering

EXAMPLE OF SIMPLE (ONE PASS) STEPPER JOB

EXAMPLE: (Device Chip Only, One Level Per Reticle, One Die Per Reticle)

This example is for jobs where there is only a device chip on the wafer. The device chip reticle patterns are placed on the photomask one level per piece of quartz and the center of the chip is placed at the center of the reticle. The maximum size of the device chip is 10000 um by 10000 um. Such a job is run by the command EXEC JOBNAME\PASS_1_NAME for all lithography steps.

The first level must have alignment marks in two die locations 76.2mm apart. An easy way to achieve this is to divide 76.2 mm by the die size and truncate that number creating an integer. Then divide 76.2 by this integer (or any integer smaller than this) to get the die-to-die spacing. for example, a 4000 X 4000 micron die gives 76.2mm/4mm = 19.05; thus the die-to-die space is 76.2mm/19 = 4.0105263mm This spacing leaves 10 microns between die for sawing which is tight. Using n=18 gives 76.2mm/18 = 4.23333 mm die-to-die spacing, leaving 233 microns between die for sawing. Which is easy. The number of die per row is equal to the wafer diameter divided by the step size. Example: 100 mm/4.2333mm = 23 die.

GCA steppers are programmed in an interactive conversational mode using the EDIT **FSPEC** commander in the items that may change from job to job are highlighted in the verse ple below.

EXAMPLE OF SIMPLE (ONE PASS) STEPPER JOB

EXAMPLE OF SIMPLE (ONE PASS) STEPPER JOB

EXAMPLE OF 4 LEVEL PER MASK STEPPER JOB

EXAMPLE: (Device Chip Only, Four Levels of One Die Per Reticle)

This example is for jobs where there is only a device chip on the wafer. The device chip reticle patterns are placed on the photomask four levels per mask. Level 1 in quadrant 2, level 2 in quadrant 1, level 3 in quadrant 4, level 4 in quadrant 3 as viewed from the chrome side of the mask with the RIT at the bottom. The masking apertures are offset to block out all but the desired pattern. The images are shifted to the center of the row and column die location. The global alignment mark is on level one and is located with respect to the center of the alignment die at the given row and column. The center of the chip design in the second quadrant is located at X= -20mm and Y= -20mm with respect to the center of the reticle, and will thus be placed off center on the wafer by X= -4mm and Y= -4mm so the first pass should have shifts of X= 4mm and Y= 4mm.

Such a job is run by the command:

EXEC JOBNAME\PASS_1_NAME for the first lithography step EXEC JOBNAME\PASS_2_NAME for the second lithography step EXEC JOBNAME\PASS_3_NAME for the third lithography step EXEC JOBNAME\PASS_4_NAME for the fourth lithography step use pass 1,2,3,4 again for levels 5,6,7,8, etc.

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

4

Chrome Side

 \mathbf{N}

RIT

EXAMPLE OF 4 LEVEL PER MASK STEPPER JOB

PASS 1

	< <pass>></pass>			
	NAME:	1		
	PASS COMMENT:			
		LEVEL 1, 2ND	QUADRANT, FROM	CHROME SIDE
	EXPOSURE (SEC.):	0.350		
	FOCUS SETTING:	250		
	DXD BATCH CHARACTERIZA	TION SIZE (-1=N	O DXD): -1	
	AWA PARAMETER FILE NAME	E (NO EXTENSIT	ON) (NONE)	
	SHIFT	,		
	IN X:	+4.00		
	IN Y:	+4.00		
	RETICLE BAR CODE: NONE			
	XL MASKING APERTURE SET	TING:	36.50000	
	XR MASKING APERTURE SET	TING:	36.50000	
	YF MASKING APERTURE SET	TING:	36.50000	
	YR MASKING APERTURE SET	TING:	36.50000	
	XL MASKING APERTURE OFF	SET:	20.00000	
	XR MASKING APERTURE OFF	SET:	-20.00000	
	YF MASKING APERTURE OFF	SET:	-20.00000	
	YR MASKING APERTURE OFF	SET:	20.00000	
	XL RETICLE ALIGNMENT OFF	SET:		
	XR RETICLE ALIGNMENT OFF	EST:		
	Y RETICLE ALIGNMENT OFFS	ET:		
	RETICLE ALIGNMENT MARK	PHASE (P,*N,X):	N	
	A-RRAY OR P-LUG: A			
	< <end passset-up="">></end>			
	SAVE PASS? (*Y/N):			
Rochester	Institute of Technology			
Microelect	tronic Engineering			
	© October 12, 20	07 Dr. Lynn Ful	ller	Page 28

 \square

PASS 2

< <pass>></pass>		
NAME:	2	
PASS COMMENT:		
	LEVEL 2, 1st Q	UADRANT, FROM CHROME SIDE
EXPOSURE (SEC.):	0.350	
FOCUS SETTING:	250	
DXD BATCH CHARACTERIZA	TION SIZE (-1=N	O DXD): -1
AWA PARAMETER FILE NAME	E (NO EXTENSIT	ON) (NONE)
SHIFT		
IN X:	-4.00	
IN Y:	+4.00	
RETICLE BAR CODE: NONE		
XL MASKING APERTURE SET	TING:	36.50000
XR MASKING APERTURE SET	TING:	36.50000
YF MASKING APERTURE SET	TING:	36.50000
YR MASKING APERTURE SET	TING:	36.50000
	SEI:	20.00000
	-SET:	-20.00000
		20.00000
TR MASKING APERTURE OFF	-SET:	-20.00000
XL RETICLE ALIGNMENT OFF	SET:	
XR RETICLE ALIGNMENT OFF	EST:	
Y RETICLE ALIGNMENT OFFS	ET:	
RETICLE ALIGNMENT MARK	PHASE (P,*N,X):	Ν
A-RRAY OR P-LUG: A		
< <end passset-up="">></end>		
SAVE PASS? (*Y/N):		
Rochester Institute of Technology		
Microelectronic Engineering		
© October 12.	2007 Dr. Lynn F	Fuller 🗏 Page 20

 \square

© October 12, 2007 Dr. Lynn Fuller

PASS 3

	< <pass>></pass>			
	NAME:	3		
	PASS COMMENT:			
		LEVEL 3, 4 TH Q	UADRANT, FROM CH	IROME SIDE
	EXPOSURE (SEC.):	0.350		
	FOCUS SETTING:	250		
	DXD BATCH CHARACTERIZA	TION SIZE (-1=N	IO DXD): -1	
	AWA PARAMETER FILE NAM	E (NO EXTENSIT	ON) (NONE)	
	SHIFT			
	IN X:	-4.00		
	IN Y:	-4.00		
	RETICLE BAR CODE: NONE			
	XL MASKING APERTURE SET	TING:	36.50000	
	XR MASKING APERTURE SE	ITING:	36.50000	
	YF MASKING APERTURE SET	TING:	36.50000	
	YR MASKING APERTURE SE	I HNG:	36.50000	
			00 00000	
			20.00000	
		-SEI: -OET.	-20.00000	
		-3E1. -9ET.	20.00000	
	TR MASKING AFERTORE OF	-3ET.	-20.00000	
		SET		
	XR RETICLE ALIGNMENT OF	FST		
	Y RETICLE ALIGNMENT OFF	SET		
	RETICLE ALIGNMENT MARK	PHASE (P.*N.X):	Ν	
	A-RRAY OR P-LUG: A	- ()))		
	< <end passset-up="">></end>			
	SAVE PASS? (*Y/N):			
Rochest	ter Institute of Technology			
Microel	ectronic Engineering			

© October 12, 2007 Dr. Lynn Fuller

PASS 4

<<	PASS>>			
NA	AME:	4		
PA	ASS COMMENT:			
		LEVEL 4, 3RD 0	QUADRANT, FROM CH	IROME SIDE
ΕX	(POSURE (SEC.):	0.350		
FC	DCUS SETTING:	250		
D>	XD BATCH CHARACTERIZAT	ION SIZE (-1=N	O DXD): -1	
AV	VA PARAMETER FILE NAME	(NO EXTENSIT	ON) (NONE)	
SF	HIFT	(- / (- /	
IN	X:	+4.00		
IN	Y:	-4.00		
RE	ETICLE BAR CODE: NONE			
XL	MASKING APERTURE SET	TING:	36.50000	
XF	R MASKING APERTURE SET	TING:	36.50000	
YF	MASKING APERTURE SET	TING:	36.50000	
YF	R MASKING APERTURE SET	TING:	36.50000	
XL	MASKING APERTURE OFF	SET:	-20.00000	
XF	R MASKING APERTURE OFF	SET:	20.00000	
YF	MASKING APERTURE OFF	SET:	20.00000	
YF	R MASKING APERTURE OFF	SET:	-20.00000	
XL	RETICLE ALIGNMENT OFF	SET:		
XF	R RETICLE ALIGNMENT OFF	EST:		
Y	RETICLE ALIGNMENT OFFS	ET:		
RE	ETICLE ALIGNMENT MARK P	HASE (P.*N.X):	Ν	
A-	RRAY OR P-LUG: A			
<<	END PASSSET-UP>>			
SA	VE PASS? (*Y/N):			
Rochester I	Institute of Technology			
Microelectr	onic Engineering			
	© October 12	2007 Dr Lynn E	Fuller	Dogo 21
				rage 51

ADVANCED STEPPER JOBS

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Steppers and **ADVANCED STEPPER JOBS (CONTINUED)** Each Level has Three Passes, Test Chip - Device Chip - Test Site **Each Plate has Four Levels** Alignment is Always to the Test Chip Step Size is Selected to be Compatible with Semi-**Automated Tester** GCA 6700 Steppers, 5X, G-Line, Positive Resist, 3 **Overlay Vernier and CD Linewidth Measurements** made each Level RIT

Chrome Side

EXEC [10,20]CMOS0944A.FAC\3T,3D,OPEN

by setting the aperture blades to cover three of the levels a single level can be exposed. Combined with the correct shift of the wafer for each level the images can be made to overlay.

Rochester Institute of Technology

Microelectronic Engineering

EXAMPLE MASK SET NEEDED FOR FACTORY JOB

Testchip Plate 1,2,3 Plate 1 has levels 1,2,3,4 Plate 2 has levels 5,6,7,8 Plate 3 has levels 9,10,11

Analog Chip 971 Plate 1 has levels 1,2,3,4 Plate 2 has levels 5,6,8,9 Level 4 and 7 are the same

Blank Glass

To do a level 7 (n+ D/S) job use Testchip Plate 2 and Analog Chip Plate 1 and Blank Glass and stepper job: EXEC [10,20]CMOS0944B.FAC\7T,7D,OPEN Rochester Institute of Technology Microelectronic Engineering

IRRADIANCE MEASUREMENT

Run any job (example: EXEC MAXIMUS) and load plain glass plate, set radiometer on the glass plate and close the illumination condenser housing, open the shutter using the manual shutter switch, measure the irradiance and multiply by 25 to get irradiance, I, at the wafer.

With the shutter select switch in the timed position the shutter will actually be opened the exact time stated in the execute or expose job. The exposure E will equal I times t. (E = it)

In the integrate position the dose will be relative to the dose obtained for a 0.1 second open shutter measured during machine set up in February 1991. At that time with the lamp in use the 0.1 seconds was equal to 25 mj/cm2. Thus a 0.1 time setting in the integrate position will always give 25 mj/cm2 but the time may be longer if the lamp output is lower or shorter if the lamp output is higher. Example: 0.5

Rochester Institute of Technology

Microelectronic Engineering

BEST FOCUS & EXPOSURE

To experimentally determine the best focus and exposure for a stepper one can use a special photomask that has focus stars and resolution targets and a special stepper job that sets up an array in which each row is at a different focus setting and each column is at a different exposure setting.

The RIT mask and stepper job (EXPO FOCEX.NEW) makes it possible to view the entire 7 by 7 array without moving the microscope stage. This makes it easy to compare focus stars and resolution patterns.

FOCUS STARS & RESOLUTION STRUCTURES

Focus stars are 2 μ m at outside perimeter and each tick mark is 0.5 μ m. The image with the smallest diameter center in a given column is the row of best focus.

Resolution structures are 1.0, 1.5 and 2.0 μ m lines and spaces in both horizontal and vertical orientation. The column with equal lines and spaces is the best exposure.

Rochester Institute of Technology

Microelectronic Engineering

FOCEX.NEW

To experimentally determine the best focus and exposure for a stepper one can use a special photomask that has focus starts and resolution targets and a special stepper job that sets up an array in which each row is at a different focus setting and each column is at a different exposure setting.

The new mask and stepper job (new in January 1996) makes is possible to view the entire 7 by 7 array without moving the microscope stage. This makes it easy to compare focus stars and resolution patterns.

THE PROCEEDURE:

 1. Find and load the new focus exposure mask labeled FOCEX.NEW. This mask has a focus star and resloution targets with patterns from 2.0 to 0.5 micrometers
 2. Use the stepper command EXPO FOCEX.NEW In the stepper dialog use the following settings number of rows = 7 number of columns = 7 starting exposure = 0.1 exposure increments = 0.1 starting focus = 220 focus increments =10

> Rochester Institute Microelectronic En

> > © October 12, 2007 Dr. Lynn Fuller

BASELINE CORRECTION

Base Line correction is a precise measurement of the difference between the actual and nominal distance to the center of the optical column from the location of the alignment microscope. Since the wafers are aligned to the alignment reticle then moved under the optical column for exposure, this distance must be know to $\sim 0.1 \mu m$.

To make this measurement a special mask with optical overlay verniers is used with a special exposure sequence. A wafer is exposed with the first level and after development is placed in the stepper for exposure of the second level. The second level is aligned and is shifted during exposure so that the verniers can interlock. Any error must be due to an error in the base line correction number.

The error in the base line correction is a statistical quantity. Ideally the number is randomly distributed around zero with a small variance. These fluctuations are caused by slight errors in loading the mask, alignment errors, temperature change, etc. To make good working devices at $1 \mu m$ alignment must be good to about 0.3 μm .

Rochester Institute of Technology

Microelectronic Engineering

OVERLAY VERNIERS

GCA AUTOMATIC WAFER ALIGNMENT SYSTEM

Digital pattern recognition system is used to auto align wafers

© October 12, 2007 Dr. Lynn Fuller

CANON FPA-2000 i1 STEPPER

i-Line Stepper $\lambda = 365 \text{ nm}$ NA = 0.52, $\sigma = 0.6$ Resolution = 0.7 λ / NA = ~0.5 μ m 20 x 20 mm Field Size Depth of focus = $k_2 \lambda/(NA)^2$ = 0.8 μ m Rochester Institute bf Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

TV PRE ALIGNMENT (TVPA) MARKS

- The TVPA Marks are placed by the designer on designTVPA Marks may be copied from the RITPUB directory
- Dimensions are given for sizes on the wafer
- TVPA Marks are used to adjust for rotation (theta)
- On 6" wafers TVPA marks should be placed on the wafer > 90mm apart, on the front half of the wafer

Rochester Institute of Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

HeNe or B² AA USING B-SCOPE AND C-SCOPE

The B and C scopes are alignment microscopes mounted to the right and back of the lens. These scopes have patterns that match the multimarks (HeNe or B^2 marks) on the wafer and a light intensity detector to determine the alignment signal.

Knowing the location of the y-direction multi-mark on the die, the stage is moved to place the mark under the B-scope (13.0 mm in x-direction). The stage is adjusted slightly in y to give correct alignment signal. The necessary adjustment is recorded. The stage moves the x-direction multi-mark under the C-scope (13.1 mm in y-direction). The stage is adjusted slightly to give correct alignment. The necessary adjustment is recorded. The stage position to center the die under the optical column. The stage moves the die under the optical column. The stage moves the die under the optical column. The stage moves the die under the optical column.

Rochester Institute of Technology

Microelectronic Engineering

i-LINE TV AA USING A SCOPE

Marks on the wafer from a previous level are illuminated through the lens with a small rectangle of i-line light. The reflected light goes through complementary marks on the reticle and is collected by the A scope. The signal is analyzed as the stage is moved slightly. The best alignment position is found and the adjustment is measured. The correct position to center the die under the optical column is calculated and the stage is moved to that location. The die is exposed.

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

STEPPER JOBS AND RELATED FILES/TABLES

(all layers)
 Reticle File (Table) - information about all reticles to be used for this product

Layout File - information about exposure matrix, rows, columns, step size,

(for each layer)
Job? File - Links Layout, Reticle, Shot, Process Files for this layer ?
Shot File Layer ? - exposure dose, focus, blade positions, which locations in matrix are to be exposed or skipped
Process File Layer ? - 1st mask level yes/no, alignment method, compensation, etc.

Rochester Institute of Technology

Microelectronic Engineering

NAMING HIERARCHY

Since these files are all linked together at the end it is convenient to use a naming hierarchy similar to this example for the files needed for the RIT submicron CMOS testchip product (16 characters max):

Jobname: F012subcmos_well Shot file:		SF012subcmos1	Process file: Psubcmos1		
F012subcmos_act		SF012subcmos2	PF012subcmos2		
	F012subcmos stop		SF012subcmos3	PF012sut	ocmos3
	F012subcmos vt		SF012subcmos4	PF012sub	ocmos4
	F012subcmos poly		SF012subcmos5	PF012sub	ocmos5
	F012subcmos Iddn		SF012subcmos6	PF012sub	ocmos6
	F012subcmos lddp		SF012subcmos7	PF012sub	ocmos7
	F012subcmos n+ds		SF012subcmos8	PF012sub	ocmos8
	F012subcmos p+ds		SF012subcmos9	PF012sub	ocmos9
	F012subcmos cc		SF012subcmos10	PF012sut	ocmos10
F012subcmos_m1			SF012subcmos11	PF012subcmos11	
Layout file	: LF012subcmos	Reticle ID	subcmos012nwell	subcmos012poly subcmos012lddn	subcmos012p+ds
Reticle Tab	ole: RF012subcmos		subcmos012stop subcmos012vt	subcmos012lddp subcmos012n+ds	subcmos012m1
	Rochester Institut	te of Technology	An 1	1 level chip requ	uires up to
Microelectronic Engineering			46 na	ames for files an	d reticles
		© Octobe	er 12, 2007 Dr. Lynn Fuller	Page 53	

SUGGESTED NAME CONVENTION FOR RIT JOBS

A991XXXXXX_YYYY

A is the letter **F**,**L**,**S** or **R** where **F** is for Factory jobs, **L** is Laboratory courses jobs, **S** is Short course jobs, **R** is Research jobs

the number **012** is the quarter code

XXXXXXX is any code like EMCR632 or SUBCMOS or PMOS

YYYY is the name of the level like WELL, CC, M1, M2, OX, DIFF

Shot files start with letter **S** Process files start with letter **P** Reticle files start with letter **R**

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Page 54

SA012XXXXXXX YYYY

PA012XXXXXXX YYYY

RA012XXXXXXX YYYY

FILE EDITOR

The various files are created using the edit (ed RT, ed L, ed P, or ed S) command and then linked together using the link (LNKS) command.

The editor is a "form" with 1 or more pages and entries are made to fill out the "form" (or defaults are used)

Example entries are indicated by red type in a gray box as shown below

RF012subcmos

Once the four files are created then they are linked using the link command LNKS

Use the softkeys to save and/or print files

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

BLADE POSITION CALCULATION

Note: Assume the Reticle is opaque outside the chip area. The blade opening should be a little larger than the chip size so divide by 2. For example a 5mm square chip should have blades open a little more than 2.5 mm in each direction. Pick 3 mm. Blade openings should be less than $\frac{1}{2}$ step size, for 6 mm step size that is 3 mm.

SOME CANON COMMANDS

Category	Command	Description
Operations	rpa	retry tv pre align
•	st	load up original job name from hard drive
	st ;c	load job from cpu, original or modified
	h	list of commands
	err	shows last 10 errors
	ld	load wafer
	rrld	unload wafer
	aux fec	turns a normal job into focus/exposure
	qrs	quick reset
	lf	list job files
	cont	restart the current job
job	ed p	edit the process file
•	ed s	edit the shot file
	ed rt	edit the reticle file
	ed l	edit the layout file
	lnk s	link the various job files
	pu	purge (delete) selected files

Rochester Institute of Technology

Microelectronic Engineering

SOME CANON COMMANDS

Category	Command	Description
reticle	rrl	unload reticle from stepper to cassette
	ra	align reticle
	rch	prepare reticle library to accept reticle
	roc	align reticle-idle tool
	rmv	prepare reticle library to remove retile
	rpa	reticle pre alignment (retry tv FRA align)
Alignment	por	pre offset read

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

CANON MINI OPERATION MANUAL

- Load the mask in the reticle tray 1.
 - Remove reticle tray from stepper a)
 - Flip wire latch & remove cover from the tray **b**)
 - Load the mask in the tray chrome side down, c) with the fiducial marks on top and bottom but closer to the right side of the tray.
 - The mask has to be in the correct slot. Factory jobs use a) slot 12.
- Mas lgn

- Run a job 2.
 - Start the stepper job. Type ST steper_jobname <RET> a)

			-		
Lith. Level	Operation #	Retical ID	Stepper Job Name	Process File	Shot File
1	6	NWELL	SUBCMOS_NWELL	PSUBCMOS1	SSUBCMOS1
2	19	ACTIVE	SUBCMOS_ACTIVE	PSUBCMOS2	SSUBCMOS2
3	22	STOP	SUBCMOS_STOP	PSUBCMOS3	SSUBCMOS3
4	30	VT	SUBCMOS_VT	PSUBCMOS4	SSUBCMOS4
5	38	POLY	SUBCMOS_POLY	PSUBCMOS5	SSUBCMOS5
6	41	LDD-N	SUBCMOS_LDDN	PSUBCMOS6	SSUBCMOS6
7	44	LDD-P	SUBCMOS_LDDP	PSUBCMOS7	SSUBCMOS7
8	51	N+DS	SUBCMOS_NDS	PSUBCMOS8	SSUBCMOS8
9	54	P+DS	SUBCMOS_PDS	PSUBCMOS9	SSUBCMOS9
10	60	CC	SUBCMOS_CC	PSUBCMOS10	SSUBCMOS10
11	65	METAL	SUBCMOS_METAL	PSUBCMOS11	SSUBCMOS11
Rochester Institute of Technology			Factory	Stenner	· Iob Nan

Microelectronic Engineering

' Job Names

CANON MINI OPERATION MANUAL

- b) Check that the mask is in the slot shown in the stepper job.
- c) Verify other job details. If any changes are made press enter. If changes are permanent be sure to press F4 (Transmit) so the changes take effect.
- d) Load the wafers and press the flashing light to select that cassette.
- e) Press F1 (Go)
- f) Wait for the mask to be loaded into the stepper and the wafer loaded onto the stage.
- 3) Reticle Alignment
 - a) May see an error "Reticle not aligned"... to manually align the reticle press R/A button on console (or type RPA <RET>). Turn on the Ikegami TV monitor. Align fine FRA2 or FRA1 marks using the joystick (right for x-y, left for Theta) The FRA2 aligned marks should look as shown on the next page.*
 - b) Press CONT button to the right of the right hand joystick.

*Type ROK (ret) to skip reticle alignment.

Rochester Institute of Technology

Microelectronic Engineering

CANON MINI OPERATION MANUAL

- If this is an alignment job and there is an auto alignment failure do the following. 4) Press P/A on the console a)
 - **b**) Press the L button next to the P/A button on console
 - Using the right joystick, move the alignment TVPA mark to center of the cross **c**) hairs on TV monitor
 - Type POR to capture the alignment mark location, repeat as necessary d)
 - Press the R button next to the P/A button on console e)
 - **f**) Using the right Joystick, move the alignment TVPA mark to center of the cross hairs on TV monitor
 - Type POR to capture the alignment mark location, repeat as necessary. g) h)
 - Type RPA, retry pre alignment
 - Press continue
- 5) Fine Alignment – should be automatic

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller
<u>Steppers and Stepper Jobs</u>

CANON MINI OPERATION MANUAL

- 6. Finish Running a Job
 - a) Type RRL<RET> and wait for the mask to be put back in the tray
 - b) Then type RRET to return the elevator holding all the masks to the low position.
 - c) Press the Cont button on the elevator
 - d) Remove your mask and return the tray to the elevator.

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

CANON 4" PIGGY BACK WAFER PROCESS

1st Run Exposure Data

Mask: RIT CMOS WELL&ACTIVE

Stepper Job: F983TC_WELL5x5 (all focus sensors were bypassed)

Exposure: 160 mJ/cm²

Focus: 0.0 um (possible: +/- 50 um)

Coating & Development: Standard Process (6 inch wafer)

The 4 inch wafer was centered on the 6 inch carrier wafer. One drop DI water was used to create enough attraction between the to wafers. Found best *Exposure*: 179 mJ/cm² *and Focus:* -0.6 um

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Steppers and Stepper Jobs

CANON 4" PIGGY BACK WAFER PROCESS

<u>Steppers and Stepper Jobs</u>

ASML 5500/90 STEPPER

KrF Excimer Laser Stepper $\lambda = 248 \text{ nm}$ NA = 0.52, $\sigma = 0.6$ Resolution = 0.7 λ / NA = ~0.3 μ m 20 x 20 mm Field Size Depth of Focus = $k_2 \lambda/(NA)^2$ ~ 0.64 μ m

Rochester Institute of Technology Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

LABORATORY EXERCISES

- 1. Stepper basics.
- 2. Irradiance measurements.
- 3. Focus exposure matrix.
- 4. Alignment demonstration.
- 5. Baseline correction demonstration.
- 6. Automatic wafer alignment demonstration.

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

<u>Steppers and Stepper Jobs</u>

REFERENCES

- 1. MEBES operation manual.
- 2. GCA 6700 operation manual.
- 3. Canon operation manual.
- 4. "Maskmaking for Canon FPA 2000i", Suraj Bhaskaran, November 30, 1998, RIT presentation.

Rochester Institute of Technology

Microelectronic Engineering

© October 12, 2007 Dr. Lynn Fuller

Steppers and Stepper Jobs

HOMEWORK QUESTIONS - STEPPERS

- 1. What is the difference between fiducial marks and alignment marks?
- 2. What is the definition of alignment key offset? How is the alignment key offset, left alignment die and right alignment die (row and column) used in a stepper job?
- 3. How accurate can a stepper overlay images? What determines this accuracy?
- 4. What are the 20P-4F marks used by the Canon stepper?
- 5. Explain how the Canon stepper overlays images accurately.
- 6. Why are four levels placed on a single mask at RIT? What are the advantages and disadvantages of this approach? Can this be done on the Canon stepper?

Rochester Institute of Technology

Microelectronic Engineering