ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Introduction to MESA

Dr. Lynn Fuller

webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: <u>Lynn.Fuller@rit.edu</u> microE webpage: <u>http://www.microe.rit.edu</u>

Revision Date: 6-20-2013 LEC_MESA.PPT

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

ADOBE PRESENTER

This PowerPoint module has been published using Adobe Presenter. Please click on the Notes tab in the left panel to read the instructors comments for each slide. Manually advance the slide by clicking on the play arrow or pressing the page down key.

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

OUTLINE

Introduction to MESA Hardware **Software User Interface MESA Factory Organization Operations Processes Products** Masks **Data Base Query Reports SPC** Charts Homework

Rochester Institute of Technology

Microelectronic Engineering

MESA - MANUFACTURING EXECUTION SYSTEM APPLICATION

MESA is an integrated relational database system for discrete part manufacturing (a computerized record-keeping system)

A relational database system is a database in which the data is perceived by the user as tables (and nothing but tables)

Operations include:

Adding new tables to the database Inserting new data into existing tables Retrieving data from existing tables Updating data in existing tables Deleting data from existing tables Removing existing tables from the database Quarrying database tables for specific information

Rochester Institute of Technology

Microelectronic Engineering

MES CIM SYSTEMS

Rochester Institute of Technology Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

CIM SYSTEM

- § AS/400
- § Qty 10 PC Workstations
- § Ethernet LAN
- § Quality Analyst Software
- § MESA Software (Manufacturing Execution System Application)
 - **§ Work-in-process Tracking**
 - § Transaction Processing
 - § Production Costs
 - § Scheduling
 - § Statistical Process Control
 - § Resource Management

Rochester Institute of Technology

Microelectronic Engineering

§ On-Line Reporting Lot Status Transaction History Data Collection Specifications and Instructions

© June 20, 2013 Dr. Lynn Fuller

CIM SYSTEM - PC WORKSTATION

ACCESS TO AS-400 AND MESA

The computers in the clean room have an icon on the desktop that will connect the user to the AS400 sign on screen:

Username is STUDENT password is NIGHTSHIFT

Next the user signs on to the MESA software:

Username is OPERATOR password is OPERATOR

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

START UP REMOTE DESKTOP

Int	roduction to MESA
LOG ON TO K	IF SERVER, START UP MESA
Remote Desktop Connection Remote Desktop Connection	Type in kgcoe-kif.main.ad.rit.edu
Computer: <u>kgcoe-kif, main, ad. rit, edu</u> User name: MAIN\lifeee You will be asked for credentials when you connect.	Click Connect
Image: Connect Connect	ame and Password dents should have this)
Then: Click on MESA I	con Sign onto AS400:
Microelectronic Engineering	System: HOST400 User ID: STUDENT STUDENT NIGHTSHIFT
©.1	une 20, 2013 Dr. I vnn Fuller Page 11

OPERATOR USER INTERFACE

ENGINEER USER INTERFACE

File Edit	Transfer	Appearanc	e Commu	nication Assis	t Window	v Help								
PrtScrn	E Copy	Paste S	Send Re	cv Display	Color	📾 Map	Necord	5top	- 🔊 Play	oo Quit	Clipbro	d Suppor	t Index	
	9/09/ 6:05:	'07 50		Tra	insact	ion P	MESA Process	ing	Menu	#1	TRN1I QPADI	MNU EV0019	S900 R1	911 [T
Sele	ct one	e of th	e fol	lowing.										
1 2 3 4 5 6 7 8 9 10 11 12 13	Star Move Spli Move Rewo Ship Rece Conv Bin Supe Non-	t e ine t e (non- ork oment eipt vert e-in er move move q	standa ualit	ard) y data (collec	tion					(STR (MOVI (COMI (SPL (MVN) (REWI (SHII (REC) (SHII (REC) (MVII (BIN (SMO) (NMO)	T) E) E) F) S) S) S) V) V) V) V) V) V) V)		
Sele	c <u>t</u> ion	or com	mand										Moi	°e
===> F3=E:	xit	F4=Pro	mpt	F5=Refi	resh	F9=R	etriev	е	F10=[Datase	et I	F12=Ca	ncel	
MA	а												2	22/007
7														
		[© Ju	ne 20, 2	013 Dr.	Lynn Full	er			= Pa	nge 14		

FACULTY USER INTERFACE

RESOURCE HIERARCHY

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

OPERATIONS

CL01	RCA Clean	IM01	ion implant wafers
CV01	LPCVD Polysilicon	ME01	sputter aluminum
CV02	LPCVD Silicon Nitride	OX01	wet oxide 5000 A
CV03	LPCVD Low Temperature Oxide	OX02	dry oxide 600 A
DE01	Four point probe	OX03	dry oxide and anneal
DI01	p-type spin on diffusion	OX04	wet oxide
DI02	p-type spin on plus oxide growth	OX05	dry oxide with TCA clean
DI03	p-type from solid BN source	OX06	dry oxide with TCA
DI04	n-type spin on diffusion	OX07	post implant anneal
DI05	n-type from solid P source	OX08	100 A tunnel oxide
DI06	n-type spin on arsenic source	PH01	1X Contact Printer
ET01	control wafer oxide step etch	PH03	Photolithography on Stepper
ET02	oxide etch until pull dry	SI01	Sinter
ET07	photoresist strip in asher	TE01	Test van der pauw, CBKR
ET08	plasma etch polysilicon	TE02	Test transistors
ET09	plasma etch silicon nitride	TE03	Test integrated circuits
ET10	plasma etch oxide	GR01	groove and stain
\frown	-	ID01	scribe wafers

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

MASKS

PROCESS MASK LEVEL NAMES MASK SET NAME (DEFINES THE PRODUCT) '→ MASK ID'S **EXAMPLE: CMOS PROCESS LEVEL NAMES:** CMOSWELL **PRODUCT: GATE ARRAY CMOSACTIVE MASKSET NAME: E951FACLFX CMOSSTOP** E951FACLF1 **CMOSVT** E951FACLF2 **CMOSPOLY** E951FACLF3 **CMOSN+DS** E951FACLF4 **CMOSP+DS** E951FACLF5 **CMOSCC** E951FACLF6 **CMOSMETAL1** E951FACLF7 E951FACLF8 **Rochester Institute of Technology Microelectronic Engineering** E951FACLF9

TABLES (FILES)

In the Mesa Database Library (MESADB) there are over 200 File names (TABLES) with descriptions such as:

LTLLH100 Lot History LTLMD101 MESA Move Detail/UDC x Lot/Oper/Step/Date/Time LTLMD103 MESA Move Detail/UDC x Oper/Date/Time LTPMD100 MESA Move Detail LTPMS100 MESA Maskset Name LTLLG102 MESA Lot Genealogy by transaction date/time LTLLT105 MESA Lot Master x Original Lot/Start date

etc.

Rochester Institute of Technology

Microelectronic Engineering

FIELD NAMES (COLUMNS) & RECORDS (ROWS)

Each file has fields (columns) defined for storage of data in a record (row). In the LTPMD100 file called MESA Move Detail there are about 70 fields. Some are listed below:

MDTRCD Transaction Code MDLOT Lot Number MDTRYR **Transaction Year MDUSER** User ID **MDTOOP** To operation **MDFSTP** From process step User defined field 1 MDUD1 **MDPRC** Process

Rochester Institute of Technology

Microelectronic Engineering

etc

FILE SELECTIONS

File =	LTLMD101
Library =	MESADB
Member =	*FIRST
Format =	LTFMD101

MESA has over 200 File names with descriptions such as: LTLLH100 Lot History File LTLMD101 MESA Move Detail/UDC x Lot/Oper/Step/Date/Time LTLMD103 MESA Move Detail/UDC x Oper/Date/Time LTPMD100 MESA Move Detail LTPMS100 MESA Maskset Name File

These files can be joined in various ways

Rochester Institute of Technology

Microelectronic Engineering

Rochester Institute of Technology

Microelectronic Engineering

SELECT FIELDS

Order	Code	Description	Len	Dec
10	MDFSTP	Mesa Database From Step	6	2
20	MDFROP	Mesa Database From Operation	4	0
30	DATE	DATE as defined	6	0
40	MDLOT	Mesa Database Lot Number	10	0
50	COUNT1	UDN01*	6	0
60	COUNT2	UDN02*	6	0
70	XOX	UDN03*	4	0
80	PADOX	UDN03*	4	0

etc.

* user defined numeric parameter 01, 02, etc up to 18

Rochester Institute of Technology

Microelectronic Engineering

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

SELECT SORT FIELDS

PRIORITY A/D 10 A MDFSTP 20 A DATE 30 D MDLOT

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

OTHER

> Select collating sequence (Ascending, Descending) > Specify report column formatting (Column Heading, Number of characters, etc.) > Select report summary functions (Total, Average, Minimum, Maximum, Count) > Define report breaks (new page after each sort field, etc) > Select output type and output form (printed, to display, etc.) > Specify processing options (batch, interactive, ...)

Rochester Institute of Technology

Microelectronic Engineering

EMPLOYEE MOVES EXAMPLE

QUENI MAME:	EMPLOY	YEE		LIBRARY:MESADB
FILE: LTLMD101			FORMA	T:LTFMD101
RESULT FIELDS:				
SELECT RECORI	DS:	MDLOT	LIKE	'F%'
1	AND N	IDMVTP	EQ	'1'
1	AND N	IDTRTM	GŤ	8
1	AND N	IDTRYR	GT	98
1	AND N	IDEMPLIST	'LFFEE	E' 'KDHEMC' 'KEBEM(
	IV M M M	IDTRYK IDTRMO IDTRDY IDFROP		1=101AL 2=AVE 3=MIN 4=MAX 5=COUNT
REPORT COLUM REPORT BREAKS	N FORMA S:	ATTING AND SU	MMARY	FUNCTIONS:

© June 20, 2013 Dr. Lynn Fuller

QUERY DEFINITION TO FIND SETUP AND RUN TIMES FOR ALL FACTORY OPERATIONS

QUERY DEFINITION FOR CMOS PROCESS DATA

DATA

	;;											
DATA UP TO 9-15-9	97											
Parameter Name	Units											
Alignment Oxide	Å	6900	4846	4941	4097	4282	5243	4035	5449	4928	4505	4905
Pad Oxide	Å	511	530	594	481	514	500	490	365	479	484	522
Nitride Thickness	Å	1535	1570	1850	1850	1690	1737					
Field Oxide Thicknes	Å	10874	9660	10443	10489	9546	10711	10743	11651	9455	11357	10987
Photo x-overlay	μm	2	1	1	2	1	2	-1	1	-1	0	(
Photo y-overlay	μm	1	1	1	0	2	0	1	-1	-1	-1	(
Kooi Oxide Thicknes	Å	804	399	750	902	814	717	230	1056	981	1200	869
Gate Oxide	Å	601	494	503	484	443	430	503	495	499	508	496
Poly Thickness	Å	5723	6272	6635	6652	6442	7185	6089	4383	5656	4607	5107
Poly Sheet Rho	Å	24	32	18	27	72	55	16	15	22	32	15
LTO Thickness	Å	4570	2282	3166	4913	3724	7356	5318	4616	6700	4479	3386
Metal Thickness	Å	4000	5000	4000	2300	6500	7500					
Rho N+	ohms	21	22	28	27	24	33	17	24	25	22	20
Rho P+	ohms	44	91	36	70	54	28	25	25	35	26	23
Rho Well	ohms	973	1380	1250	1020	1360	1500	1260	2290			
Rho Metal	ohms	0.06	0.09	0.05	0.01	0.15	0.14	0.1	0.11	0.16		
Gc met-Poly	mho/µm2	0.03	0.02	0.023								
	Roc	hester Institu	te of Techno	ology								
	Mici	roelectronic	Engineering									
			(June 20,	2013 Dr. L	_ynn Fullei	-	H	Page 38			

REPORTS

TLOGRPT Transaction Log Report PSRTMNU Production Summary Report Menu PSBORPT Production Analysis LSRTMNU Lot Status Report Menu LSHPRPT Lot Ship Summary Report LSTRRPT Lot Start Summary Report

Rochester Institute of Technology

Microelectronic Engineering

STATISTICAL PROCESS CONTROL CHARTS

- 1. All Processes RCA Clean Particle Delta
- 2. PMOS/CMOS 5000 A Wet Oxide Thickness
- 3. P-well CMOS Well Drive-in Oxide Thickness
- 4. P-well CMOS Well Drive-in Rhos
- 5. P-well CMOS Well Drive-in Junction Depth
- 6. NMOS/CMOS Pad Oxide Thickness
- 7. All Processes Field Oxide Thickness
- 8. NMOS/CMOS Kooi Oxide Thickness
- 9. All Processes Gate Oxide Thickness
- 10. NMOS/CMOS Nitride Deposition Thickness
- 11. NMOS/CMOS Polysilicon Deposition Thickness
- 12. NMOS/CMOS Polysilicon Rhos
- 13. NMOS/CMOS Polysilicon Etch Rate
- 14. NMOS/CMOS Nitride Etch Rate
- 15. P-well CMOS N+ Rhos
- 16. P-well CMOS N+ Xj
- 17. P-well CMOS P+ Rhos
- 99. All Query Update may take 1 hour
- 18. P-well CMOS P+ Xj
- 19. All Processes Metal Thickness
- 20. P-well CMOS 4 um CD
- 21. P-well CMOS X&Y Overlay

SPC CHARTS

Statistical Process Control Charts (SPC Charts) combine a query with data analysis and plotting software.

North West Quality Analysis software is used at RIT to display the SPC Charts. We display a run chart (top), Histogram (bottom), Gaussian Model (Green), and Calculations of Mean, Standard Deviation, Cpk, Cp and other statistical parameters.

Microelectronic Engineering

SPC CHARTS CAN BE VIEWED AT MOVE-IN

PrtScrn Copy Paste Se	and Recv Display Color Map Record Stop Play Quit Clipbrd Support Index
9/09/07 6:11:23	MESA IGMSINQ S36801 Instruction Group Inquiry QPADEV0019 RIT
Type information 1=Display docum	. Then Enter. ment, 5=Display detail
Plant Instruction gro Revision	: RIT oup <u>SUB-CMOS-OX05-PAD</u> SUB-CMOS OX05 GROW PAD OXIDE <u>150</u>
Opt Subgroup - 1 - - - - - - -	Text 1.0 Include D1-D3 2.0 Use resource FURNACE04 BRUCE TUBE 04 (see subpadox.pps) 3.0 Xox desired = 500A 4.0*See SPC chart for operation (PAD.PPS)EXECUTE 5.0 XRF warm up recipe 888, check gas supply 5.0 When furnace stabilizes at 800 C abort 888 7.0 XRF 500A dry 02 recipe 250, load wafers, press start
	P/P 800C, RU 20min, soak ~54 min dry O2 1000C, RD 40min B.0 When wafers complete abort 250 and XRF idle recipe 999 B.0 Record soak temp and soak time
F3=Exit F4=Prom	More npt F5=Refresh F10=View 2 F12=Cancel
M <u>A</u> a	15/005
	© June 20, 2013 Dr. Lynn Fuller Page 42

SPC MAIN MENU

NWA QUALITY ANALYST, SPC CHART

Pad Oxide Target 500Å USL 600Å LSL 400Å Mean 535Å Std Dev 35Å Cpk 0.8648 Cp 1.332

REFERENCES

1. "MESA System Overview", Camstar Systems, Inc., 2105 South Bascom Avenue, Suite 200, Campbell, California 95008, Tel: (408) 59-5700, Fax: (408) 559-5719.

2. "AS/400 Query (Program 5728-QU1), Relese3, Modification 0", IBM Corporation, Department 245, 3605 North Highway 52, Rochester, MN 55901-9986.

Rochester Institute of Technology

Microelectronic Engineering

© June 20, 2013 Dr. Lynn Fuller

HOMEWORK – INTRO TO MESA

- **1. What are the components of a process definition?**
- 2. How is a product defined?
- 3. Give an example of a data base query?
- 4. What does MESA allow an Engineer to do that an Operator can not do?
- 5. Give a brief description of the following terms as they relate to the RIT Factory and CIM system. Give an example where it makes sense. Show a schematic diagram to illustrate hierarchical relationships for related items.

AS/400, Ethernet, Exit F3, Cancel F12, User ID, Operator, Integrated Relational Database, Resource, Work Center, Operation, Department, Plant, Resource Type, Resource Sub Type, Resource ID, Unit of Measure, User Defined Units of Measure, Start Code, Scrap Code, Bonus Code, Yield Loss Code, Hold Code, Operation, Process, Specification, Product, Product Class, Mask ID, Mask Level Names, Mask Set, Document, Step, Instruction Group, Parameter Group, Report, Listing, Inquiry, Query, Transaction

> Rochester Institute of Technology Microelectronic Engineering