ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Introduction to Maskmaking

Dr. Lynn Fuller

Webpage: http://people.rit.edu/lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu MicroE Webpage: http://www.microe.rit.edu

Rochester Institute of Technology

Revision Date: 12-26-2010 lec_mask.ppt

Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

OUTLINE

Introduction Mask & Reticle Types MEBES Mask Process Flow Pattern Generation Example of a MEBES Job Deck Example of a MEBES Plot Job Mask Etching Mask Inspection & Repair Mask Linewidth Measurement Mask Pellicle Operations GCA Reticle & Fiducial Marks Cannon Reticle & FiducialMarks Masks for Four Different CMOS Processes Tiling References Rochester 1 Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

INTRODUCTION

Mask Procurement Engineer: the engineer responsible for obtaining masks to make a microchip. The design file from the design engineer is merged with manufacturing information to create a purchase order for a mask set from a company that makes photomasks for the semiconductor industry (mask house). The manufacturing information needed includes, type of lithography tool (stepper (Canon, ASML), contact, etc.), reticle alignment marks, barcodes, labels, mask plate size/thickness, type of glass, etc. A detailed set of instructions on how to combine the design layers, bias, rotate, mirror and add features that are not part of the design is needed for each layer. Information about anti-reflective coatings, pellicles and inspection details also need specification.

Masks can cost \$1000 to \$10,000 each. A mask set can cost \$200,000 or more.

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK AND RETICLE TYPES

Reduction reticle with pellicle: ASML, GCA, Canon, Nikon, others

1X projection with pellicle: Perkin Elmer Scanners

Other Types: 2X, 4X, 5X, 10X reduction, 1X contact

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MEBES

Manufacturing Electron Beam Exposure System

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK IMAGING - ELECTRON BEAM

- Mask blanks are resist on chrome
- IBM used Hontas EL tools
- System is under vacuum
- 10-20kV, 10-100 nA, E-6 to -12T
- Resists used may be:
- 1. COP negative P(GMA-co-EA) developed in methyl ethyl ketone (MEK) and ethanol.
- 2. PBS [P(butene sulfone)] or other poly sulfones developed in methyl hexanone or MIAK and isoproponol.
- Optical DNQ/novolac (eg AZ1350 in solvent) developed in NaOH or tetramethyl ammonium hydroxide (TMAH)

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

PATTERN GENERATION AND DATA PREP

1. Using Mentor Graphics Design Tools, layout the device layers and save in mentor format. Mentor- ICGraph files (filename.iccel), all layers, polygons with up to 200 vertices

2. Convert the layout information to GDSII file format. GDS2-CALMA files (old IC design tool) (filename.gds), all layers, polygons

3. The GDSII format is then transferred to the CATS system for fracturing (conversion to MEBES format), and other data manipulations such as rotate, mirror, size, bias, and boolean combinations. MEBES- files for electron beam maskmaking tool, each file one layer, trapezoids only

4. Save the file, transfer to the MEBES or other mask writing tool.

 Rochester Institute of Technology

 Microelectronic Engineering

 © December 26, 2010, Dr. Lynn Fuller

Page 9

<u>Maskmaking</u>

MOSIS TSMC 0.35 2POLY 4 METAL PROCESS

General Information

About MOSIS Products Processes Prices Support User Group Events Job Openings News

Work with MOSIS

Overview Getting Started Design and Test

Requests

<u>Run Status</u> Project Status Test Data

Docs and Forms Documents Forms/Agreements Web Forms

Quick Reference

New Users Experienced Users Purchasing Agents Design and Test Academic Institutions Export Program Submit A Project

Search MOSIS

Search

http://www.mosis.com/Technical/Designrules/scmos/scmos-main.html#tech-codes MOSIS SCMOS Technology Codes and Layer Maps SCN4M and SCN4M SUBM

This is the layer map for the technology codes SCN4M and SCN4M_SUBM using the MOSIS Scalable CMOS layout rules (<u>SCMOS</u>), and only for SCN4M and SCN4M_SUBM. For designs that are laid out using other design rules (or <u>technology</u> <u>codes</u>), use the standard layer mapping conventions of that design rule set. For submissions in GDS format, the datatype is "0" (zero) unless specified in the map below.

SCN4M: Scalable CMOS N-well, 4 metal, 1 poly, silicided. Silicide block and thick oxide option available only on the TSMC process.

SCN4M_SUBM: Uses revised layout rules for better fit to sub-micron processes (see MOSIS Scalable CMOS (SCMOS) Design Rules, section 2.4).

Fabricated on <u>TSMC</u>, <u>AMIS</u>, and <u>Agilent/HP</u> 0.35 micron process runs. See "Notes" section of layer map for foundry-specific options.

Layer	GDS	CIF	CIF Synonym	Rule Section	Notes	
<u>N WELL</u>	42	CWN		1		
ACTIVE	43	CAA		2		
THICK ACTIVE	60	CTA		<u>24</u>	Optional for TSMC; not available for Agilent/HP nor AMIS	
POLY	46	CPG		<u>3</u>		
SILICIDE BLOCK	29	CSB		<u>20</u>	Optional for Agilent/HP; not available for AMI	
N PLUS SELECT	45	CSN		<u>4</u>		
P PLUS SELECT	44	CSP		<u>4</u>		
CONTACT	25	\mathbf{ccc}	CCG	<u>5, 6, 13</u>		
POLY CONTACT	47	ССР		<u>5</u>	Can be replaced by CONTACT	
ACTIVE CONTACT	48	CCA		<u>6</u>	Can be replaced by CONTACT	
METAL1	49	CM1	CMF	2		
<u>VIA</u>	50	CV1	CVA	<u>8</u>		
METAL2	51	CM2	CMS	<u>9</u>	iiiiii	
VIA2	61	CV2	CVS	<u>14</u>	TSMC 0.35 micron 0.2	5 <u>SCN4ME</u>
METAL3	62	смз	CMT	<u>15</u>	2P4M (4 Metal	
VIA3	30	сүз	сут	<u>21</u>	Polycided, 3.3	
METAL4	31	CM4	CMQ	<u>22</u>	V/5 V)	
<u>GLASS</u>	52	COG		<u>10</u>	;;;;;;	
PADS	26	ХР			Non-fab layer used to highlight pads	
Comments		сх			Comments	
© Decer	nbe	r 26.	. 2010. Dr. I	_vnn F		

MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

MASK LAYER NAME	MENTOR NAME	GDS #	COMMENT
N WELL	N_well.i	42	
ACTIVE	Active.i	43	
POLY	Poly.i	46	
N PLUS	N_plus_select.i	45	
P PLUS	P_plus_select.i	44	
CONTACT	Contact.i	25	Active_contact.i 48 poly_contact.i 47
METAL1	Metal1.i	49	
VIA	Via.i	50	
METAL2	Metal2.i	51	

Rochester Institute of Technology

Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

0.5 µm RESOLUTION AND OVERLAY DESIGN

MORE LAYERS USED IN MASK MAKING

LAYER	NAME	GDS	COMMENT
	cell_outline.i	70	Not used
	alignment	81	Placed on first level mask
	nw_res	82	Placed on nwell level mask
	active_lettering	83	Placed on active mask
	channel_stop	84	Overlay/Resolution for Stop Mask
	pmos_vt	85	Overlay/Resolution for Vt Mask
	LDD	86	Overlay/Resolution for LDD Masks
	p plus	87	Overlay/Resolution for P+ Mask
	n plus	88	Overlay/Resolution for N+ Mask

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

CREATE GDS II FILE

IC Station v2008.2_3.1 (2008.2b) - IC 0: CMO5_TESTCHIP_2011 > CMO5_TESTCHIP_2011 (i) MGC File Context Option Option </th <th>Translate Packages Calibre Head GDSII xx Write GDSII xx Write GDSII xx S: off S: off S: off</th>	Translate Packages Calibre Head GDSII xx Write GDSII xx Write GDSII xx S: off S: off S: off
TESTCHIP_2011 (i) ≥ TESTCHIP_2011 (i) ≥ </th <th>ICLink Select: Read XML idit Translate Write XML Edit WriteGDSII Read Spice idit WriteGDSII</th>	ICLink Select: Read XML idit Translate Write XML Edit WriteGDSII Read Spice idit WriteGDSII
Image: Second secon	Read DEF Vice Write DEF) Read LEF ion Write LEF (from library) is Write Design LEF (from cell) DRC Short Checker ICtrace (D) ICtrace (M) Verifdp (DRC)
Image: State of the state	Verifdp (LVS) ICassemble Plan & Place
Output GDS File Write Options Load Options From File	 Fill In Output path and filenam Ex: /home/lffeee/mychip.gds
Micr OK Reset Cancel © December 26, 2010,	Dr. Lynn Fuller Page 16

Maskmaking **CONVERSION FROM .ICCEL TO .GDS FORMAT GENERATION OF GDS FILE IN MENTOR GRAPHICS SYSTEM:** 1. Type: pwd for design pathname and record: example: /home/sxs8853/senior 2. Type: iclink -co -so -i /pathname/designname -d -g filename.gds note: design name and filename can be the same. 3. Obtain individual plots for each mask level, label them, and attach to the order form. 4. Copy .gds file to dropbox for maskmaking at RIT cp <design name>.gds /dropbox/masks 5. Set protection on file so the file can be accessed /usr/bin/chmod 644 /dropbox/masks/<design name>.gds

MASK PROCUREMENT

Design Layers: There may be many design layers in a design. For example the well layer and the lettering for the well layer may be on different design layers but merged to make the well mask. Resolution and overlay designs may be on different layers to be merged with other layers to make a mask. Boolean combinations are defined for the merge as well as other transformations such as bloat, rotate, and mirror. As a result this information needs to be made available to the mask provider as part of the mask order.

Clear field and Dark field describe the general appearance of the mask which is important in determining the layers in the streets between die.

Dummy features are sometimes added to a layer (tiling) such as shallow trench mask to improve performance of subsequent processes, such as CMP in the case of shallow trench.

MASK ORDER FORM

harve Corporty and Department Street Advers Ohy, State and 7p Code Phane harvater (harve harvater () SHE, Project Code () SHE, Project Code () SHE	Suetamer Informatio	n	Roches Semison Details f	ter Institute of duccord Microry or tech Mich Lay	Techno sterns J	logy ab ricación (an	Laborator	Ţ			ಟ್ಟಿಡಿ ನಿನ್ನಾರಿ: ದೇಖನ ನಿರಾಶ
Order Date Order Due Date			Delkerv Order	Hack Level have	Haak Laxal	Design Lover(s) =	Boolean Function	Field Type	854 (UV)	00 (av)	Exceptions to Hosix Destaulte
SEE PAGE DI	FOR INSTRUCTIONS FOR SUB	OTTING YOUR GOS FILE									
Maak Information	D.R.										
Design have			⊐ ∥ ⊨==							-	
Call South Sha	X: UN	V: uv								=+	
Hask Tops handed										1	
Contract Aligner C	sala:	12								=+	
	Phak Sha: Orientation:	Srx Srx 0.097 Soda Lilva Himor 90						1		=+	
	Fracture Resolution:	0.50V						1		1	
N ON Refite	Hark State	an Srx Srx 0.09r Sada Liva Mana a M								-	
	Fracture Resolution:	ú Suv	Coursette	_	_			_			
■ ASH Suppor C	Serale: Healt Seat	St Geographic Contr									
	Ortentation: Discharte Deschaften:	n na kansi galini Himar 90 0 Sura	∃ ∥								
I											
hurvbers of Levels on Plate	I Pihone		⊐ ∥								
Array and becaut	⊒ Annav γ λ: un	The column (x) and rows (v) V: unv	∃ ∥	All Field	e af thie	form much b	te filled au	t an tinal y	Falle	u ta da	as will result in delays.
_	· · · ·		Place cand	corvplehed forme to	T. Gritvali	ev. Bidg (7,	RIV ISII				9/31/10
Places send corvplated forms h	a T. Grinvelev. Bidg 17, Rv (Sr)	eron.	1/10								

MASK ORDER FORM

Mask Information

O. R.

Design Name			
Number of Mask Levels			
Cell Layout Size		X: um	Y: um
Mask Type Needed			
🗖 Contact Aligner	Defaults	Scale:	1X
		Mask Size:	5″ x 5″ x 0.09″ Soda Lime
		Orientation:	Mirror 90
		Fracture Resolution:	0.5um
🗖 GCA Stepper	Defaults	Scale:	5X
		Mask Size:	5″ x 5″ x 0.09″ Soda Lime
		Orientation:	Mirror 135
		Fracture Resolution:	0.5um
🗖 ASML Stepper	Defaults	Scale:	5X
		Mask Size:	6″ x 6″ x 0.12″ Quartz
		Orientation:	Mirror 90
		Fracture Resolution:	0.5um

http://www.smfl.rit.edu/forms/Order_Request.dot

Numbers of Levels on Plate	1
Array	🗖 None
	Array with columns (x) and rows (y)
Array grid layout	X: um Y: um

© December 26, 2010, Dr. Lynn Fuller

MASK ORDER WORKSHEET

					Request	Requestor Dr. Lynn Fuller					
Attachment	for Mask O	rder Form									
Design Description: Sub-CMOS N			d Analog D	igital Test (Chip	gds File://home/u	gds File: //home/ume/subcmos_040203.gds				
Fracture Resolution Scale Factor		0.5		Mirror	135	Plate Size	5"x5"x0.090"				
		or 5X		Rotate none		# of levels/plate	# of levels/plate 1				
	Array	none									
Design		Mask									
Laver		level									
Name	Number	Name	Number	Boolean I	Function	Comments					
NWELL	1	n-well.i	42	(42 OR 81	OR 82) INVERT	Dark Field Mask					
		alignment	81								
		nw_res	82								
ACTIVE	2	active-area.i	43	(43 OR 83)	Clear Field Mask					
		active-area.e	83								
STOP	3	n-well.i	42	(42 OR 84)	Clear Field Mask					
		channel_stop	84								
PMOSVT	4	p_plus_select.i	44	(44 OR 85)	Clear Field Mask					
		pmos_vt	85								
POLY	5	poly.i	46	none		Clear Field Mask, Bia	as layer 6 +0.5 μr	n			
LDD-N	6	n_plus_select.i	45	(45 OR 86) INVERT	Dark Field Mask					
		LDD	86								
LDD-P	7	p_plus_select.i	44	(44 OR 86) INVERT	Dark Field Mask					
		LDD	86								
N+DS	8	n_plus_select.i	45	(45 OR 88) INVERT	Dark Field Mask					
		n plus	88								
P+DS	9	p_plus_select.i	44	(44 OR 87) INVERT	Dark Field Mask					
		p plus	87								
CC	10	contact	25	(25 OR 87	OR 47) INVERT	Dark Field Mask					
		Active contact.i	48								

DATA PREP USING CATS

Input File: GDS2- CALMA files (old IC design tool) (filename.gds), all layers, polygons

Output File: MEBES- files for electron beam maskmaking tool, each file one layer, trapezoids only

© December 26, 2010, Dr. Lynn Fuller

CREATE A MEBES JOB DECK

SLICE EDIT, 14

14 means 5" by 5" glass OPTICON AA=0.5, BA=0.5, PA, SA=40, VA=10 AA means address all levels = 0.5 μm BA means beam size all levels = 0.5 μm PA means all levels positive resist SA means all levels spot current 40 nA VA means all levels acceleration = 10KV MTITLE 1, ADV-CMOS STI DTITLE A, RIT EMCR650 ITITLE A, BARCODE ORIENT A, ITITLE, TITLEROT=90, LOC=

CHIP1, (1,cmostestchip-LVL-01, RC=15), first level of cmostestchip maskset END

Rochester Institute of Technology Microelectronic Engineering

SLICE EDIT,14 OPTION AA=0.5, BA=0.5, PA, SA=250, VA=10 **REPEAT A, 10** STITLE A, 10000, 10000, MEBES III SN @S MTITLE 1, NWELL MTITLE 2, ACTIVE MTITLE 3, STOP MTITLE 4, PMOS VT MTITLE 5, POLY MTITLE 6, LDD N MTITLE 7, LDD P MTITLE 8, N DS MTITLE 9, P DS MTITLE 10, CONTACT MTITLE 11, METAL DTITLE A, SUBMICRON CMOS CHIP 1,(A,RITLOGO-50-01) ROWS 10000/63500 CHIP 2,(A,FIDUCIA-LS-01) ROWS 63500/63500 CHIP 3. \$ (1R,EMCR650-01-01), \$ (2,EMCR650-01-02), \$ (3,EMCR650-01-03), \$ (4,EMCR650-01-04), \$ (5,EMCR650-01-05), \$ (6,EMCR650-01-06), \$ (7,EMCR650-01-07), \$ (8.EMCR650-01-08), \$ (9,EMCR650-01-09), \$ (10,EMCR650-01-10), \$ (11,EMCR650-01-11) ROWS 63500/63500 END

© December 26, 2010, Dr. Lynn Fuller

Maskmaking EXAMPLE OF A MEBES PLOT JOB 12 cm 2/25/93 9:12:23 MEBES 967 PMOS DIFFUSION LAYER BIT SHORT COURSE MASK **REV, 4.6 SPECIFICATION FILE: JOB:SHORT.JB FITLE: RIT SHORT COURSE MASK** TEST TEST **E: BARCODE** CHIP CHIP **E: PMOS DIFFUSION LAYER** Axis CASSETTE TYPE ID:14 **LEVEL PLOTTED: 1 JOB SCALE: 1** SHORT SHORT **JOB SCALE: 1.000000** CHIP CHIP BARCODE ADDRESSING: 0.500000 MICRONS **PLOT SCALE: 1.00 TO 1 CM** 0.0 0.0 12 cm X Axis **ID PATTERN X DIMENSION Y DIMENSION PLACEMENT ORIENTATION** TONE 1. SHORTLVL.01 20000.00 20000.00 UNMIRROR UNMIRROR NORMAL **UNMIRROR NORMAL** TESTLVL.01 20000.00 20000.00 UNMIRROR 3. GCA6700F1.05 2000.00 2000.00 UNMIRROR **UNMIRROR** NORMAL **Rochester Institute of Technology** Microelectronic Engineering © December 26, 2010, Dr. Lynn Fuller Page 26

MASK PROCESSING AT RIT

1. Coat resist (if not precoated blank).

•I-line resist, DNQ/Novolac chemistry, OCG895i 2.5 CS

2. Exposure - optical or ebeam

3. Develop in Solitec, APT or immersion.

•Sodium Hydroxide based, Shipley MF 351 Concentrate, DI:Mf 351 (4:1)

4. Rinse/Spin dry.

5. Etch in spray or immersion system: Chrome etch: cerric ammonium nitrate(CR-4,Cyantek Corp.)+ nitric acid, perchloric acid, acetic acid, cerric sulfate, etc.
6. Binace

6. Rinse

7. Strip resist in solvent : Sulfuric Acid+Hydrogen Peroxide(Nanostrip, Cyantek Corp.),NMP, Acetone or acid: Caro's acid, sulfuric acid.

9. Clean in: detergent (CA40) acid/base (Ammonium hydroxide).

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK ETCHING

- Wet etch used predominantly.
- Spray or immersion methods.
- Dry etch in plasma systems was limited until 1990s.
- Plasma etchers may have been employed in descum operations (oxygen only).

Automated spray etcher

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK INSPECTION AND REPAIR

- Mask inspection done with KLA optical defect comparison tools.
- Mask repair with Cr or Mo deposition for clear defects and laser removal for dark defects.
- Exposure to chemicals is minimal.

Laser opaque defect repair

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK LINEWIDTH MEASUREMENT

Mask linewidth measurement performed by several methods:

Nikon 2i - laser scanning of edges ITP TV scanning system Vickers image shearing system Confocal microscopy SEM methods

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

MASK PELLICLE OPERATIONS

- A pellicle is a protective mylar or nitrocellulose membrane mounted on a frame placed several mm from the mask surface.

- Pellicle operations included mounting (adhesive) and removal. Pellicle materials are commercial items and not made in a mask shop.

Several pellicle types and sizes

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

© December 26, 2010, Dr. Lynn Fuller

ASML RETICLE

Rochester Institute of Technology Microelectronic Engineering

Non Chrome Side As loaded into Reticle Pod, Chrome Down, Reticle Pre-Alignment Stars Sticking out of Pod

© December 26, 2010, Dr. Lynn Fuller

ASML FIDUCIAL AND PRE ALIGNMENT MARKS

Prealignment Mark

ASML 5500/200

NA = 0.48 to 0.60 variable σ = 0.35 to 0.85 variable With Variable Kohler, or Variable Annular illumination Resolution = K1 λ /NA = ~ 0.35 μ m for NA=0.6, σ =0.85 Depth of Focus = k₂ λ /(NA)² = > 1.0 μ m for NA = 0.6

i-Line Stepper $\lambda = 365$ nm 22 x 27 mm Field Size

© December 26, 2010, Dr. Lynn Fuller

RIT P-WELL CMOS PROCESS

RIT SMFL-CMOS PROCESS

RIT SUB-CMOS PROCESS

CATS

TILING FOR RIT'S ADV-CMOS PROCESS STI LEVEL

CMOS MASK SET

MASK CLEANING AT RIT

- 1. Pour CA-40 mask cleaning solution (soap) on cloth wipe and wash both sides of the photomask.
- 2. Rinse in Dump Rinser using the Teflon mask holder. Press RESET then START wait for 3 cycles and press RESET to silence alarm.
- 3. Use Spin Dryer. Close Door Program 6 Spin Speed 6 Time 40sec. Start

© December 26, 2010, Dr. Lynn Fuller

1009

IphaWipe[®]

Teflon

mask holder

PHASE SHIFT MASKS

OPTICAL PROXIMITY CORRECTION (OPC)

REFERENCES

- 1. MEBES operation manual.
- 2. GCA 6700 operation manual.
- 3. Canon operation manual.
- 4. "Maskmaking for Canon FPA 2000i", Suraj Bhaskaran, November 30, 1998, RIT presentation.

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller

HOMEWORK - MASKMAKING

- 1. Describe what mirror 90° does.
- 2. Describe Boolean AND as it relates to graphical layers.

3. What is the difference between fiducial marks and alignment marks?

- 4. How are masks inspected?
- 5. How is a mask repaired?
- 6. How are masks cleaned at RIT.

Rochester Institute of Technology Microelectronic Engineering

© December 26, 2010, Dr. Lynn Fuller