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ADOBE PRESENTER

This PowerPoint module has been published using Adobe 
Presenter. Please click on the Notes tab in the left panel to 
read the instructors comments for each slide.  Manually 
advance the slide by clicking on the play arrow or 
pressing the page down key.
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INTRODUCTION

VLSI is an acronym for Very Large Scale Integration.  This includes 
Integrated circuits with greater than tens of thousands of transistors 
including multi-million or even billions of transistors. 

VLSI Design refers to methodologies and computer software tools 
for designing digital circuits with huge numbers of transistors.  
Some of theses methodologies and tools can also be applied to 
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Some of theses methodologies and tools can also be applied to 
analog circuit design.

Software tools include schematic capture, SPICE analog simulation, 
switch level digital simulation, layout editors, layout versus 
schematic checking, design rule checking (DRC), auto place and 
routing and many more.
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VLSI DESIGN

Computer software is used 
to check the layout, compare 
the layout to the schematic 
and  make it possible to 
design circuits with millions 
of transistors with no errors.
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of transistors with no errors.
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VLSI DESIGN METHODOLOGIES

Full Custom Design
Direct control of layout and device parameters
Longer design time
High performance

fast, low power, dense

Standard Cell Design
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Standard Cell Design
Easy to implement
Medium performance
Limited cell library selections

Gate Array or 
Programmable Logic Array Design

Fastest design turn around
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PROCESS TECHNOLOGY

Process Technology
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Process Technology
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PROCESS SELECTION

It is not necessary to know all process details to do CMOS 
integrated circuit design.  However the process determines 
important circuit parameters such as supply voltage and maximum 
frequency of operation.  It also determines if devices other than 
PMOS and NMOS transistors can be realized such as poly-to-poly 
capacitors and EEPROM transistors.  The number of metal 
interconnect layers is also part of the process definition. Starting 
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capacitors and EEPROM transistors.  The number of metal 
interconnect layers is also part of the process definition. Starting 
wafer type determines if isolated n-wells or p-wells are available.
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RIT PROCESSES

At RIT we use the Sub-CMOS and ADV-CMOS processes for most 
designs.  In these processes the minimum poly length is 1µm and 
0.5µm respectively.  We use scalable MOSIS design rules with 
lambda equal to 0.5µm and 0.25µm.  These processes use one layer of 
poly and two layers of metal.

The examples on the following pages are designs that could be made 
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The examples on the following pages are designs that could be made 
with either of the above processes.  As a result the designs are 
generous, meaning that larger than minimum dimensions are used.  
For example λ = 0.5µm and minimum poly is 2λ but designed at 
2.5µm because our poly etch is isotropic.

The design approach for digital circuits is to design primitive cells 
and then use the primitive cells to design basic cells which are then 
used in the project designs.  A layout approach is also used that allows 
for easy assembly of these cells into more complex cells.
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RIT SUBµ CMOS

RIT Subµ CMOS
150 mm wafers
Nsub = 1E15 cm-3
Nn-well = 3E16 cm-3
Xj = 2.5 µm
Np-well = 1E16 cm-3
Xj = 3.0 µm

L
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Xj = 3.0 µm
LOCOS
Field Ox = 6000 Å 
Xox = 150 Å
Lmin= 1.0 µm
LDD/Side Wall Spacers
2 Layers Aluminum

Long
Channel
Behavior

3.3 Volt Technology
VT’s =  +/- 0.75 Volt
Robust Process (always works)
Fully Characterized (SPICE)
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RIT SUBµ CMOS

5000 Å
Field Oxide

NMOSFET PMOSFET
N+ Poly

N+ D/S LDD n+ well
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Substrate 10 ohm-cm

P-well N-well
P+ D/SN+ D/S LDD LDD n+ well

contactp+ well
contact

Channel Stop
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RIT ADVANCED CMOS VER 150

RIT Advanced CMOS
150 mm Wafers
Nsub = 1E15 cm-3 or 10 ohm-cm, p
Nn-well = 1E17 cm-3
Xj = 2.5 µm
Np-well = 1E17 cm-3
Xj = 2.5 µm
Shallow Trench Isolation

L
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Xj = 2.5 µm
Shallow Trench Isolation
Field Ox (Trench Fill) = 4000 Å 
Dual Doped Gate n+ and p+
Xox = 100 Å
Lmin = 0.5 µm , Lpoly = 0.35 µm, Leff = 0.11 µm
LDD/Nitride Side Wall Spacers
TiSi2 Salicide
Tungsten Plugs, CMP, 2 Layers Aluminum

Long
Channel
Behavior

Vdd = 3.3 volts
Vto=+- 0.75 volts
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RIT ADVANCED CMOS

NMOSFET PMOSFET
N+ Poly

P+ D/SN+ D/S

P+ Poly
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N-wellP-well
P+ D/SN+ D/S

LDD
LDD

n+ well
contact

p+ well
contact
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DIGITAL ELECTRONICS

Digital Electronics
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Digital Electronics
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INVERTER

SYMBOL TRUTH TABLE

VIN VOUT VOUTVIN

0          1
1          0V+V
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RESISTOR
LOAD

VIN

SWITCH

R

VIN
VOUT VOUT

R
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VOLTAGE TRANSFER CURVE

VIN VOUT
+V

Voh

VOUT

Idd
V
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+V0

0

ViL

VoL

Vih

VIN

NML, noise margin low, ∆0 =ViL-VoL
NMH, oise margin high, ∆1 =VoH-ViH

Slope = Gain

RESISTOR
LOAD

VIN
VOUT

R

Vinv



Introduction to VLSI

LTSPICE - INVERTER VTC FOR DIFFERENT RL
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LTSPICE - INVERTER FOR DIFFERENT NMOS W 
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OTHER INVERTER TYPES - VOUT VS VIN (VTC)

+V+V-V

-V+V

+V0

0

+V0

0
+V0

0

-V0

0

+V0

0

+V+V +V
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NMOS

ENHANCEMENT

LOAD

VIN

CMOS

+V

VO

SWITCH

VIN

+V

VO

+V

VIN

NMOS

DEPLETION 

LOAD

+V

VIN

PMOS

ENHANCEMENT

LOAD

-V

VIN

VO VOVO
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CMOS INVERTER

VIN VOUT

+V
Idd

+V

Voh
Imax

VOUT

Slope = Gain
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VIN

CMOS

VO

+V0

0

ViL

VoL

Vih

VIN

Idd

Vinv
NML, noise margin low, ∆0 =ViL-VoL
NMH, oise margin high, ∆1 =VoH-ViH
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LTSPICE – CMOS INVERTER

© November 6, 2013    Dr. Lynn Fuller Page 21

Rochester Institute of Technology

Microelectronic Engineering



Introduction to VLSI

INVERTER PROPERTIES

DC Properties
Noise Margins
Current, I
Size

Transient Properties
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Transient Properties
Rise/Fall Time
Fan Out
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RISE TIME AND FALL TIME LTSPICE SIMULATION
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NOR GATE

SYMBOL
TRUTH TABLE VOUTVB

0          0          1
0          1          0
1          0          0
1          1          0

V+V +V

VA

VA
VOUT

VB
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RESISTOR
LOAD

SWITCH

R

VA

VOUT VOUT

+V

VOUTVB
VA VB

CMOS

VA VB

R
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NAND GATE

SYMBOL
TRUTH TABLE

VA
VOUT

VOUTVB

0          0          1
0          1          1
1          0          1
1          1          0V+V

+V

VA

VB

NAND GATE
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RESISTOR
LOAD

SWITCH

R

VA
VOUT

+V

VB

VOUT
VA

VB

CMOS

VOUTVA

VB

R
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OTHER LOGIC GATES

VA
VOUTVB

VOUTVB

0     0     0         0

VAVOUTVOUTVB

0          0          0

VA VB

0          0          0

VA

VB

VA
VOUT

ORAND 3 INPUT OR3 INPUT AND

VC VOUTVBVA

0     0     0         0
VC

VAVA
VB VB
VC VC

VOUT VOUT
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0     0     0         0
0     0     1         0
0     1     0         0
0     1     1         0
1     0     0         0
1     0     1         0
1     1     0         0
1     1     1         1

0          0          0
0          1          0
1          0          0
1          1          1

0          0          0
0          1          1
1          0          1
1          1          1

0     0     0         0
0     0     1         1
0     1     0         1
0     1     1         1
1     0     0         1
1     0     1         1
1     1     0         1
1     1     1         1
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ADDITION IN BINARY

IN BASE 10 

7
+2
___
9

IN BINARY

0     0000
1     0001
2     0010
3     0011
4     0100
5     0101
6     0110
7     0111

SUM   COUTBA

0     0     0         0        0
0     0     1         1        0

CIN

TRUTH TABLE
FOR ADDITION

RULES
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IN BINARY

11            CARRY  
0111
0010
___

1001        SUM

7     0111
8     1000
9     1001
10   1010
11   1011
12   1100
13   1101
14   1110
15   1111

0     1     0         1        0
0     1     1         0        1
1     0     0         1        0
1     0     1         0        1
1     1     0         0        1
1     1     1         1        1
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AND-OR CIRCUIT REALIZATION OF SUM

SUM   COUTBA

0     0     0         0        0
0     0     1         1        0

CIN

TRUTH TABLE
FOR ADDITION

RULES

SUM
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0     1     0         1        0
0     1     1         0        1
1     0     0         1        0
1     0     1         0        1
1     1     0         0        1
1     1     1         1        1

A

SUM

CinB
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CIRCUIT REALIZATION OF CARRY OUT (COUT)

SUM   COUTBA

0     0     0         0        0
0     0     1         1        0

CIN

TRUTH TABLE
FOR ADDITION

RULES

COUT
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0     1     0         1        0
0     1     1         0        1
1     0     0         1        0
1     0     1         0        1
1     1     0         0        1
1     1     1         1        1

A

COUT

CinB
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FILP-FLOPS

RS FLIP FLOP

QBARS

R Q
QS

0          0        Qn-1
0          1          1
1          0          0
1          1       INDETERMINATE

R
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D FLIP FLOP

Q

QBARDATA

Q=DATA IF CLOCK IS HIGH
IF CLOCK IS LOW Q=PREVIOUS DATA VALUE

CLOCK
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MASTER-SLAVE D FLIP FLOP

DATA

CLOCK

Q

QBAR

NEGATED INPUT NOR IS EQUAL TO AND
A
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B

0          0          1
0          1          1
1          0          0
1          1          0

A OUT

1          1          0
0          1          0
1          1          0
0          0          1

BA OUT

B

=
OUT

B

A
A

A

B
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ALL NOR MASTER SLAVE D FLIP FLOP

DATA

CLOCK

Q
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DATA

CLOCK

Q
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EQUAVILANT REALIZATIONS

AND-OR realizations are easily derived from truth table description 
of a circuits performance.  Replacing the AND and OR gates with all 
NOR gates is equivalent.  Replacing the AND and OR gates with all 
NAND gates is equivalent.
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CIRCUIT REALIZATION FOR XOR

A

COUT

B

VOUTVB

0          0          0
0          1          1
1          0          1
1          1          0

VAExclusive OR
XOR
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A B

A

COUT

B

COUT

BA
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LAYOUT

Layout Design Rules
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Layout Design Rules
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LAMBDA BASED DESIGN RULES

The design rules may change from foundry to foundry or for 
different technologies.   So to make the design rules generic the 
sizes, separations and overlap are given in terms of numbers of 
lambda (λ).  The actual size is found by multiplying the number by 
the value for lambda for that specific foundry.

For example:
RIT PMOS process λ = 10 µm and minimum metal width 
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For example:
RIT PMOS process λ = 10 µm and minimum metal width 

is 3 λ so that gives a minimum metal width of 30 µm.  The RIT 
SUB-CMOS process has λ = 0.5 µm and the minimum metal 
width is also 3 λ so minimum metal is 1.5 µm but if we send our 
CMOS designs out to industry λ might be 0.25 µm so the 
minimum metal of 3 λ corresponds to 0.75 µm.  In all cases the 
design rule is the minimum metal width = 3 λ
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DESIGN RULES

We will use a modified version of the MOSIS TSMC 0.35 2P 4M 
design rules.  Eventually we hope to be compatible with MOSIS but 
new process technology needs to be developed at RIT to do that 
(PECVD Tungsten, 4 layer metal).  We use one layer of poly and two 
layers of metal.  We will use the same design layer numbers with 
additional layers as defined on the following pages for 
manufacturing/maskmaking enhancements.  Many of the designs will 

© November 6, 2013    Dr. Lynn Fuller Page 37

Rochester Institute of Technology

Microelectronic Engineering

manufacturing/maskmaking enhancements.  Many of the designs will 
use minimum drawn poly gate lengths of 2µm where circuit 
architecture is the main purpose of the design.  Minimum size devices 
(Drawn Poly = 0.5µm, etc.) are included to develop manufacturing 
process technology.  These transistors (0.5µm drawn) yield 0.35µm 
Leff and are equivalent to the TSMC 0.35µm transistors.
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LAMBDA, Lmin, Ldrawn, Lmask, Lpoly, Lint, Leff, L

Source at 0 V
Gate

Ldrawn
Lmask
Lpoly 

Lmin = min drawn poly length, 2λ

Lresist after photo (resist trimming??)

Lmask = ?   Depends on +/-bias 

Lpoly after poly reoxidation

0.50µm

1.00µm x 5

0.50µm

0.35µm
Lpoly after poly etch 0.40µm

Lambda = design rule parameter, λ, ie  0.25µm
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Leff
L

Drain at 3.3V

Internal Channel Length, Lint =distance between junctions, including under diffusion
Effective Channel Length, Leff = distance between space charge layers,Vd = Vs= 0
Channel Length, L, = distance between space charge layers, when Vd= what it is
Extracted Channel Length Parameters = anything that makes the fit good (not real)

Lint
0.30µm

0.20µm

0.11µm
Ldrawn = what was drawn
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MOSIS TSMC 0.35 2POLY 4 METAL PROCESS

http://www.mosis.com/Technical/Designrules/scmos/scmos-main.html#tech-codes
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MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

MASK  LAYER 
NAME

MENTOR 
NAME

GDS 
# 

COMMENT

N WELL N_well.i 42

ACTIVE Active.i 43

POLY Poly.i 46

N PLUS N_plus_select.i 45
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P PLUS P_plus_select.i 44

CONTACT Contact.i 25 Active_contact.i 48

poly_contact.i 47

METAL1 Metal1.i 49

VIA Via.i 50

METAL2 Metal2.i 51

VIA2 Via2.i 61 Under Bump Metal

METAL3 Metal3.i 62 Solder Bump

These are the main design layers up through metal two
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MORE LAYERS USED IN MASK MAKING

LAYER NAME GDS COMMENT

cell_outline.i 70 Not used

alignment 81 Placed on first level mask

nw_res 82 Placed on nwell level mask

active_lettering 83 Placed on active mask
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channel_stop 84 Overlay/Resolution for Stop Mask

pmos_vt 85 Overlay/Resolution for Vt Mask

LDD 86 Overlay/Resolution for LDD Masks

p plus 87 Overlay/Resolution for P+ Mask

n plus 88 Overlay/Resolution for N+ Mask

tile_exclusion 89 Areas for no STI tiling 

These are the additional layers 
used in  layout and mask making
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MOSIS LAMBDA BASED DESIGN RULES

10 6

9

Well

Same
Potential

Diff
Potential

3

3

3

Active in p-well

n+
p+

n+

well edge
n-Substrate

5

Poly

2

3

2

1

Poly

Poly

Active

5 3

http://www.mosis.com/design/rules/
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PotentialPotential n-Substrate
(Outside well) 2

3

1

p select

active

2

3 contact to poly

2

2

2

2

metal

2

1

2

3
3

1

1

If λ = 1 µm then contact is
2 µm x 2 µm

p+

5

n+

3
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MOSIS LAMBDA BASED DESIGN RULES

metal two
2

1

2

4
3

http://www.mosis.com/design/rules/

MOSIS Educational Program
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4

1

1 Instructional Processes Include: 
AMI  λ = 0.8 µm SCMOS Rules
AMI λ = 0.35 µm SCMOS Rules

Research Processes:
go down to poly length of 65nm
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MOSIS REQUIREMENTS

MOSIS requires that projects have successfully passed LVS (Layout 
Versus Schematic) and DRC (Design Rule Checking).  The 
MENTOR tools for LVS and DRC (as they are set up at RIT) require 
separate N-select and P-select levels in order to know an NMOS 
transistor from a PMOS transistor.  Although either an N-well, P-well 
or both will work for a twin well process, we have set up our DRC to 
look for N-well. (Also since we use a p-type starting wafer we can 
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look for N-well. (Also since we use a p-type starting wafer we can 
not have isolated p-wells but we can have isolated n-wells, thus 
drawing separate n-wells can be useful for some circuit designs.)

http://www.mosis.com
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LAYOUT

Digital Circuit Layout
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Digital Circuit Layout
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DIGITAL CIRCUITS

Primitive Cells
INVERTER, NAND2,3,4, NOR2,3,4, NULL

The design approach for digital circuits is to design primitive cells 
and then use the primitive cells to design basic cells which are then 
used in the project designs.  A layout approach is also used that allows 
for easy assembly of these cells into more complex cells.
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Basic Cells
XOR, MUX, DEMUX, ENCODER, DECODER
FULL ADDER, FLIP FLOPS

Macro Cells
BINARY COUNTER
SRAM
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LAYOUT – GATE ARRAY

PMOS
Green is Active 
Dashed Yellow is N-Well
Red is Poly

INO
U

T

VDD
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GND

INININ

NMOS

Red is Poly
Blue is Metal-One
Pink is Metal-Two
White is Contact Cut
Yellow is Via
P and N select not shown
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LAYOUT DETAILS FOR GATE ARRAY

1. Cells are separated from adjacent cells by off transistors
2. Well contacts are made at each of the off transistors
3. Metal-two connects thru Via to Metal-one
4. Metal-one connects thru Contact Cuts to active and Poly
5. Inputs and Outputs connections are made vertically with Metal-
two
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two
6. Routing channels exist above and below the gate array and contain 
horizontal metal-one interconnects between cells, with Via to Metal-
two.
7. The NULL cell at the end of the gate array row satisfy design 
rules for extension of well beyond active, etc.  It also provides a 
vertical routing channel which may be useful in constructing macro 
cells.
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INVERTER

Vin Vout

Vin

+V

Vout

Idd

PMOS

NMOS
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CMOS

TRUTH TABLE

VOUTVIN

0          1

1          0

NMOS

W = 40 µm
Ldrawn = 2.5µm
Lpoly = 1.0µm
Leff = 0.35 µm
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PRIMITIVE CELLS
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PRIMITIVE CELLS WITH PADS
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INV/NOR4 NOR3/NAND2 NOR2/NAND3 INV/NAND4
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BASIC DIGITAL CELLS WITH PADS

Multiplexer     XOR     Full Adder     Encoder       Decoder     Demux

Decoder
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Multiplexer     XOR     Full Adder     Encoder       Decoder     Demux

Edge Triggered D FF JK FF
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4 TO 1 MULTIPLEXER

I0

I1

Q

A
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I2

I3

Q

B
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BASIC CELL XOR

Port out

Input A

XOR

Input B

Port in

Port in

XOR = A’B+AB’

A’

B

A

A’B

AB’
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B’

A
AB’

XOR
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XOR
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FULL ADDER
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1 TO 4 DEMULTIPLEXER

A

B

I

Q0

Q1

Q2

Q3
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DECODER

Q0

Q1

Q2

Q3

A

B
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Q3
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ENCODER

Q0 Q1
0    0 
0    1
1    0
1    1

A B C D
1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

Q0
Q1
Q2

Qn

Coded 
Output
Lines

Digital Encoder

512 inputs can be coded into 9 lines
which is a more dramatic benefit
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which is a more dramatic benefit

A
B

C
D

Q1

Q2No Connection
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EDGE TRIGGERED D TYPE FLIP FLOP
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JK FLIP FLOP
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T-TYPE FILP-FLOP

TOGGEL FLIP FLOP

Q

QBAR

T
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Q:  Toggles High and Low with Each Input

QQn-1

0          0          0

0          1          1

1          0          1

1          1 0

T
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BINARY COUNTER USING T TYPE FLIP FLOPS

BA

0     0     0         0     0     1           0      0      1

0     0     1         0     1     0           0      1      1

0     1     0         0     1     1           0      0      1

0     1     1         1     0     0           1      1      1

1     0     0         1     0     1           0      0      1

C

State Table for Binary Counter

Present       Next                F-F

State           State              Inputs
BA C TA TB TC

A

A

TA

B
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TOGGEL FLIP FLOP

QQn-1

0          0          0

0          1          1

1          0          1

1          1          0

T

1     0     0         1     0     1           0      0      1

1     0     1         1     1     0           0      1      1

1     1     0         1     1     1           0      0      1

1     1     1         0     0     0           1      1      1

A
BC 0 1

00

01

11

10

0

0

0

1 1

0

00

Input

Pulses

TA

A
BC 0 1

00

01

11

10

0

1

0

1 1

1

00

TB

A
BC 0 1

00

01

11

10

1

1

1

1 1

1

11

TC

B

TB

C

C

Tc



Introduction to VLSI

3-BIT BINARY COUNTER WITH D FLIP FLOPS
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MACROCELLS

Binary Counter
SRAM
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3-BIT BINARY COUNTER/SHIFT REGISTER
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Binary Counter
Serial Output
Asynchronous Reset
Count  Up Enable
Shift Out Clock Input
Count Up Clock Input
Start Bit and Stop Bit
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ADDITIONAL CIRCUITRY TO RESET, SHIFT, COUNT
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8-BIT BINARY COUNTER
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8-BIT BINARY COUNTER WITH PADS
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MASKMAKING

Maskmaking
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Maskmaking
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FILE FORMATS

Mentor- ICGraph files (filename.iccel), all layers, 
polygons with up to 200 vertices 

GDS2- CALMA files (old IC design tool) 
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GDS2- CALMA files (old IC design tool) 
(filename.gds), all layers, polygons

MEBES- files for electron beam maskmaking tool, 
each file one layer, trapezoids only



RIT SUB-CMOS PROCESS

0.75 µm Aluminum

N-type Substrate 10 ohm-cm

P-wellN-well

6000 Å
Field Oxide

NMOSFET PMOSFET
N+ Poly

Channel Stop

P+ D/SN+ D/S LDD
LDD n+ well

contactp+ well
contact

LVL 1 – n-WELL

LVL 2 - ACTIVE

LVL 8 - P+ D/S

LVL 7 – N-LDD

LVL 6 – P-LDD

11 PHOTO

LEVELS

POLY

METAL

N-WELL

P SELECT
CC

ACTIVE

N-type Substrate 10 ohm-cm

LVL 9 - METAL

LVL 4 - PMOS VT

LVL 9 - N+ D/S

LVL 8 - P+ D/S

LVL 3 - STOP

LVL 8 - CC

LVL 5 - POLY

N SELECT



RIT ADVANCED CMOS

LVL 2 - NWell

LVL 3 - Pwell

LVL 8 - NLDD

LVL 9 – N+D/S

LVL 7 - PLDDNMOSFET PMOSFET

N-well
P-well

N+ Poly

P+ D/SN+ D/S

LDD
LDD

n+ well
contact

p+ well
contact

P+ Poly
LVL 1 - STI

12 PHOTO LEVELS + 2 FOR EACH ADDITIONAL 

METAL LAYER

POLY

METAL

N-WELL

P SELECT
CC

ACTIVE

N SELECT

LVL 6 - POLY

LVL 11 - CC

LVL 12 – METAL 1

LVL 10 – P+D/S
LVL 4 - VTP

METAL LAYER

LVL 5 - VTN
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OTHER MASKMAKING FEATURES

Fiducial Marks-marks on the edge of the mask used to 
align the mask to the stepper

Barcodes
Titles
Alignment Keys- marks on the wafer from a previous 
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Alignment Keys- marks on the wafer from a previous 
level used for wafer alignment

CD Resolution Targets- lines and spaces
Overlay Verniers- structures that allow measurement 

of x and y overlay accuracy
Tiling
Optical Proximity Correction (OPC)
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HOMEWORK – INTRO TO VLSI

1. Do a SPICE simulation to obtain the VTC for the inverter shown 
on page 16.  Let the load resistor be 10K, the NMOS transistor 
SPICE model RITSUBN7, L=1u and W=40u.  Extract Voh, Vol, 
Vil, ViH, Vinv, Noise Margin Low, Noise Margin High and 
Maximum current.

2. Do a SPICE simulation to obtain the VTC for the inverter shown 
on page 20.  Let the NMOS and PMOS transistor SPICE model 
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on page 20.  Let the NMOS and PMOS transistor SPICE model 
RITSUBN7 and RITSUBP7, L=1u and W=40u.  Extract Voh, 
Vol, Vil, ViH, Vinv, Noise Margin Low, Noise Margin High and 
Maximum current.

3. Do a SPICE simulation to obtain the RISE TIME and FALL 
TIME for the inverter in problem 2 with a load capacitance equal 
to a fan out of 5 gates.

4. Show that the XOR realized with AND and OR gates is 
equivalent to an all NAND gate realization.


