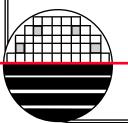
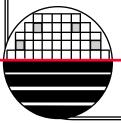
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING


Introduction to Digital Electronics

Dr. Lynn Fuller

Webpage: http://people.rit.edu/lffeee
Microelectronic Engineering
Rochester Institute of Technology
82 Lomb Memorial Drive
Rochester, NY 14623-5604
Tel (585) 475-2035

Email: Lynn.Fuller@rit.edu


Department webpage: http://www.microe.rit.edu

10-12-2014 IntroDigitalElectronics.ppt

ADOBE PRESENTER

This PowerPoint module has been published using Adobe Presenter. Please click on the Notes tab in the left panel to read the instructors comments for each slide. Manually advance the slide by clicking on the play arrow or pressing the page down key.

OUTLINE

Brief History of IC Industry **Basic Logic Functions** Logic (Really Continuous Signals) VTC and Noise Margin **Transient Characteristics Power Dissipation** Digital Circuit Design PMOS, NMOS, CMOS CAD, VLSI Standard Cell Design System on a Chip (SOC) Challenges Ahead References Homework

Rochester Institute of Technology

INTRODUCTION

Industry rankings not including foundries

Rank 2012	Rank 2011	Rank 2010		Company	Country of origin	Revenue (million \$ USD)	2012/2011 changes	Market share
1	1	1	1	Intel Corporation	United States	\$47,543	-2.4%	15.7%
2	2	2	2	Samsung Electronics	South Korea	\$30,474	+6.7%	10.1%
3	6	9	6	Qualcomm	United States	\$12,976	+27.2%	4.3%
4	3	4	4	Texas Instruments	United States	\$12,008	-14.0%	4.0%
5	4	3	3	Toshiba Semiconductors	Japan	\$10,996	-13.6%	3.6%
6	5	5	9	Renesas Electronics (1)	Japan	\$9,430	-11.4%	3.1%
7	8	6	7	Hynix	South Korea	\$8,462	-8.9%	2.8%
8	7	7	5	STMicroelectronics	France / I I Italy	\$8,453	-13.2%	2.8%
9	10	10	14	Broadcom	United States	\$7,840	+9.5%	2.6%
10	9	8	13	Micron Technology (2)	United States	\$6,955	-5.6%	2.3%

Total \$304B in 2010

TSMC AND GLOBAL FOUNDRIES

TSMC, Tiwan

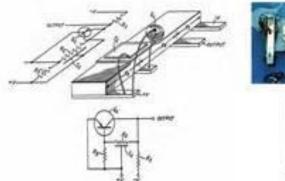
http://www.tsmc.com/english/default.htm

Global Foundries, Malta, New York

http://www.globalfoundries.com/

http://www.globalfoundries.com/manufacturing/fab-8-overview

Go to these web locations and explore, watch some videos, etc.

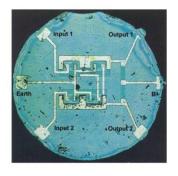


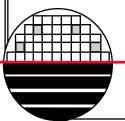
Rochester Institute of Technology

JACK KILBY AND ROBERT NOYCE

The First (2D) Integrated Circuit Jack Kilby, Texas Instruments, 1958

- Transistor, Resistors and Capacitors on the same piece of semiconductor
- · Interconnects between components not integrated
- → Low connectivity between components

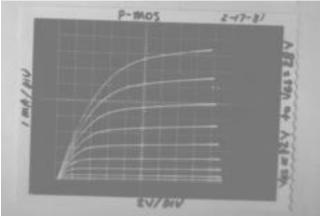



Nobel Prize in Physics 2001

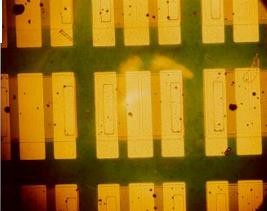
The First Monolithic (2D) Integrated Circuit Robert Noyce, Fairchild Semiconductor, 1961

- Transistor, Resistors and Capacitors on the same piece of semiconductor
- Interconnects between components integrated
 - → High connectivity between components

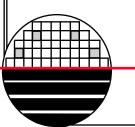
JACK KILBY AT RIT 1986

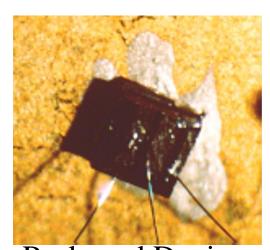


FIRST TRANSISTORS MADE AT RIT 1981

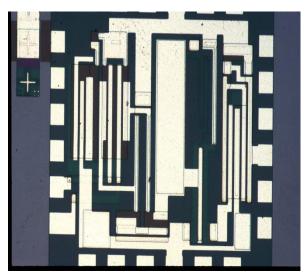


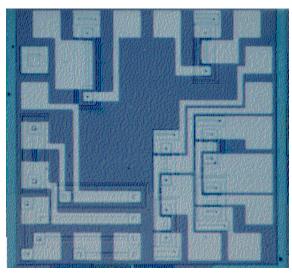
Vt = 12 volts



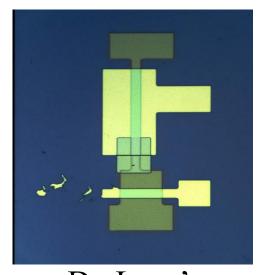

2" n-type silicon wafer

2-17-81 Rob Pearson Jim Radak


PMOS Transistors

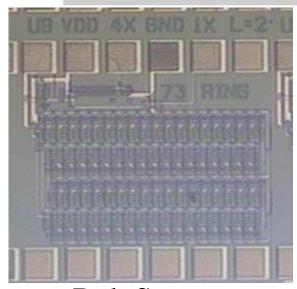


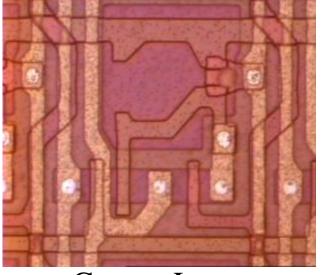
Packaged Device Aluminum wire bonds

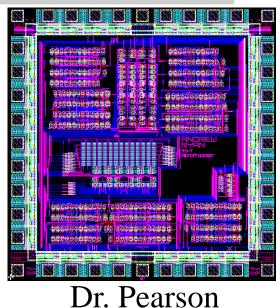

FIRST INTEGRATED CIRCUITS MADE AT RIT


Jonathan Littlehale All PMOS Op Amp 1985

Jim Pollard Metal Gate CMOS 1987

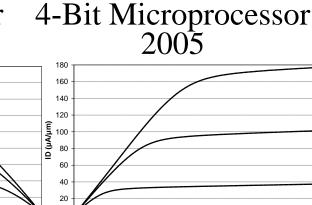


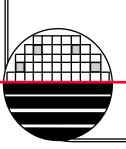

Dr. Lane's
Thin Films Class
NMOS Inverter
1990's



Rochester Institute of Technology

FIRST INTEGRATED CIRCUITS MADE AT RIT




Rob Saxer 2μm 73 Stage CMOS Ring Oscillator 2000

George Lungu 10,000 Pixel Imager 1999

1.0

VD (Volts)

Mike Aquilino 250 nm CMOS MOSFETS, 2006

© October 12, 2014 Dr. Lynn Fuller

-1.0

VD (volts)

-2.0

Page 10

0.0

PROCESS TECHNOLOGY

Process Technology

Rochester Institute of Technology

PROCESS SELECTION

It is not necessary to know all process details to do CMOS integrated circuit design. However the process determines important circuit parameters such as supply voltage and maximum frequency of operation. It also determines if devices other than PMOS and NMOS transistors can be realized such as poly-to-poly capacitors and EEPROM transistors. The number of metal interconnect layers is also part of the process definition. Starting wafer type determines if isolated n-wells or p-wells are available.

RIT PROCESSES

At RIT we use the Sub-CMOS and ADV-CMOS processes for most designs. In these processes the minimum poly length is 1 μ m and 0.5 μ m respectively. We use scalable MOSIS design rules with lambda equal to 0.5 μ m and 0.25 μ m. These processes use one layer of poly and two layers of metal.

The examples on the following pages are designs that could be made with either of the above processes. As a result the designs are generous, meaning that larger than minimum dimensions are used. For example $\lambda=0.5\mu m$ and minimum poly is 2λ which would result in transistor gate length of $1\mu m$ but are designed at $2\mu m$ for higher yield.

The design approach for digital circuits is to design primitive cells and then use the primitive cells to design basic cells which are then used in the project designs. A layout approach is also used that allows for easy assembly of these cells into more complex cells.

RIT SUBµ CMOS

RIT Subµ CMOS

150 mm wafers

Nsub = 1E15 cm-3

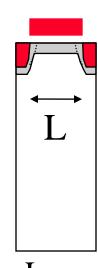
Nn-well = 3E16 cm-3

 $Xj = 2.5 \mu m$

Np-well = 1E16 cm-3

 $X\hat{j} = 3.0 \, \mu m$

LOCOS

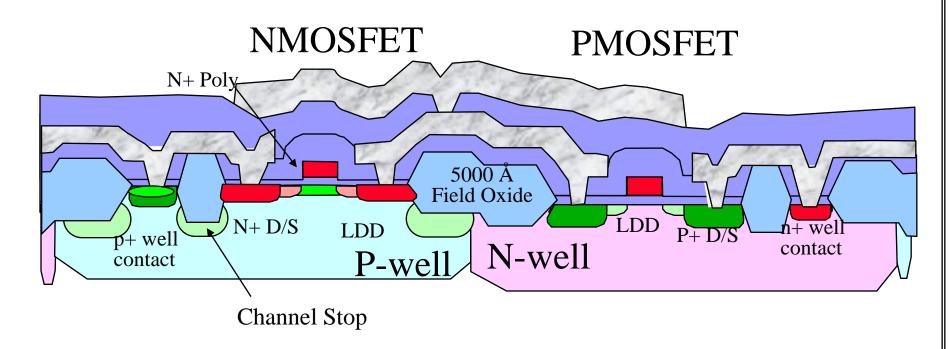

Field Ox = 6000 Å

Xox = 150 Å

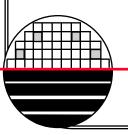
Lmin= $1.0 \mu m$

LDD/Side Wall Spacers

2 Layers Aluminum



Long Channel Behavior


3.3 Volt Technology VT's = +/- 0.75 Volt Robust Process (always works) Fully Characterized (SPICE)

RIT SUBµ CMOS

Substrate 10 ohm-cm

Rochester Institute of Technology

RIT ADVANCED CMOS VER 150

RIT Advanced CMOS

150 mm Wafers

Nsub = 1E15 cm-3 or 10 ohm-cm, p

Nn-well = 1E17 cm-3

 $Xj = 2.5 \mu m$

Np-well = 1E17 cm-3

 $X\hat{j} = 2.5 \mu m$

Shallow Trench Isolation

Field Ox (Trench Fill) = 4000 Å

Dual Doped Gate n+ and p+

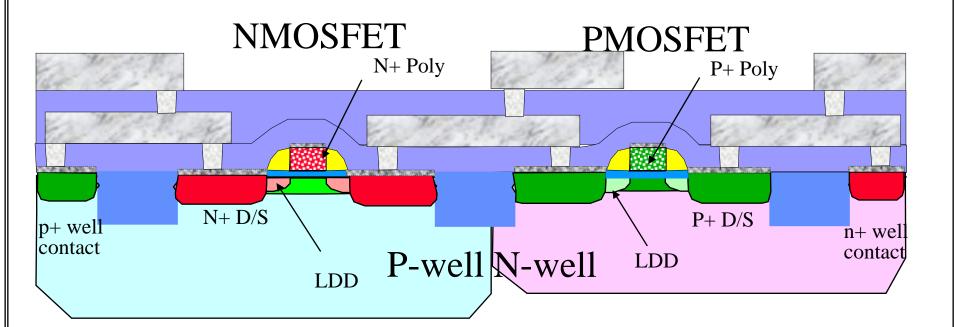
Xox = 100 Å

Lmin = $0.5 \mu m$, Lpoly = $0.35 \mu m$, Leff = $0.11 \mu m$

LDD/Nitride Side Wall Spacers

TiSi2 Salicide

Tungsten Plugs, CMP, 2 Layers Aluminum

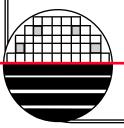

Long Channel Behavior


Vdd = 3.3 volts

Vto=+-0.75 volts

Rochester Institute of Technology

RIT ADVANCED CMOS

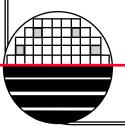


Rochester Institute of Technology

DIGITAL ELECTRONICS

Digital Electronics

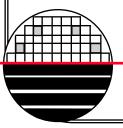
Rochester Institute of Technology

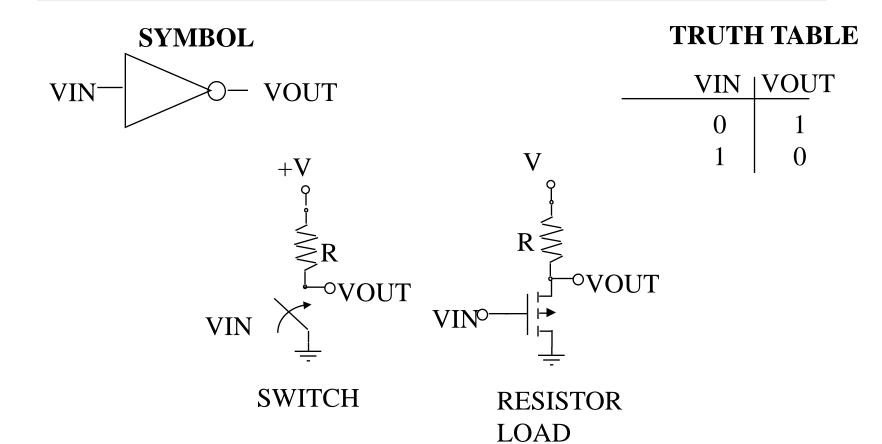

DIGITAL INTEGRATED CIRCUITS

BOOLEAN ALGEBRA IS BASED ON TWO DISCRETE LEVELS CALLED LOW OR HIGH (0 OR 1). (from George Boole, 1815-1864)

BOOLEAN ALGEBRA USES FUNCTIONS SUCH AS "INVERT", "AND", "OR" TO EVALUATE INPUTS AND GENERATE "OUTPUTS".

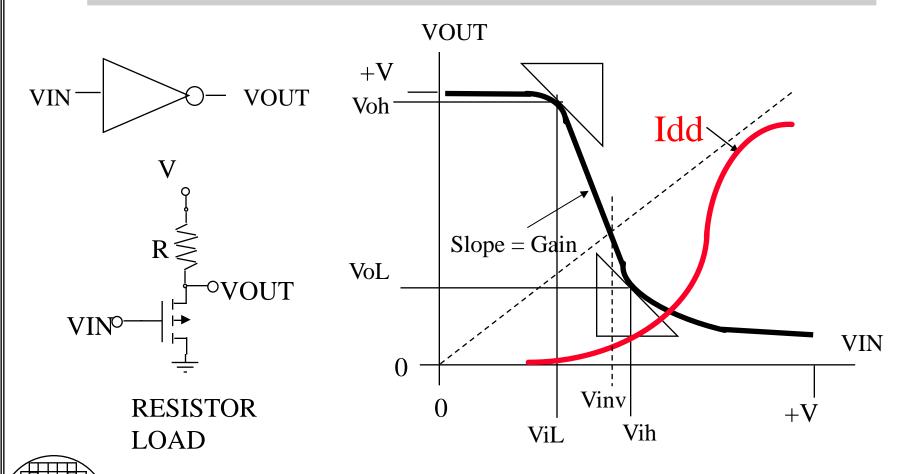
THE TERM "BINARY LOGIC" IS USED TO DESCRIBE DEVICES THAT FOLLOW THE RULES OF BOOLEAN ALGEBRA.

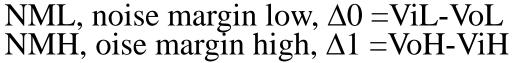

EACH SUB CIRCUIT OR "GATE" SHOULD HAVE ITS INPUTS AND OUTPUTS AT 0 OR 1 (Except Briefly During Switching)

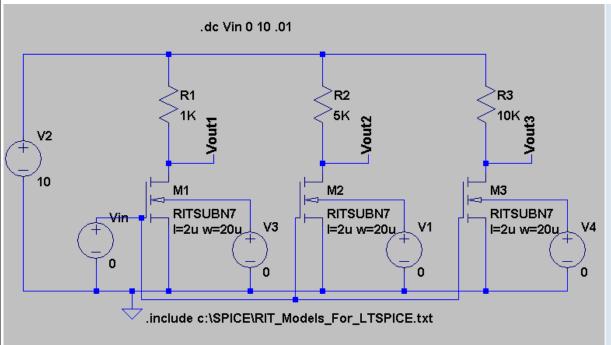

Rochester Institute of Technology

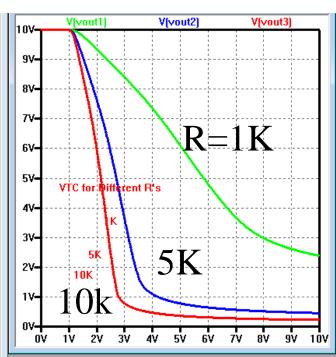
BASIC LOGIC FUNCTIONS

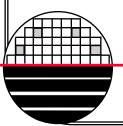
INV, NAND NOR
Truth Tables
Sum of Products, Product of Sums
XOR, XNOR, MUX
Sequential Logic
RS, D, JK, T Flip Flops


INVERTER

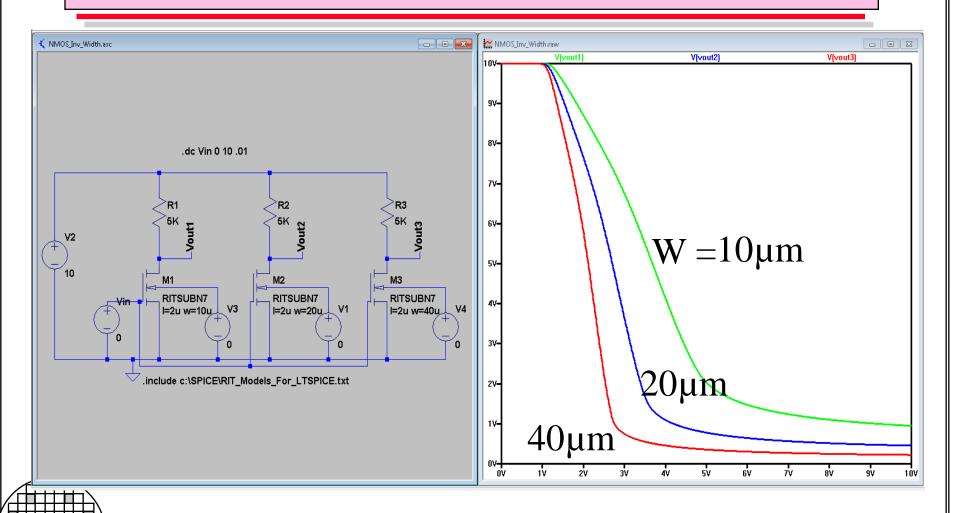


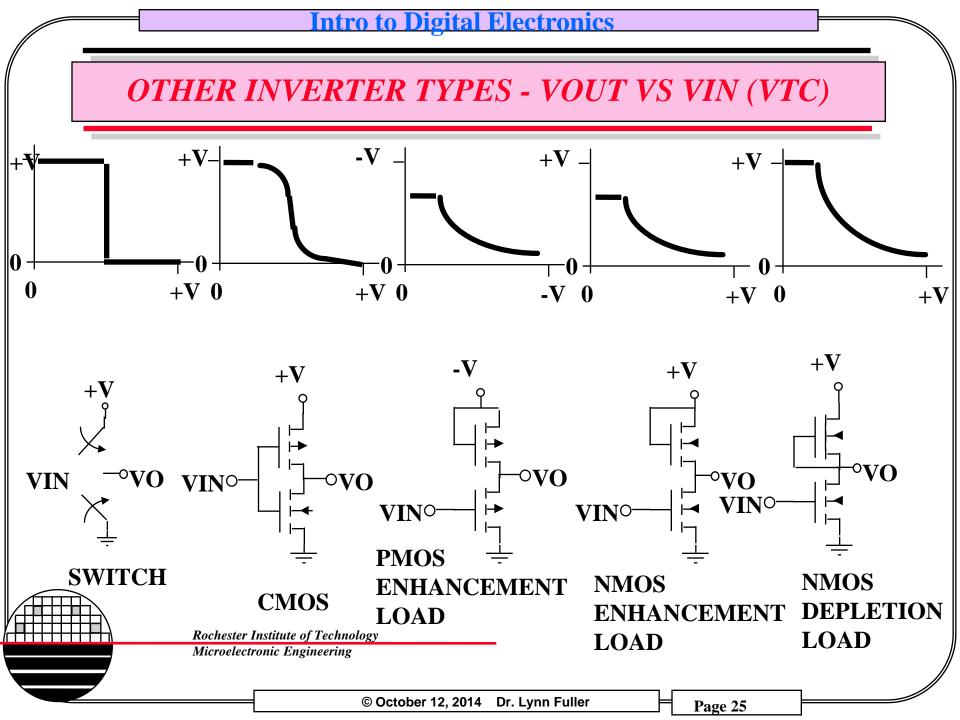



VOLTAGE TRANSFER CURVE

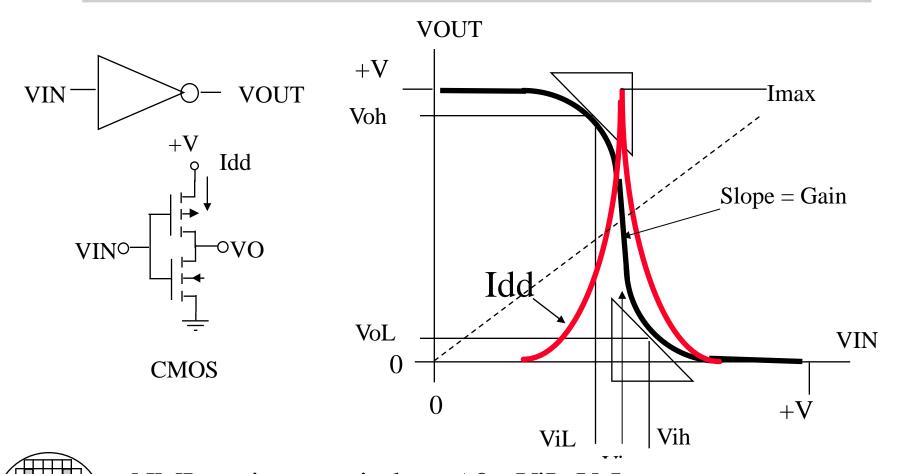


LTSPICE - INVERTER VTC - FOR DIFFERENT RL

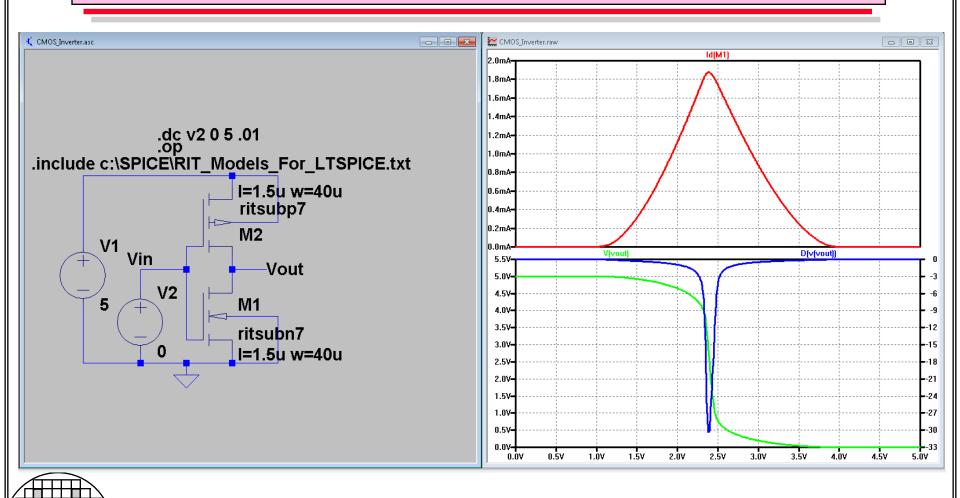




Rochester Institute of Technology


LTSPICE - INVERTER FOR DIFFERENT NMOS W

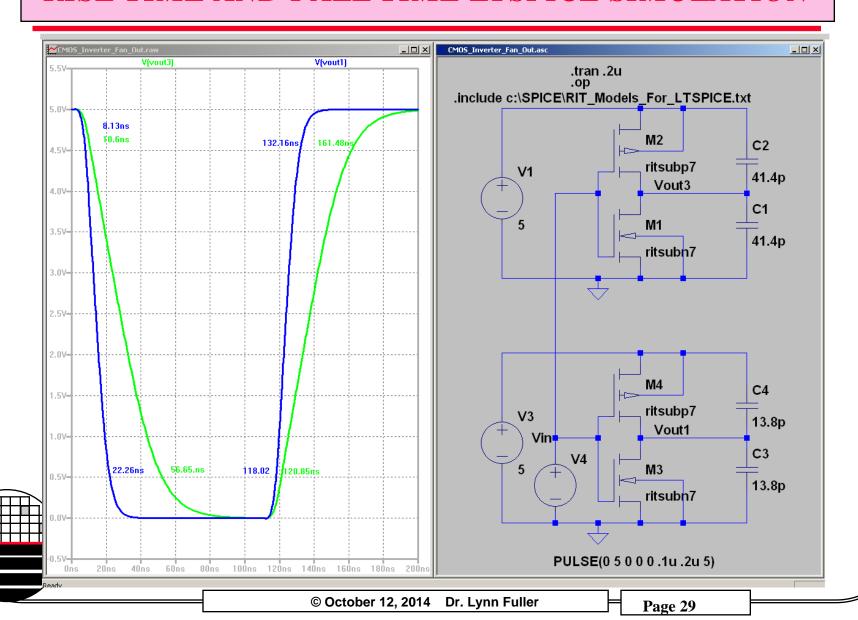
Rochester Institute of Technology



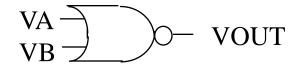
CMOS INVERTER

NML, noise margin low, $\Delta 0 = ViL-VoL$ NMH, noise margin high, $\Delta 1 = VoH-ViH$

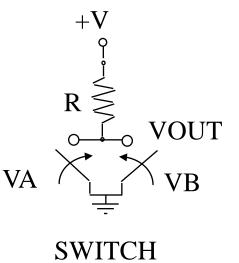
LTSPICE - CMOS INVERTER


INVERTER PROPERTIES

DC Properties
Noise Margins
Current, I
Size
Transient Properties
Rise/Fall Time
Fan Out


Rochester Institute of Technology

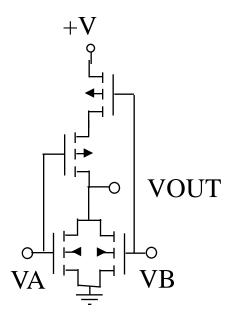
RISE TIME AND FALL TIME LTSPICE SIMULATION


NOR GATE

SYMBOL

TRUTH TABLE	VA	VB	<u> </u>

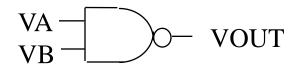
,	• =	_ · · · ·
0	0	1
0	1	0
1	0	0
1	1	0

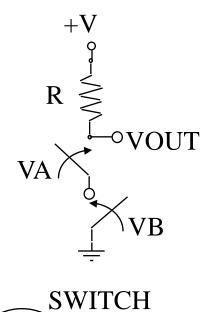


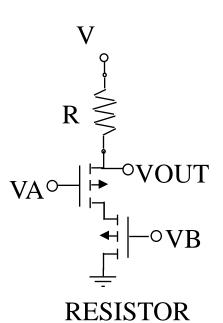
R VOUT

RESISTOR LOAD

Rochester Institute of Technology


Microelectronic Engineering




CMOS

NAND GATE

SYMBOL

LOAD

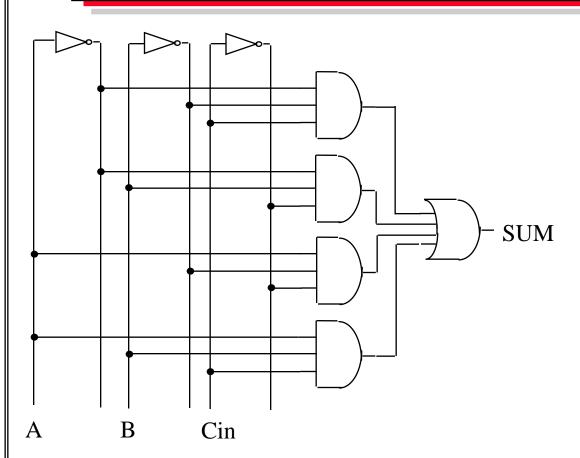
VOUT TRUTH TABLE_VA VB +V**VOUT** VAO o VB

CMOS

OTHER LOGIC GATES

	AN	ID		OR		3	INF	PUT	AND		3 IN	IPUT	OR
VA VB		- VOUT	VA VB		VOUT	VA V			⊢VOUT	V	YA A YB A VC Z		-VOUT
VA	VB	VOUT	VA	VB	VOUT	VA	VB	VC	VOUT	<u>VA</u>	VB	VC	VOUT
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	0	1	0	0	0	1	1
1	0	0	1	0	1	0	1	0	0	0	1	0	1
1	1	1	1	1	1	0	1	1	0	0	1	1	1
						1	0	0	0	1	0	0	1
			_			1	0	1	0	1	0	1	1
	_)o-[>>-		_)o-[> >-	1	1	0	0	1	1	0	1
						1	1	1	1	1	1	1	1

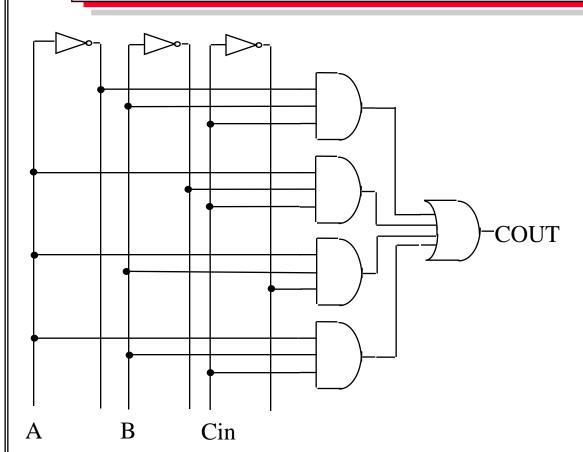
ADDITION IN BINARY


IN I	BASE 10	0	0000
		1	0001
	7	2	0010
	+2	3	0011
		4	0100
	9	5	0101
		6	0110
IN BI	NARY	7	0111
		8	1000
11	CARRY	9	1001
0111		10	1010
0010		11	1011
		12	1100
1001	SUM	13	1101
		14	1110
		15	1111

TRUTH TABLE FOR ADDITION RULES

<u>A</u>	В	CIN	<u>SUM</u>	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

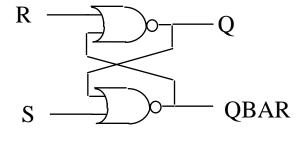
AND-OR CIRCUIT REALIZATION OF SUM



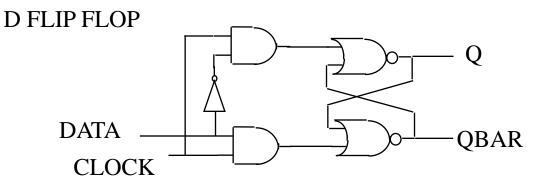
TRUTH TABLE FOR ADDITION RULES

<u>A</u>	В	CIN	<u>SUM</u>	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

CIRCUIT REALIZATION OF CARRY OUT (COUT)

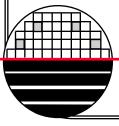

TRUTH TABLE FOR ADDITION RULES

<u>A</u>	В	CIN	<u>SUM</u>	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

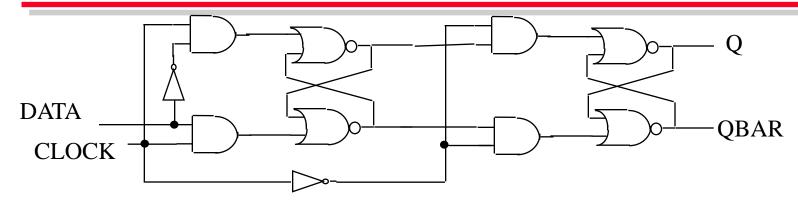


FILP-FLOPS

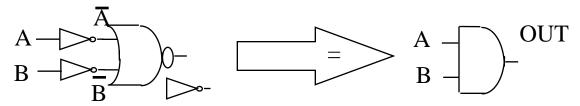
RS FLIP FLOP



R	S	_ Q_
0	0	Qn-1
0	1	1
1	0	0
1	1	INDETERMINATE



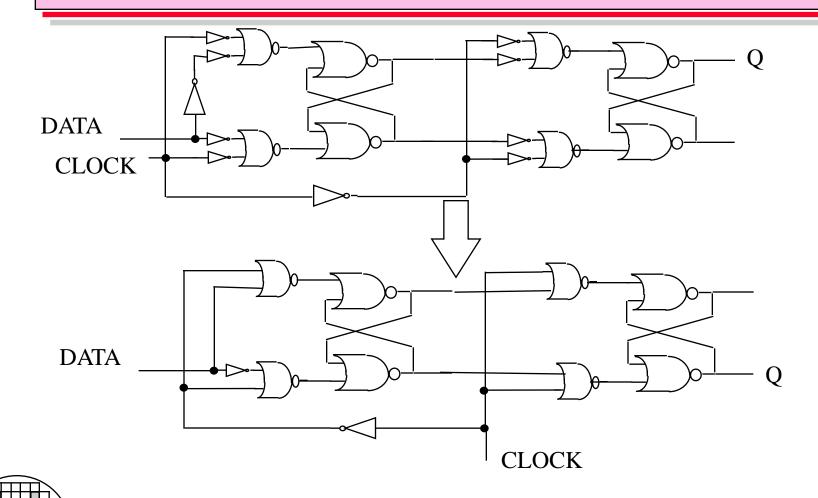
Q=DATA IF CLOCK IS HIGH IF CLOCK IS LOW Q=PREVIOUS DATA VALUE


Rochester Institute of Technology

MASTER-SLAVE D FLIP FLOP



NEGATED INPUT NOR IS EQUAL TO AND

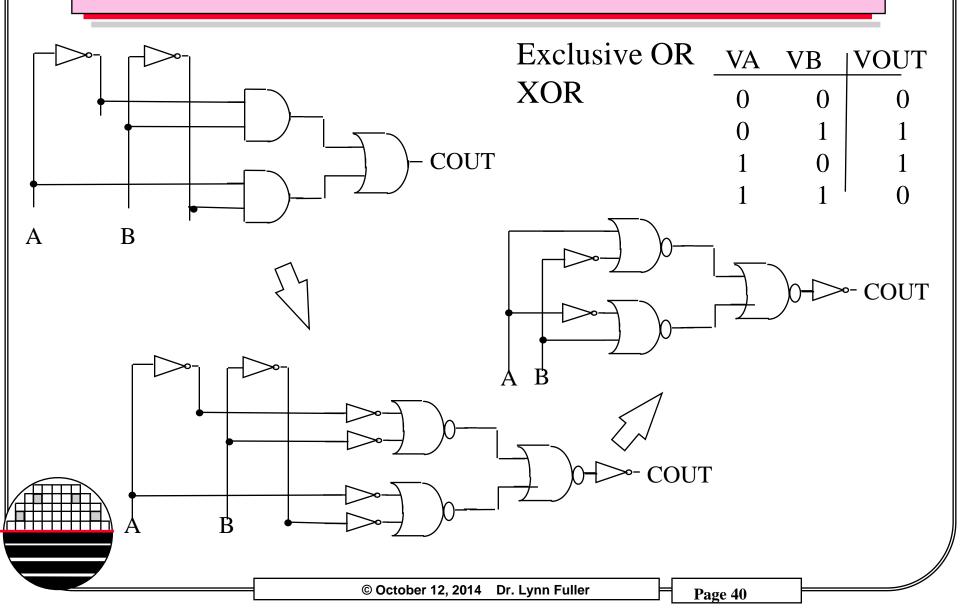


A	В	Ā	B	OUT	OUT
0	0	1	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

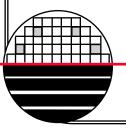
Rochester Institute of Technology

ALL NOR MASTER SLAVE D FLIP FLOP

Rochester Institute of Technology


EQUAVILANT REALIZATIONS

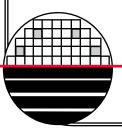
AND-OR realizations are easily derived from truth table description of a circuits performance. Replacing the AND and OR gates with all NOR gates is equivalent. Replacing the AND and OR gates with all NAND gates is equivalent.



CIRCUIT REALIZATION FOR XOR

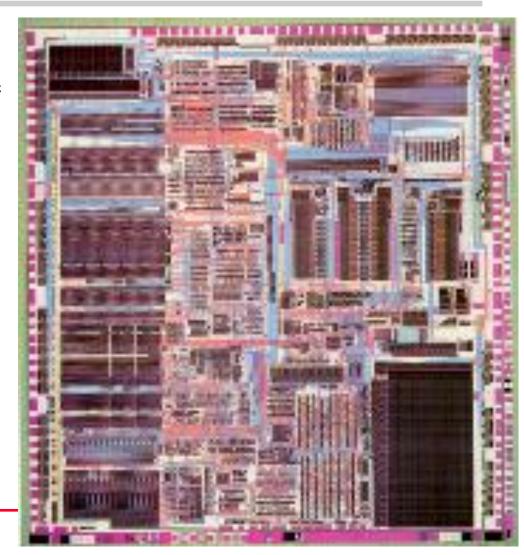
VLSI

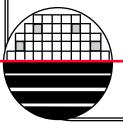
VLSI Very Large Scale Integration


Rochester Institute of Technology

INTRODUCTION

VLSI is an acronym for Very Large Scale Integration. This includes Integrated circuits with greater than tens of thousands of transistors including multi-million or even billions of transistors.


VLSI Design refers to methodologies and computer software tools for designing digital circuits with huge numbers of transistors. Some of theses methodologies and tools can also be applied to analog circuit design.


Software tools include schematic capture, SPICE analog simulation, switch level digital simulation, layout editors, layout versus schematic checking, design rule checking (DRC), auto place and routing and many more.

VLSI DESIGN

Computer software is used to check the layout, compare the layout to the schematic and make it possible to design circuits with millions of transistors with no errors.

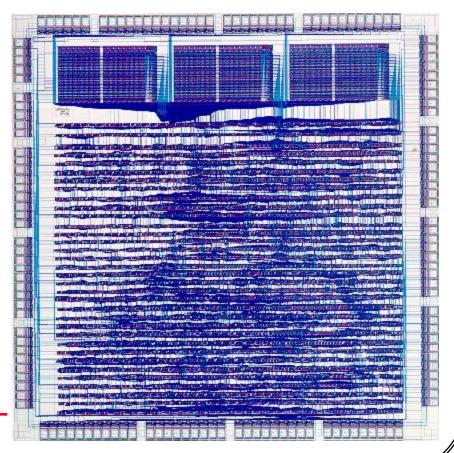
Rochester Institute of Technology Microelectronic Engineering

VLSI DESIGN METHODOLOGIES

Full Custom Design

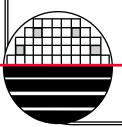
Direct control of layout and device parameters

Longer design time High performance fast, low power, dense


Standard Cell Design

Easy to implement Medium performance Limited cell library selections

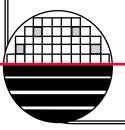
Gate Array or Programmable Logic Array Design


Fastest design turn around

Rochester Institute of Technology
Microelectronic Engineering

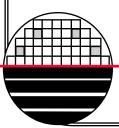
LAYOUT

Layout Design Rules

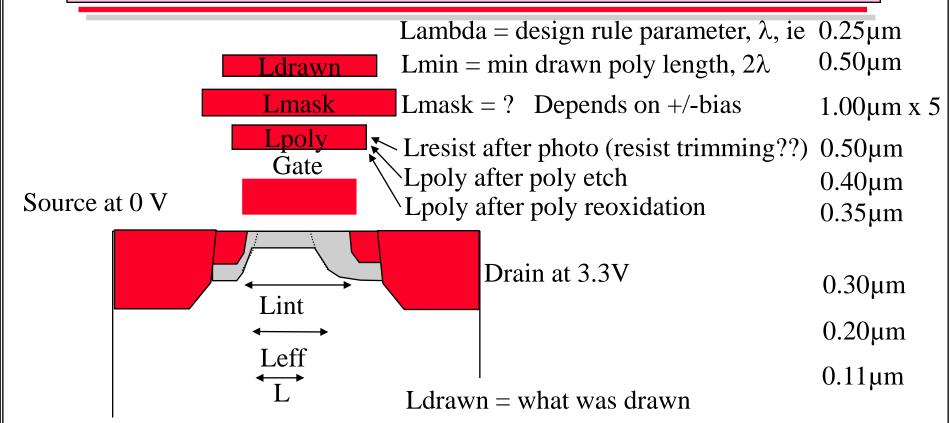

Rochester Institute of Technology

LAMBDA BASED DESIGN RULES

The design rules may change from foundry to foundry or for different technologies. So to make the design rules generic the sizes, separations and overlap are given in terms of numbers of lambda (λ). The actual size is found by multiplying the number by the value for lambda for that specific foundry.


For example:

RIT PMOS process $\lambda = 10~\mu m$ and minimum metal width is 3 λ so that gives a minimum metal width of 30 μm . The RIT SUB-CMOS process has $\lambda = 0.5~\mu m$ and the minimum metal width is also 3 λ so minimum metal is 1.5 μm but if we send our CMOS designs out to industry λ might be 0.25 μm so the minimum metal of 3 λ corresponds to 0.75 μm . In all cases the design rule is the minimum metal width = 3 λ



DESIGN RULES

We will use a modified version of the MOSIS TSMC 0.35 2P 4M design rules. Eventually we hope to be compatible with MOSIS but new process technology needs to be developed at RIT to do that (PECVD Tungsten, 4 layer metal). We use one layer of poly and two layers of metal. We will use the same design layer numbers with additional layers as defined on the following pages for manufacturing/maskmaking enhancements. Many of the designs will use minimum drawn poly gate lengths of 2µm where circuit architecture is the main purpose of the design. Minimum size devices (Drawn Poly = $0.5\mu m$, etc.) are included to develop manufacturing process technology. These transistors (0.5µm drawn) yield 0.35µm Leff and are equivalent to the TSMC 0.35 µm transistors.

LAMBDA, Lmin, Ldrawn, Lmask, Lpoly, Lint, Leff, L

Internal Channel Length, Lint = distance between junctions, including under diffusion Effective Channel Length, Leff = distance between space charge layers, Vd = Vs = 0 Channel Length, L, = distance between space charge layers, when Vd = What it is Extracted Channel Length Parameters = anything that makes the fit good (not real)

MOSIS TSMC 0.35 2POLY 4 METAL PROCESS

General Information

About MOSIS
Products
Processes
Prices
Support
User Group
Events
Job Openings
News

Work with MOSIS

Overview Getting Started Design and Test

Requests

Run Status Project Status Test Data

Docs and Forms

<u>Documents</u> <u>Forms/Agreements</u> <u>Web Forms</u>

Quick Reference

New Users
Experienced Users
Purchasing Agents
Design and Test
Academic Institutions
Export Program
Submit A Project

Search MOSIS

Search

http://www.mosis.com/Technical/Designrules/scmos/scmos-main.html#tech-codes

MOSIS SCMOS Technology Codes and Layer Maps

SCN4M and SCN4M SUBM

This is the layer map for the technology codes SCN4M and SCN4M_SUBM using the MOSIS Scalable CMOS layout rules (<u>SCMOS</u>), and only for SCN4M and SCN4M_SUBM. For designs that are laid out using other design rules (or <u>technology codes</u>), use the standard layer mapping conventions of that design rule set. For submissions in GDS format, the datatype is "O" (zero) unless specified in the map below.

SCN4M: Scalable CMOS N-well, 4 metal, 1 poly, silicided. Silicide block and thick oxide option available only on the TSMC process.

SCN4M_SUBM: Uses revised layout rules for better fit to sub-micron processes (see MOSIS Scalable CMOS (SCMOS) Design Rules, section 2.4).

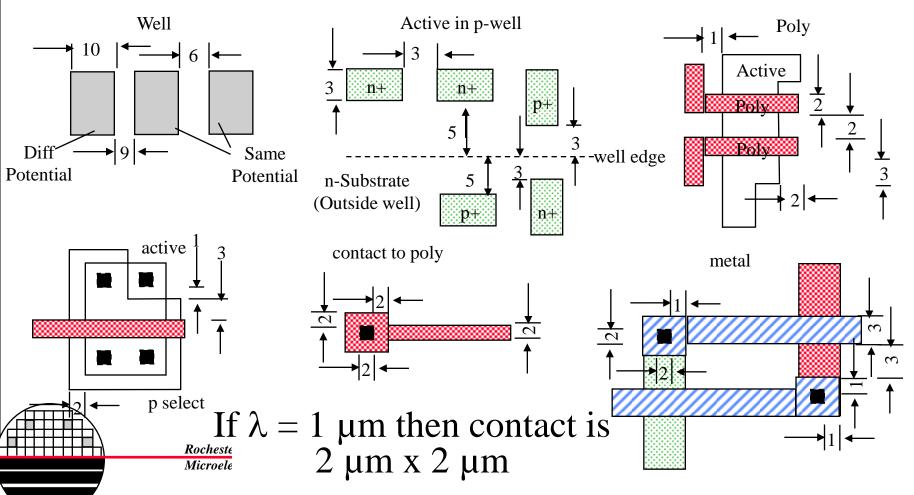
Fabricated on <u>TSMC</u>, <u>AMIS</u>, and <u>Agilent/HP</u> 0.35 micron process runs. See "Notes" section of layer map for foundry-specific options.

Layer	GDS	CIF	CIF Synonym	Rule Section			Notes	
N WELL	42	CWN		<u>1</u>				
ACTIVE	43	CAA		<u>2</u>				
THICK ACTIVE	60	CTA		<u>24</u>	Optional	for TSMC; not a	available for Agilent/HP r	or AMIS
<u>DLY</u>	46	CPG		<u>3</u>				
LICIDE BLOCK	29	CSB		<u>20</u>	Optional	for Agilent/HP	; not available for AMI	
PLUS SELECT	45	CSN		4				
PLUS SELECT	44	CSP		<u>4</u>				
<u>ONTACT</u>	25	ccc	CCG	<u>5, 6, 13</u>				
LY CONTACT	47	CCP		<u>5</u>	Can be re	eplaced by CON	TACT	
TIVE CONTACT	48	CCA		<u>6</u>	Can be re	eplaced by CON	TACT	
ETAL1	49	CM1	CMF	7				
<u> </u>	50	CV1	CVA	<u>8</u>				
TAL2	51	CM2	CMS	<u>9</u>	l			
<u>42</u>	61	CV2	CVS	<u>14</u>		TSMC	0.35 micron	0.:
AL3	62	СМЗ	CMT	<u>15</u>			2P4M (4 Metal	
<u> 43</u>	30	CA3	CVT	<u>21</u>			Polycided, 3.3	
<u>ΓΑL4</u>	31	CM4	CMQ	<u>22</u>			V/5 V)	
<u>ASS</u>	52	COG		<u>10</u>	l			
os	26	ΧP			Non-fab I	ayer used to h	ighlight pads	

Comments

CX

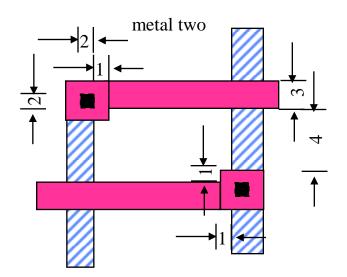
Comments


MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

MASK LAYER NAME	MENTOR NAME	GDS #	COMMENT
N WELL	N_well.i	42	
ACTIVE	Active.i	43	
POLY	Poly.i	46	
N PLUS	N_plus_select.i	45	
P PLUS	P_plus_select.i	44	
CONTACT	Contact.i	25	Active_contact.i 48 poly_contact.i 47
METAL1	Metal1.i	49	
VIA	Via.i	50	
METAL2	Metal2.i	51	
VIA2	Via2.i	61	Under Bump Metal
METAL3	Metal3.i	62	Solder Bump

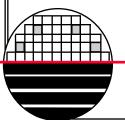
These are the main design layers up through metal two

MOSIS LAMBDA BASED DESIGN RULES


http://www.mosis.com/design/rules/

© October 12, 2014 Dr. Lynn Fuller

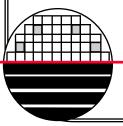
MOSIS LAMBDA BASED DESIGN RULES


http://www.mosis.com/design/rules/

MOSIS Educational Program

Instructional Processes Include: AMI $\lambda = 0.8 \ \mu m$ SCMOS Rules AMI $\lambda = 0.35 \ \mu m$ SCMOS Rules

Research Processes: go down to poly length of 65nm



Rochester Institute of Technology

MOSIS REQUIREMENTS

MOSIS requires that projects have successfully passed LVS (Layout Versus Schematic) and DRC (Design Rule Checking). The MENTOR tools for LVS and DRC (as they are set up at RIT) require separate N-select and P-select levels in order to know an NMOS transistor from a PMOS transistor. Although either an N-well, P-well or both will work for a twin well process, we have set up our DRC to look for N-well. (Also since we use a p-type starting wafer we can not have isolated p-wells but we can have isolated n-wells, thus drawing separate n-wells can be useful for some circuit designs.)

http://www.mosis.com

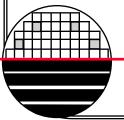
Rochester Institute of Technology

LAYOUT

Digital Circuit Layout

Rochester Institute of Technology

DIGITAL CIRCUITS

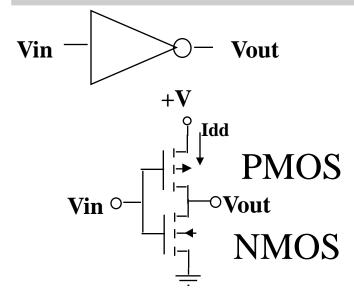

The design approach for digital circuits is to design primitive cells and then use the primitive cells to design basic cells which are then used in the project designs. A layout approach is also used that allows for easy assembly of these cells into more complex cells.

Primitive Cells INVERTER, NAND2,3,4, NOR2,3,4, NULL

Basic Cells

XOR, MUX, DEMUX, ENCODER, DECODER FULL ADDER, FLIP FLOPS

Macro Cells
BINARY COUNTER
SRAM

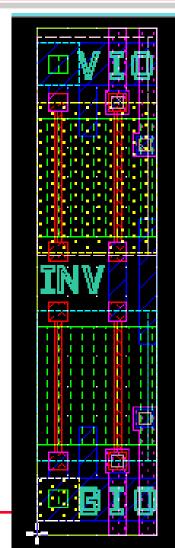

Rochester Institute of Technology

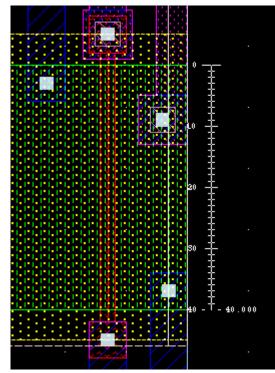
Intro to Digital Electronics LAYOUT – GATE ARRAY **VDD** Green is Active **PMOS** Dashed Yellow is N-Well Red is Poly Blue is Metal-One Pink is Metal-Two White is Contact Cut Yellow is Via **NMOS** P and N select not shown **GND** Rochester Institute of Technology Microelectronic Engineering © October 12, 2014 Dr. Lynn Fuller Page 56

LAYOUT DETAILS FOR GATE ARRAY

- 1. Cells are separated from adjacent cells by off transistors
- 2. Well contacts are made at each of the off transistors
- 3. Metal-two connects thru Via to Metal-one
- 4. Metal-one connects thru Contact Cuts to active and Poly
- 5. Inputs and Outputs connections are made vertically with Metaltwo
- 6. Routing channels exist above and below the gate array and contain horizontal metal-one interconnects between cells, with Via to Metal-two.
- 7. The NULL cell at the end of the gate array row satisfy design rules for extension of well beyond active, etc. It also provides a vertical routing channel which may be useful in constructing macro cells.

INVERTER

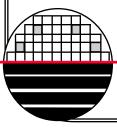

CMOS


TRUTH TABLE

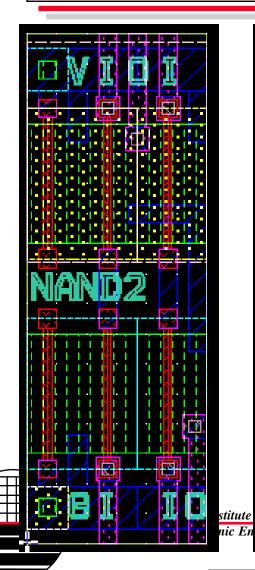
VIN	VOUT
0	1
1	0

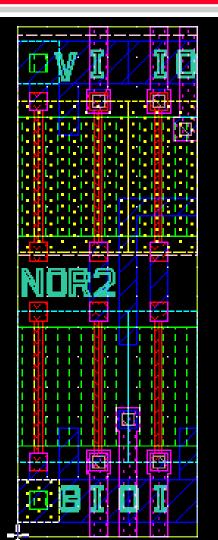
Rochester Institute of Technology

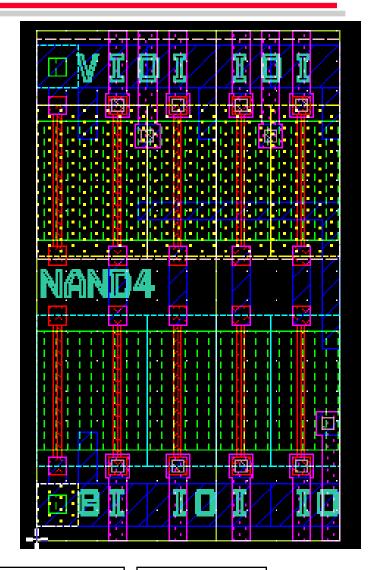
Microelectronic Engineering

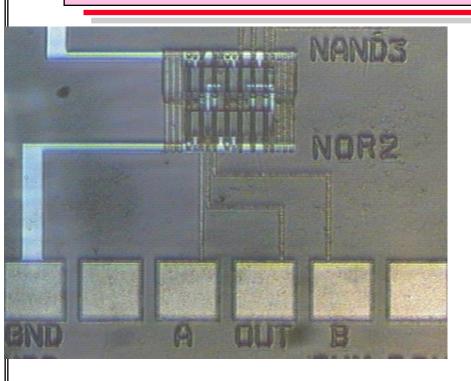


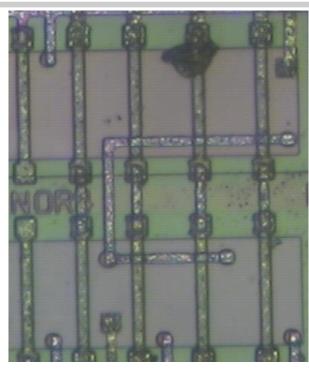
 $W = 40 \mu m$

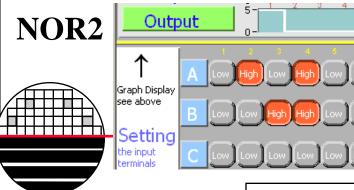

 $Ldrawn = 2.5 \mu m$

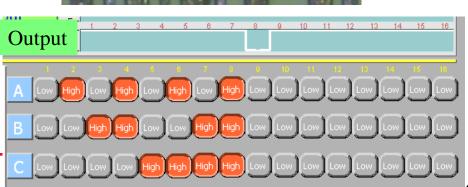

Lpoly = $1.0\mu m$

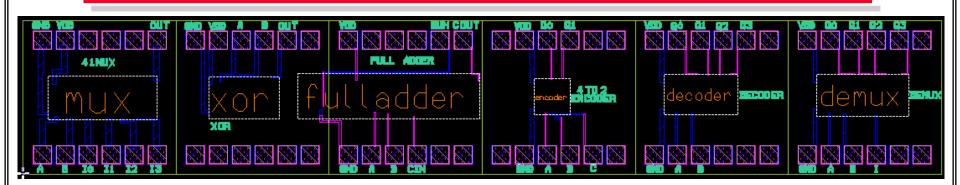

 $Leff = 0.35 \mu m$


LAYOUT OF SOME PRIMITIVE CELLS

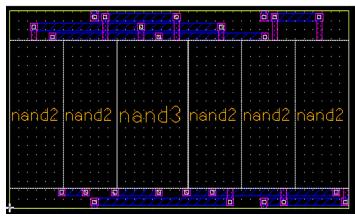


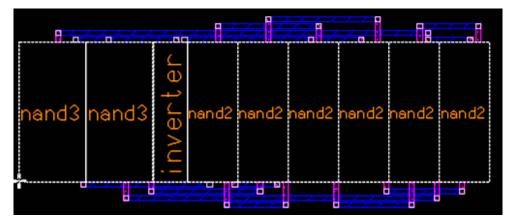



VERIFICATION NOR2 NAND3 FABRICATION & TEST



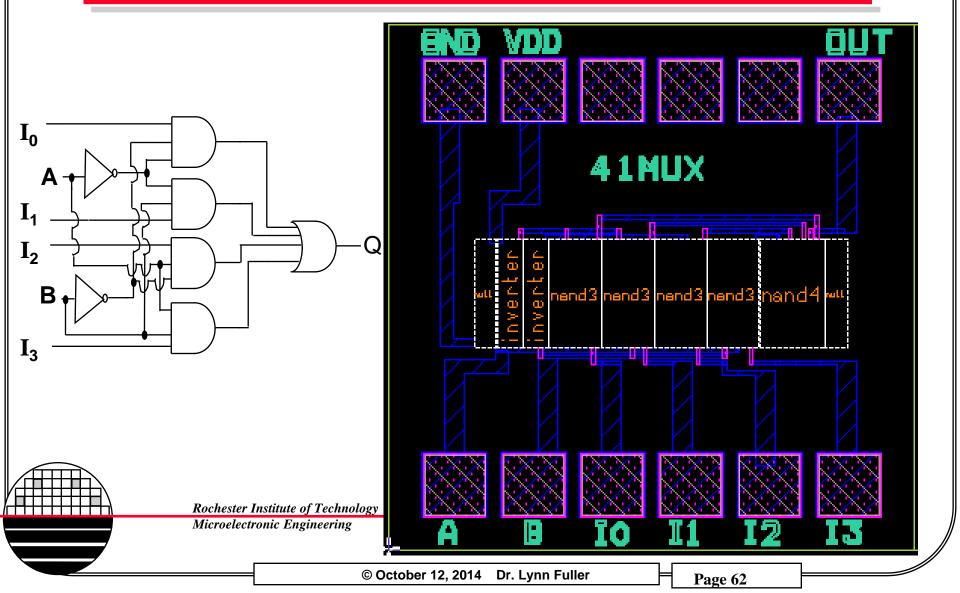
NAND3

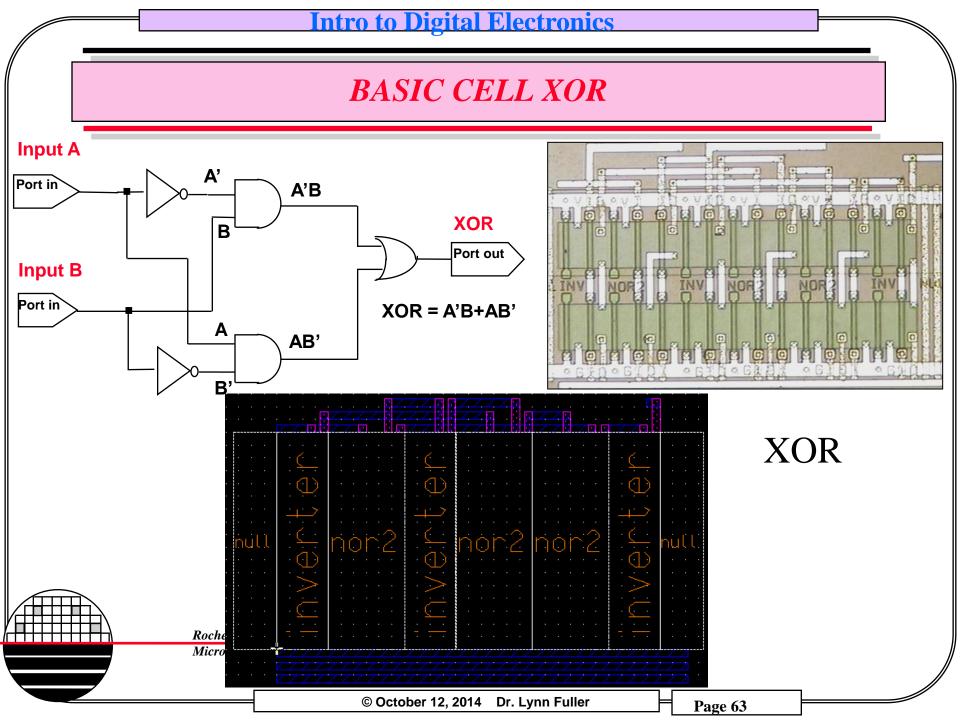




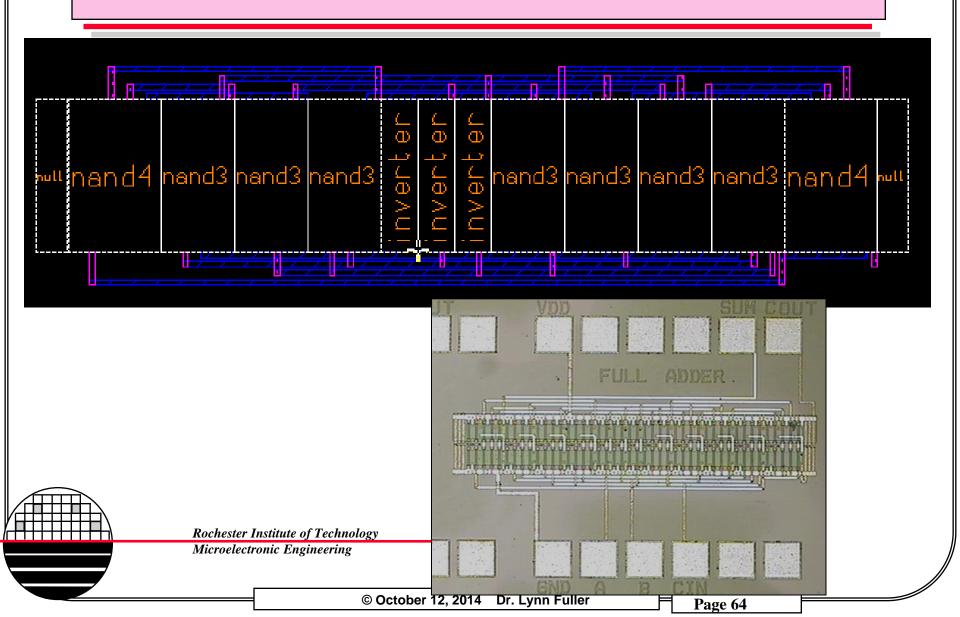
BASIC DIGITAL CELLS WITH PADS

Multiplexer XOR Full Adder Encoder Decoder Demux

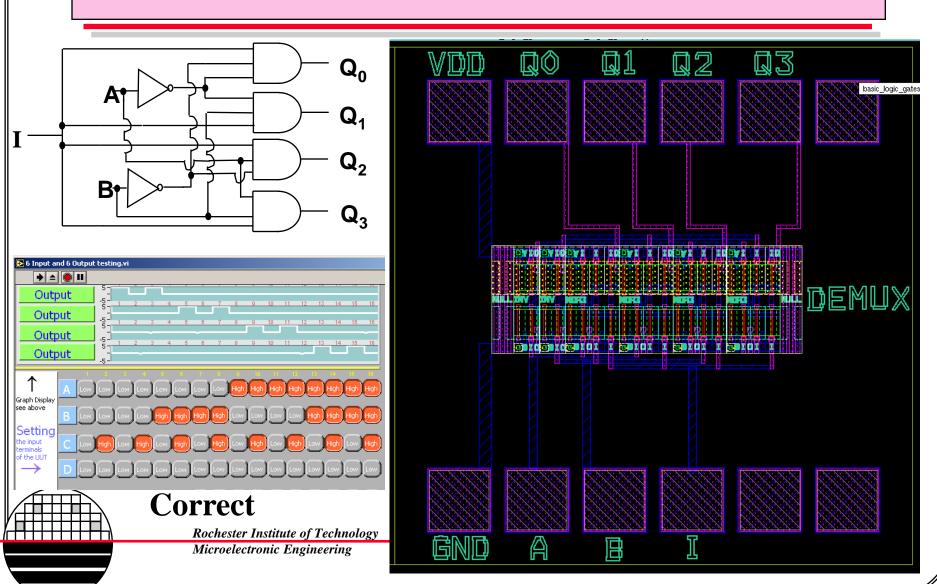


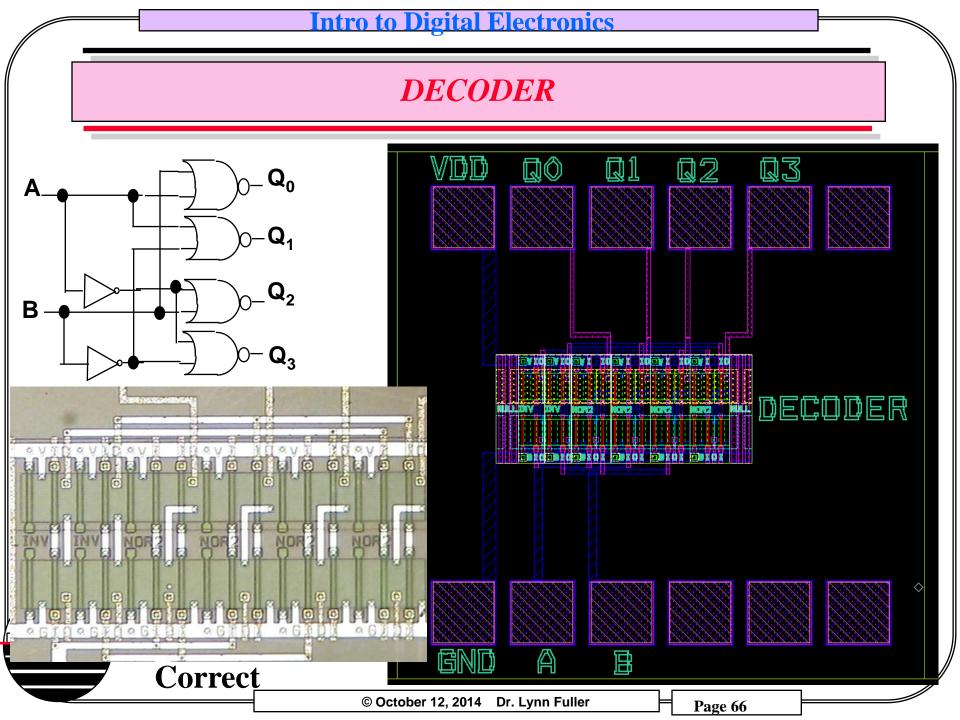

Edge Triggered D FF

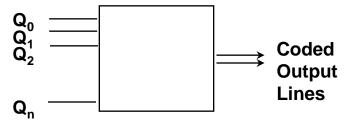
JK FF


Rochester Institute of Technology
Microelectronic Engineering

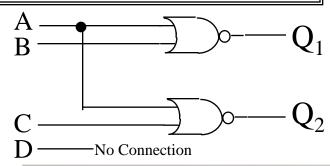
4 TO 1 MULTIPLEXER

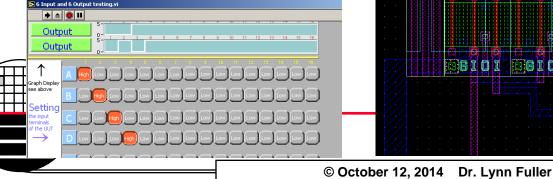


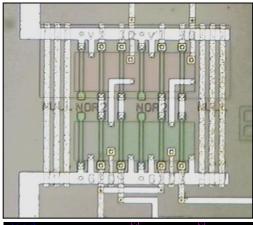

FULL ADDER


1 TO 4 DEMULTIPLEXER

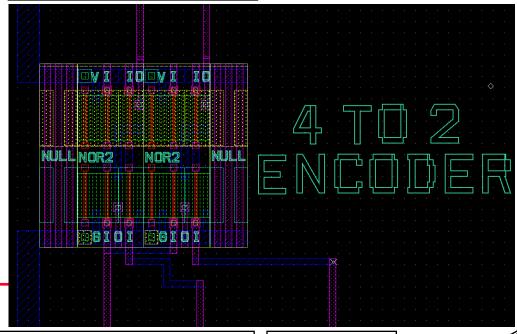
© October 12, 2014 Dr. Lynn Fuller

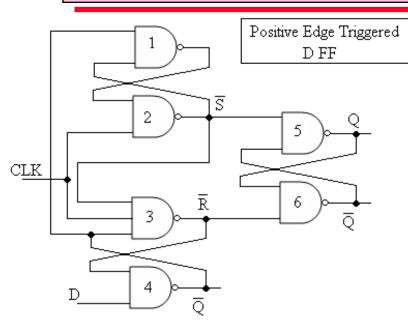



ENCODER



Digital Encoder

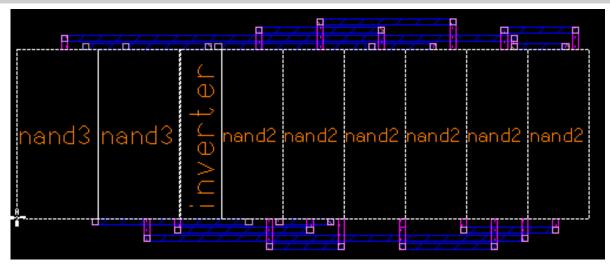

512 inputs can be coded into 9 lines which is a more dramatic benefit

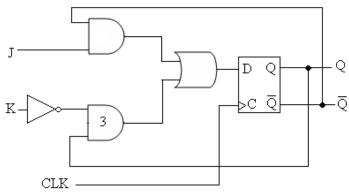


A	В	C	D	Q 0	Q1
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

EDGE TRIGGERED D TYPE FLIP FLOP

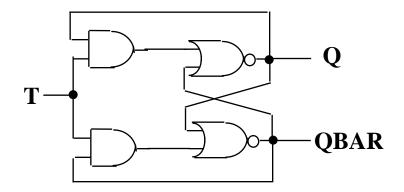
Microelectronic Engineering




	Inp	uts	Outputs		
	D	С	Ċ	₹	
	0	\uparrow	0	1	
	1	\uparrow	1	0	
	Х	0	Q	Q	
	X	1	Q	Q	
l			·		

© October 12, 2014 Dr. Lynn Fuller

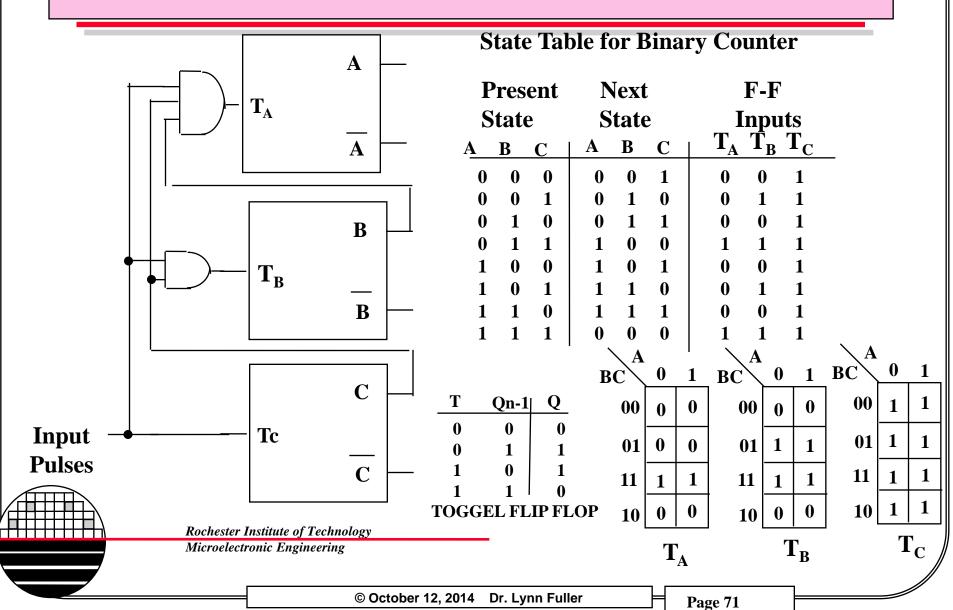
JK FLIP FLOP


Positive Edge Triggered JK FF	
J Q	

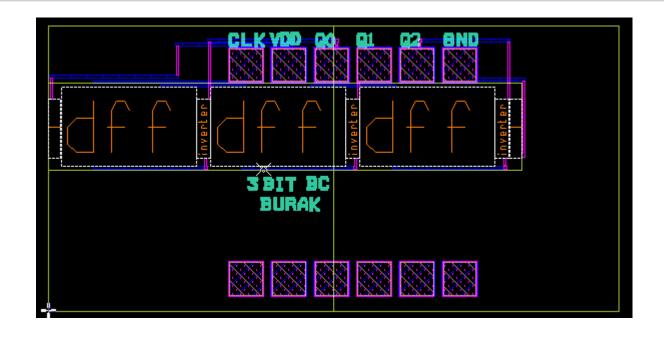
Inputs	Outputs		
ЈКС	ý Q I		
0 0 1	0 0		
0 1 1	0 1		
10 1	<u>1</u> 0		
1 1 1	Q <u>Q</u>		
X X 0	Q <u>Q</u>		
X X 1	Q Q		

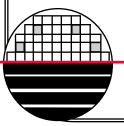
T-TYPE FILP-FLOP

TOGGEL FLIP FLOP


Q: Toggles High and Low with Each Input

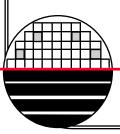
<u>T</u>	Qn-1	Q
0	0	0
0	1	1
1	0	1
1	1	0



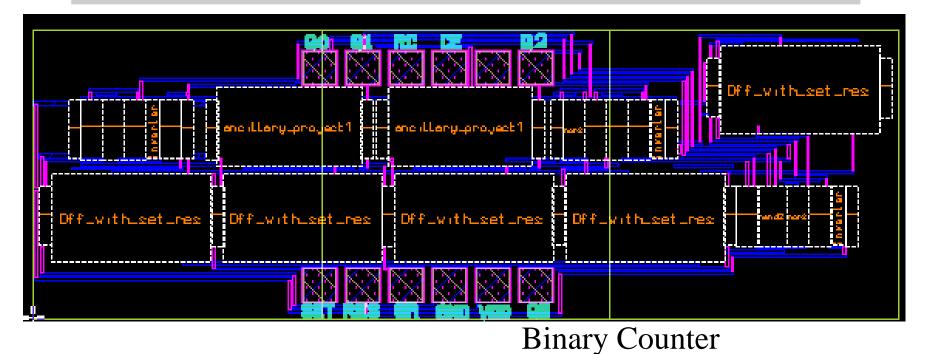


BINARY COUNTER USING T TYPE FLIP FLOPS

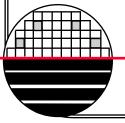
3-BIT BINARY COUNTER WITH D FLIP FLOPS



Rochester Institute of Technology


MACROCELLS

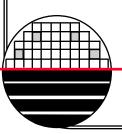
Binary Counter SRAM


Rochester Institute of Technology

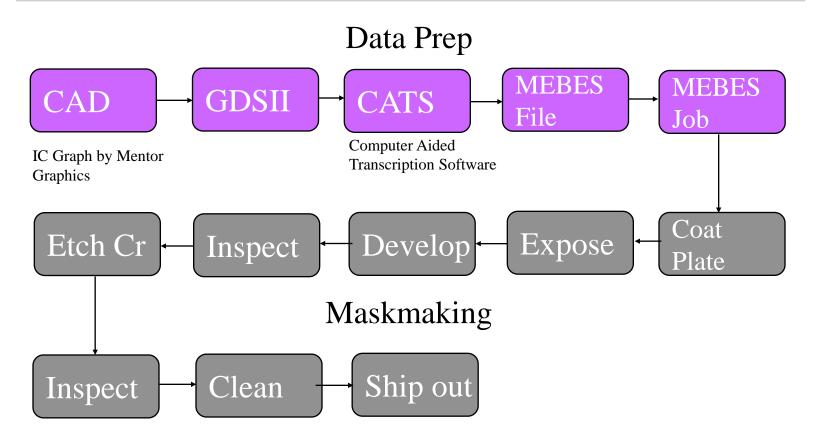
3-BIT BINARY COUNTER/SHIFT REGISTER



Serial Output
Asynchronous Reset
Count Up Enable
Shift Out Clock Input
Count Up Clock Input
Start Bit and Stop Bit



ADDITIONAL CIRCUITRY TO RESET, SHIFT, COUNT


MASKMAKING

Maskmaking

Rochester Institute of Technology

MASK PROCESS FLOW

This process can take weeks and cost between \$1000 and \$20,000 for each mask depending on the design complexity.

OTHER MASKMAKING FEATURES

Fiducial Marks-marks on the edge of the mask used to align the mask to the stepper

Barcodes

Titles

Alignment Keys- marks on the wafer from a previous level used for wafer alignment

CD Resolution Targets- lines and spaces

Overlay Verniers- structures that allow measurement of x and y overlay accuracy

Tiling

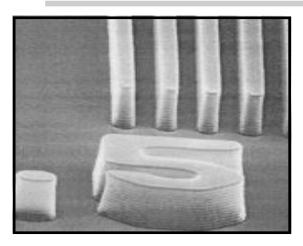
Optical Proximity Correction (OPC)

Rochester Institute of Technology

MEBES - Manufacturing Electron Beam Exposure System

Rochester Institute of Technology Microelectronic Engineering

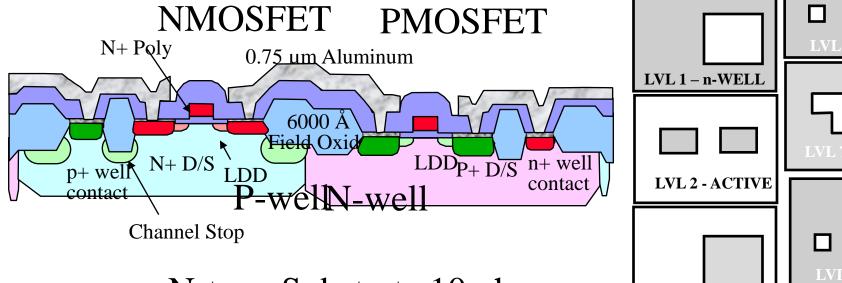
ASML RETICLE


Chrome Side Mirrored 90° Chip Bottom at Bottom

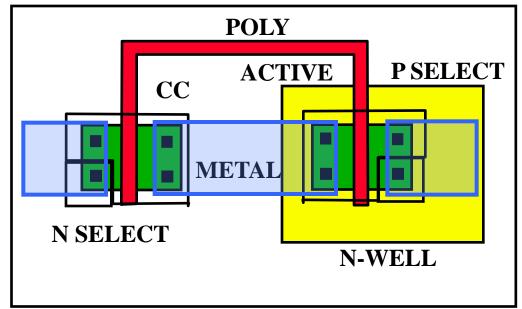
> Rochester Institute of Technology Microelectronic Engineering

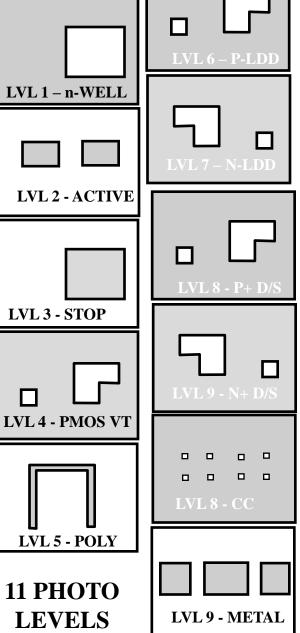
Non Chrome Side As loaded into Reticle Pod, Chrome Down, Reticle Pre-Alignment Stars Sticking out of Pod

ASML 5500/200

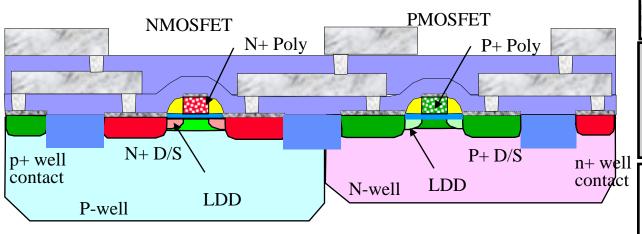

NA = 0.48 to 0.60 variable σ = 0.35 to 0.85 variable With Variable Kohler, or Variable Annular illumination Resolution = K1 λ /NA = $\sim 0.35 \mu m$ for NA=0.6, σ =0.85

Depth of Focus = $k_2 \lambda/(NA)^2$ = > 1.0 μ m for NA = 0.6

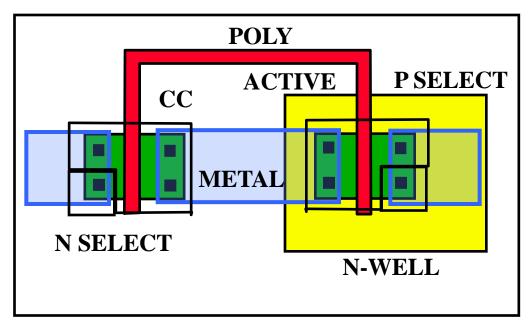


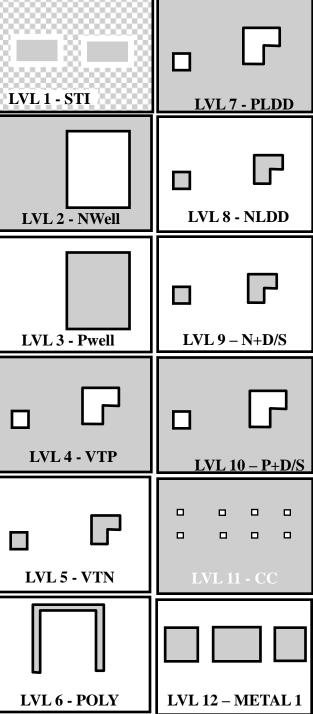

i-Line Stepper $\lambda = 365$ nm 22 x 27 mm Field Size

RIT SUB-CMOS PROCESS

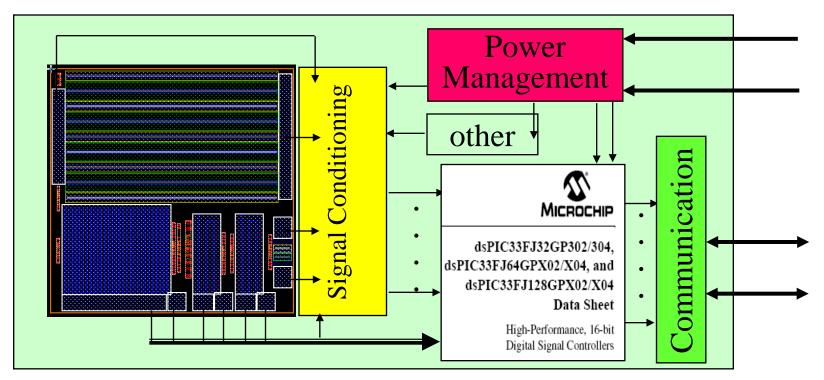


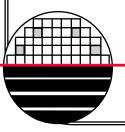
N-type Substrate 10 ohm-cm



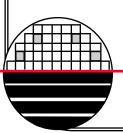


RIT ADVANCED CMOS


12 PHOTO LEVELS + 2 FOR EACH ADDITIONAL METAL LAYER


MICROSYSTEM

Multi-Sensor MEMs Chip


Micro Controller

Signal Conditioning Electronics

REFERENCES

- 1. Silicon Processing for the VLSI Era, Volume 1 Process Technology, 2nd, S. Wolf and R.N. Tauber, Lattice Press.
- 2. The Science and Engineering of Microelectronic Fabrication, Stephen A. Campbell, Oxford University Press, 1996.
- 3. MOSIS Scalable CMOS Design Rules for Generic CMOS Processes, www.mosis.org, and http://www.mosis.com/design/rules/

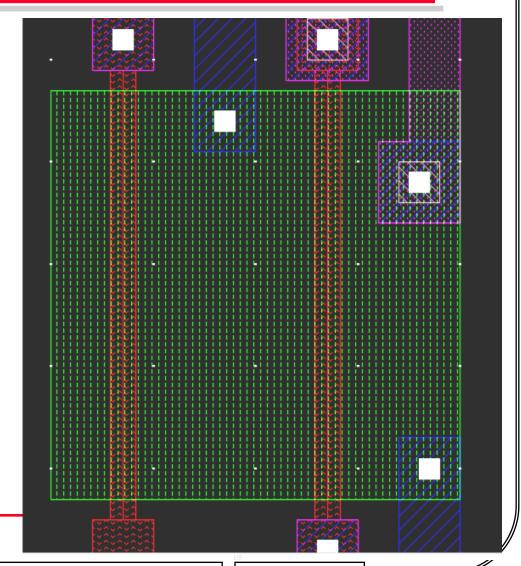
HOMEWORK – INTRO TO DIGITAL ELECTRONICS

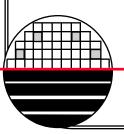
- 1. Do a SPICE simulation to obtain the VTC for the inverter shown on page 16. Let the load resistor be 10K, the NMOS transistor SPICE model RITSUBN7, L=1u and W=40u. Extract Voh, Vol, Vil, ViH, Vinv, Noise Margin Low, Noise Margin High and Maximum current.
- 2. Do a SPICE simulation to obtain the VTC for the inverter shown on page 20. Let the NMOS and PMOS transistor SPICE model RITSUBN7 and RITSUBP7, L=1u and W=40u. Extract Voh, Vol, Vil, ViH, Vinv, Noise Margin Low, Noise Margin High and Maximum current.
- 3. Do a SPICE simulation to obtain the RISE TIME and FALL TIME for the inverter in problem 2 with a load capacitance equal to a fan out of 5 gates.
- 4. Show that the XOR realized with AND and OR gates is equivalent to an all NAND gate realization.

TRANSISTOR DIMENSIONS

L=2u

W=40u


 $Ad=As=40u \times 17u$


=680p

Pd=Ps=2x(40u+17u)

=114u

Rd=Rs=100 ohm

Rochester Institute of Technology Microelectronic Engineering