ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Factory Lithography Details, Stepper Jobs, Mask ID's, and Coat and Develop Recipes for SSI Track

Dr. Lynn Fuller

http://www.rit.edu/~lffeee

Motorola Professor Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 LFFEEE@rit.edu

http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

9-4-2006 Factory_Lith.ppt

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

OUTLINE

Introduction Product/Process/Revision Product/Mask ID's/Stepper Jobs SSI Canon SMFL-CMOS Process, Lithography Details **SUB-CMOS** Process, Lithography Details **ADV-CMOS** Process, Lithography Details **SSI** Recipes Stepper Job, Process Files References

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

INTRODUCTION

RIT has been CMOS processes since 1995. Today we run SUB-CMOS and ADV-CMOS processes for MicroE students to learn about new process technologies. We run the SMFL-CMOS process to fabricate circuits for students in EE Analog IC design courses. The p-well CMOS process has been discontinued.

RIT p-well CMOS (1995) $\lambda = 4 \ \mu m$ Lmin = 8 \ \mu mRIT Sub\(\mu\) CMOS (2000) $\lambda = 0.5 \ \mu m$ Lmin = 1.0 \(\mu\) mRIT Advanced CMOS (2003) \(\lambda\) = 0.25 \(\mu\) mLmin = 0.5 \(\mu\) mSMFL CMOS (2004) $\lambda = 1.0 \ \mu m$ Lmin = 2.0 \(\mu\) m

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

INTRODUCTION

Each of these processes have special requirements at each lithography level. The stepper job name changes with each level and with each product. The exposure dose, resist thickness, develop time and hard bake temperature changes with each level and each process. This document summarizes the information needed by factory operators for these lithography steps.

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

PRODUCT / PROCESS / REVISION

Product	Process	Rev
SPICE Test Chip	SMFL-CMOS	
DAC	SMFL-CMOS	
Mixed	SUB-CMOS	150
Test Chip	ADV-CMOS	150

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

MASK ID AND STEPPER JOB FOR SPICE TESTCHIP PRODUCT

Level	Step#	Level Name	Mask ID	Stepper Job
1	6	Nwell	STC031NWEL	FSASMFL2UM_nwell
2	18	Active	STC031ACT	FSASMFL2UM_act
3	21	Stop	STC031STOP	FSASMFL2UM_stop
4	30	Vt	STC031VT	FSASMFL2UM_vt
5	40	Poly	STC031POLY	FSASMFL2UM_poly
6	43	NDS	STC031NDS	FSASMFL2UM_nds
7	46	PDS	STC031PDS	FSASMFL2UM_pds
8	53	CC	STC031CC	FSASMFL2UM_cc
9	58	M1	STC031M1	FSASMFL2UM_m1
10	62	VIA	STC031VIA	FSASMFL2UM_via
11	66	M2	STC031M2	FSASMFL2UM_m2

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

MASK ID AND STEPPER JOB FOR DAC PRODUCT

Level	Step#	Level Name	Mask ID	Stepper Job
1	6	Nwell	DAC043NWELL	FSASMFL2UM_nwell
2	18	Active	DAC043ACT	FSASMFL2UM_act
3	21	Stop	DAC043STOP	FSASMFL2UM_stop
4	30	Vt	DAC043VT	FSASMFL2UM_vt
5	40	Poly	DAC043POLY	FSASMFL2UM_poly
6	43	NDS	DAC043NDS	FSASMFL2UM_nds
7	46	PDS	DAC043PDS	FSASMFL2UM_pds
8	53	CC	DAC043CC	FSASMFL2UM_cc
9	58	M1	DAC043M1	FSASMFL2UM_m1
10	62	VIA	DAC043VIA	FSASMFL2UM_via
11	66	M2	DAC043M2	FSASMFL2UM_m2

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

MASK ID AND STEPPER JOB FOR MIXED PRODUCT

Level	Step#	Level Name	Mask ID	Stepper Job
1	6	Nwell	MIX031NWEL	F031MIXED_nwell
2	19	Active	MIX031ACT	F031MIXED_act
3	22	Stop	MIX031STOP	F031MIXED_stop
4	30	pmosVt	MIX031VT	F031MIXED_vt
5	40	Poly	MIX031POLY	F031MIXED_poly
6	43	NLDD	MIX031NLDD	F031MIXED_lddn
7	46	PLDD	MIX031PLDD	F031MIXED_lddp
8	53	N+DS	MIX031NDS	F031MIXED_nds
9	56	P+DS	MIX031PDS	F031MIXED_pds
10	62	CC	MIX031CC	F031MIXED_cc
11	67	Metal 1	MIX031MTL	F031MIXED_metal

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

MASK ID AND STEPPER JOB FOR ADV CMOS TESTCHIP PRODUCT

Level	Step#	Level Name	Mask ID	Stepper Job
1	6	STI	ADV023STI	F023ADVCMOS_STI
2	11	NWELL	ADV023NWELL	F023ADVCMOS_nwell
3	14	PWELL	ADV023PWELL	F023ADVCMOS_pwell
4	24	VTN	ADV023VTN	F023ADVCMOS_vtn
5	27	VTP	ADV023VTP	F023ADVCMOS_vtp
6	35	POLY	ADV023POLY	F023ADVCMOS_poly
7	40	PLDD	ADV023PLDD	F023ADVCMOS_pldd
8	43	NLDD	ADV023NLDD	F023ADVCMOS_nldd
9	49	N+DS	ADV023NDS	F023ADVCMOS_nds
10	52	P+DS	ADV023PDS	F023ADVCMOS_pds
11	63	CC	ADV023CC	F023ADVCMOS_cc
12	68	METAL	ADV023M1	F023ADVCMOS_mtl

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

SSI COAT AND DEVELOP TRACK FOR 6" WAFERS

Use Recipe: Coat.rcp, CoatMTL.rcp, and Develop.rcp DevFac.rcp, DevCC.rcp or DevMtl.rcp

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

CANON FPA-2000 i1 STEPPER

i-Line Stepper $\lambda = 365 \text{ nm}$ NA = 0.52, $\sigma = 0.6$ Resolution = 0.7 λ / NA = ~0.5 μ m 20 x 20 mm Field Size Depth of Focus = $k_2 \lambda/(NA)^2$ = 0.8 μ m Rochester Institute of Technology Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

LITHOGRAPHY FOR SMFL-CMOS PROCESS

Lvl #	Level Name	Coat Recipe	Spin RPM	Xpr µm	Dose mj/cm ²	Dev Recipe	Dev Time	Hard Bake
1	Nwell	coat	3250	1.0	160	develop	50s	140C/1min
2	Active	coat	3250	1.0	185	devfac	120s	140C/1min
3	Stop	coat	3250	1.0	185	devfac	120s	140C/1min
4	Vt	coat	3250	1.0	185	devfac	120s	140C/1min
5	Poly	coat	3250	1.0	160	develop	50s	140C/1min
6	NDS	coat	3250	1.0	160	develop	50s	140C/1min
7	PDS	coat	3250	1.0	160	develop	50s	140C/1min
8	CC	coat	3250	1.0	260	devCC	200s	140C/1min
9	M1	coatmtl	2000	1.3	160	devmtl	68 s	140C/2min
10	VIA	coat	3250	1.0	260	devCC	200s	140C/1min
11	M2	coatmtl	2000	1.3	160	devmtl	68s	140C/2min

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

LITHOGRAPHY FOR SUB-CMOS 150 PROCESS

Lvl #	Level Name	Coat Recipe	Spin RPM	Xpr µm	Dose mj/cm ²	Dev Recipe	Dev Time	Hard Bake
1	Nwell	coat	160	1.0	160	develop	50s	140C/1min
2	Active	coat	160	1.0	185	devfac	120s	140C/1min
3	Stop	coat	185	1.0	185	devfac	120s	140C/1min
4	pmosVt	coat	160	1.0	160	devfac	120s	140C/1min
5	Poly	coat	160	1.0	160	develop	50s	140C/1min
6	NLDD	coat	160	1.0	160	develop	50s	140C/1min
7	PLDD	coat	150	1.0	160	develop	50s	140C/1min
8	N+DS	coat	160	1.0	160	develop	50s	140C/1min
9	P+DS	coat	160	1.0	160	develop	50s	140C/1min
10	CC	coat	260	1.0	260	devCC	200s	140C/1min
11	Metal 1	coatmtl	160	1.3	160	devmtl	68s	140C/2min

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

LITHOGRAPHY FOR ADV-CMOS 150 PROCESS

Lvl #	<pre># Level Name</pre>	Coat Recipe	Spin RPM	Xpr µm	Dose mj/cm ²	Dev Recipe	Dev Time	Hard Bake
1	STI	coat	3250	1.0	160	develop	50s	140C/1min
2	NWELL	coatmtl	2000	1.3	160	devmtl	68 s	140C/2min
3	PWELL	coatmtl	2000	1.3	160	devmtl	68s	140C/2min
4	VTN	coat	3250	1.0	160	devfac	120s	140C/1min
5	VTP	coat	3250	1.0	160	devfac	120s	140C/1min
6	POLY	coat	3250	1.0	160	develop	50s	140C/1min
7	PLDD	coat	3250	1.0	160	develop	50s	140C/1min
8	NLDD	coat	3250	1.0	160	develop	50s	140C/1min
9	N+DS	coat	3250	1.0	160	develop	50s	140C/1min
10	P+DS	coat	3250	1.0	160	develop	50s	140C/1min
11	CC	coat	3250	1.0	260	devCC	200s	140C/1min
12	METAL	coatmtl	2000	1.3	160	devmtl	68s	140C/2min

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

COAT.RCP

Thickness of 10,000 Å

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

COATMTL.RCP

COATMTL.RCP

SPIN COAT

Thickness of 13,127 Å

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

DEVELOP.RCP

DEVELOP.RCP

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

DEVFAC.RCP

DEVFAC.RCP

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

DEVMTL.RCP

DEVMTL.RCP

PO<u>ST EXPOSURE BAKE</u>

110 °C, 60 sec.

DEVELOP DI Wet CD-26 Developer Dispense 7 sec. 68 sec. Puddle, 30 sec. Rinse, 30 sec., 3750rpm Spin Dry

HARD BAKE

140 °C, 120 sec.

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

OVERLAY PROBLEM

What is wrong here? Although it looks like the contact cut level is misaligned actually it is perfect. The active is misaligned high and too far left. Poly is high and too far right. All critical layers (active, poly, cc and metal) need to have good alignment relative to well in order to have good alignment relative to each other.

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

MEASURING OVERLAY ERROR

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

ENTERING OFFSETS TO CORRECT OVERLAY

Alignment offsets can be entered at the Parameter Check screen. This will give a temporary shift only for the current stepper run. To introduce a permanent shift, edit the process file (ED P) and go to page /12, line 1, then enter x and y alignment offsets.

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

AFTER ENTERING OFFSETS AND REWORK

and poly are perfect. Looks good enough to work.

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor

REFERENCES

- 1. "Silicon Processing", Stanley Wolf
- 2. EMCR650 lecture notes on line at <u>http://www.rit.edu/~lffeee</u>
- 3. Microlithography, Sheats and Smith

Rochester Institute of Technology

Microelectronic Engineering

© 4 September 2007 Dr. Lynn Fuller, Motorola Professor