ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

INTRODUCTION TO ION IMPLANTATION

Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson

Webpage: http://people.rit.edu/lffeee Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

Email: Lynn.Fuller@rit.edu

Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

1-20-12 implant.ppt

© January 20, 2012 Dr. Lynn Fuller

VARIAN 400 & 120-10 ION IMPLANTERS

Varian 120-10

Varian 400

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

VARIAN 350 D ION IMPLANTER (4" AND 6" WAFERS)

© January 20, 2012 Dr. Lynn Fuller

OUTLINE

§ Principles of Ion Implantation

- § Generate a focused beam of ions to be implanted (B⁺, P⁺ or As⁺)
- **§ Accelerate the ions**
- § Scan the ion beam over the wafer
- § Implant dose

§ Ion Implantation Equipment

- **§ Plasma source and ion extraction**
- **§ Ion selection**
- § Accelerating column
- § End station
- **§ Low and high (beam) current implanters**

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

OUTLINE

§ Implanted Dopant Profiles

- **§ Dopant ion-substrate interactions**
- § Post implant anneal
- § Dopant concentration profiles Implanted Dopant Profiles (continued)
- § Channeling
- § Implanting through thin film layers (e.g. oxide)
- **§ Masking against ion implants**

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

INTRODUCTION

Ion implant is used to put specific amounts of n-type and p-type dopants (Dose) into a semiconductor. The dose is accurately measured during implantation giving outstanding control and repeatability.

Specific regions can be implanted using a variety of masking materials including photoresist. Ion implantation is basically a low temperature process.

Ion implant can deliver lower doses than chemical doping (predeposit). Dose can be as low as 10^{11} /cm²

In today's advanced integrated circuits ion implantation is used for all doping applications. (with a few exceptions)

> Rochester Institute of Technology Microelectronic Engineering

> > © January 20, 2012 Dr. Lynn Fuller

TYPICAL SOURCE SET UP

§	Pressure	30mT
§	Extraction Voltage	33 KV
§	Extraction Current	0.8 mA
§	Arc Voltage	2000 V
§	Arc Current	50 mA
§	Filament Current	150 A
§	Filament Voltage	20 V
§	Solenoid Current	3.0 A

© January 20, 2012 Dr. Lynn Fuller

MAGNETIC SCAN COIL IN VARIAN 120-10

Scan Magnet to give X-scan

Analyzing Magnet for mass spectrometer (Ion Selection)

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

VARIAN 400 ACCELERATION HARDWARE

Microelectronic Engineering

SCANNING THE BEAM

§ Scanning of the beam

The focused ion beam is scanned over the wafer in a highly controlled manner in order to achieve uniform doping. Either the wafer or the beam could be stationary.

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

MECHANICAL SCAN END STATION

© January 20, 2012 Dr. Lynn Fuller

IMPLANT DOSE

The implant dose ϕ is the number of ions implanted per unit area (cm2) of the wafer.

- If a beam current I is scanned for a time t , the total implanted charge Q = (I x t).
- For a dose ϕ , the total number of implanted ions is (Scan area $A_s \ge \phi$). Since each ion is singly positively charged, this corresponds to a total charge of (q $\ge A_s \ge \phi$).

$$Q=It = q A_s \phi \Longrightarrow \phi = Dose = I t / (q A_s) ions/cm^2$$

VARIAN 120-10 END STATION

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

POST IMPLANT ANNEAL

The **damaged crystal needs to be restored**. This is typically achieved by 900 C, 30 min. furnace anneals or 1150 C, 30 sec. rapid thermal anneals.

The interstitial dopant ions become substitutional, thus donating carriers. The interstitial (displaced) silicon atoms become substitutional ,thus removing the defects that trap carriers and/or affect their mobility.

During the post implant anneal, dopant ions diffuse deeper into silicon. This must be minimized to maintain shallow junctions.

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

ISOCHRONAL ANNEALING OF PHOSPHOROUS

 N_{Hall} is the free electron content. Note that heavy dose Phosphorous implants can be annealed easier than the lesser dose implants

CALCULATIONS

	5 CALCULATION OF 10	CALCULATION OF ION IMPLANT JUNCTION DEPTH AND SHEET RESISTANCE AFTER DF						
	6							
	7 CONSTANTS		TALVE U	JHITS				
	9	Baran Phararau	g- 1.60E-19 C	aul .				
	9 Max Mobility of n-type care	rior 470.5 1414			TT I I	•		
	10 Min Mability of p-type carr	iors 44.9 68.5			Using the e	equations		
	11 Nrof	2.23E+17 9.20E+16			Come the t	quations		
	12 alpha	0.719 0.711			on the mou			
	13				on the prev	Ious pages.		
	14 GITEN		TALUE U	JHITS	⊥	I C		
	15 Starting Wafer Resistivity		Rho- 10 o	hm-cm				
	16 Starting Wafer Type		n-type-1	er 0				
	17		p-type-1 <u>6</u> 1	or O	Eind.			
	18				ГШU.			
	19 Pro Doparition Ion Implant	Daro	2.00E+16 in	and cm2	T 71			
	20			Implant Time for 6" wafers	X1			
	21 Implant Boam Curront		<u> </u>	A <u>20.37</u> min	1 - J			
					cha	at Pho		
	23 Driverin Lemperature		1000-1		SIIC			
	24 Drive-in Time		360jm	ND .	•	1 ,		
	26 CALCIII ATE		TALLE I	INITS	100	lant time		
	27 Diffuring Constant at Lowe	vocaturo of Orivorio	1 435-14	mtrac	P			
	28				surf	face conc		
	29 CALCULATION OF DI	ALCULATION OF DIFFUSION CONSTANTS			Sull			
	30 D0 (cm2/, EA (oV)							
	31 Baran	0.76	3.46		ave	rage doping		
	32 Pherphorow	3.85	3.66					
	33							
	34 CALCULATIONS		TALUE U	JMITS				
	35 Substrate Doping - 17 (qµm	vax Rho)	4.42E+14 c	m-3				
	36							
	37 RESULTS		TALUE L	JHITS				
	38 Pro doparition Daro		2.00E+16 a	tom/cm2				
∕╘╫┼┼┼┼┼┼	39 xj after driverin - [[4 Ud tdf	VA) In (Prub (NDdtd)"V.5	7))"0.5 <u>1.32</u> μ.	m				
· • • • • • • • • • • • • •	40 average doping Nave - Dar.	staj Juli Natio	1.51E+20 a	tomrfems _ 5JU))		
	41 maonicy (je) as Daping og aa 42 Skirk Distances - 140 a (ref	15011970 Nama ()(Dana)	47 c	merr-s L)		
	d3 Surface Concentration - D	nave))eare) nave((nDF)^0 5	6. d2F+20	m-3				
	dd	ana dharai san	THE PER S					
		© J	anuary 20, 2012 I	Dr. Lynn Fuller	Page 38			

VT ADJUST IMPLANT

Assume that the total implant is shallow (within W_{dmax})

+/- $\Delta Vt = q Dose*/Cox'$

where Dose* is the dose that is added to the Si Cox' is gate oxide capacitance/cm²

Boron gives + shift Phosphorous gives - shift

Example: To shift +1.0 volts implant Boron through 1000 Å kooi oxide at an energy to place the peak of the implant at the oxide/silicon interface. Let Xox= 200 Å. Dose = Δ Vt Cox'/q =(1.0)(3.9)(8.85E-14)/(1.6E-19)(200E-8)=1.08E12 ions/cm² but multiply by 2 since ½ goes into silicon and ½ in Kooi oxide so dose setting on the implanter is 2.16E12 ions/cm²

 $Cox' = \varepsilon o \varepsilon r / Xox$

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

CHANNELING

§ Origin : the crystalline nature of the host substrate

(110) (100) (111) Relative degree of openness of the silicon crystal for ions moving in <111>, <100> and <110> directions

PREVENTING CHANNELING

Channeling does not occur if there is significant implant damage that turns the implanted layer into an amorphous one. Heavy ions like P³¹ and As⁷⁵ at large doses do not show channeling.

Light ions and/or low dose implants are prone to channeling. In such instances, channeling can be prevented by:

1) Implanting through a thin amorphous layer (e.g. oxide).

- 2) Tilting and twisting the wafer to close crystal openness as seen by the ion beam.
- 3) Implanting heavy, but electrically inactive species like Si or Ar prior to the actual dopant implant. The pre-implant implant turns the wafer surface into an amorphous layer.

Silicon Wafer

2) It prevents excessive evaporation (out-gassing) of volatile species (e.g. As) during implant damage anneals.

Rochester Institute of Technology

Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

© January 20, 2012 Dr. Lynn Fuller

IMPLANT MASKING THICKNESS CALCULATOR

Ion Implantation

RESIST DAMAGE AT HIGH IMPLANT CURRENTS

BF2 Implant at 80 µA in Varian 400 *without a water cooled chuck*

Note: Varian 350D can do implants up to 300 μ A with no photoresist damage because of wafer cooling

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

ION IMPLANT VS. CHEMICAL SOURCE PREDEPOSIT

Advantages of Ion Implant

Low dose introduction of dopants is possible. In chemical source predeposits dose values less than 5E13/cm² are not achievable. Ion implant dose control is possible down to 1E11/cm².

- High dose introduction is not limited to solid solubility limit values. Dose control is very precise at all levels.
- Excellent doping uniformity is achieved across the wafer and from wafer to wafer.

Done in high vacuum, it is a very clean process step (except for out gassing resist particulates due to excessive local power input).

Drawbacks of Ion Implant

It requires very expensive equipment (\$1M or more). At high dose values, implant throughput is less than in the case of chemical source predep.

> Rochester Institute of Technology Microelectronic Engineering

> > © January 20, 2012 Dr. Lynn Fuller

LECTURE REVIEW

§ Principles of Ion Implantation

- **§** The implant depth controlled by the energy E of the ions
- **§ Dopant density primarily controlled by the implant dose**

§ Ion Implantation equipment

- **§ Low current implanters**
- **§ High current implanters**

§ Implanted Dopant Profiles

- **§ Nuclear stopping and implant damage**
- § Post implant anneal
- **§ Gaussian doping profiles**
- **§ Channeling and its prevention**
- **§ Thin film coverage of the wafer surface**

Advantages and Drawbacks of Ion Implantation

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

REFERENCES

1. <u>Silicon Processing for the VLSI Era</u> Volume I, S. Wolf and R.N. Tauber, Lattic Press, Sunset Beach, CA, 1986.

<u>The Science and Engineering of Microelectronic Fabrication</u>,
S.A. Campbell, Oxford University Press, New York, NY, 1996.
<u>VLSI Technology</u>, Edited by S.M. Sze, McGraw-Hill Book
Company, 1983.

Rochester Institute of Technology Microelectronic Engineering

© January 20, 2012 Dr. Lynn Fuller

HOMEWORK – ION IMPLANT

1: The implant depth is controlled by the

a) beam size b) acceleration voltage c) beam current d) implant time2: The volume density of implanted dopants is controlled by the

a) plasma density b) beam size and implant time c) implant time only d) beam current and implant time

- 3: In using low current implanters that process one wafer at a time, the optimal implant time per wafer (i.e. best uniformity / throughput compromise) a) 1 s b) 10 s c) 50 s d) 100 s
- 4: True or false? "Channeling is a serious problem when implanting AS^{75} ions at a dose $\Phi = 5 \times 10^{15} / \text{cm}^2$ ".

5: In CMOS processing, threshold adjust doping can be made by a) chemical source predep only b) ion implant only c) either chemical source predep or ion implant.

6: Calculate the implant dose and energy needed to make the pmos Vt of -1 volt for the following device parameters. N+ Poly gate, 250 Å gate oxide, 2E16 cm-3 substrate doping, Nss=3.4E11.

> Rochester Institute of Technology Microelectronic Engineering

> > © January 20, 2012 Dr. Lynn Fuller