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INTRODUCTION

We would like to harvest energy from the environment and store that 
energy in a battery or super capacitor and thus provide a long lasting 
power supply for wireless Microsystems.  There are many sources of 
energy in the environment that we can use including, light, 
temperature difference and mechanical vibration.  We also have 
many devices that can convert these sources of energy into voltage 
and current such as photovoltaic cells, thermopiles, thermoelectric 
generators (TEG), piezoelectric generators and electromagnetic 
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and current such as photovoltaic cells, thermopiles, thermoelectric 
generators (TEG), piezoelectric generators and electromagnetic 
induction devices.

This document will investigate energy conversion devices and the 
power conditioning electronic circuits used between the energy 
conversion devices and the storage element.
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ENERGY CONVERSION DEVICES

Device Type AC or 

DC

RS Voc Isc

Photocell DC Medium (100Ω) 0.5 V Varies with size

Thermoelectric (Peltier) DC Low (1 Ω) 1 V Amperes

Thermopile (Seebeck) DC Low (1 Ω) 100mV Varies with size

Electromagnetic (Low Freq) AC Medium (100Ω) 10 mV peak Milli Amperes
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Electromagnetic (Low Freq) AC Medium (100Ω) 10 mV peak

Piezoelectric (Low-Med Freq) AC Very High (1GigΩ) 10 V peak Nano Amperes

RF (High Frequency) AC Low (1 Ω) 1 µV peak Micro Amperes

Voc +

-

RS
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PHOTOVOLTAIC CELL (PV)

No light

Full light
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~ Max 
Power Out

P=IV = (7.09e-5)( 0.4)

=28.4µwatts

P/unit area =

28.4e-6/1500e-6/1000e-6

= 18.9watt/m2

No Light and Max Light Using 8X Objective Lens
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SEEBECK EFFECT (THERMOCOUPLE)

When two dissimilar conductors are connected together a voltage 
may be generated if the junction is at a temperature different from 
the temperature at the other end of the conductors (cold junction) 
This is the principal behind the thermocouple and is called the 
Seebeck effect. ∆V = α1(Tcold-Thot) + α2 (Thot-Tcold)=(α1-α2)(Thot-Tcold)

Where α1 and α2 are the Seebeck coefficients for materials 1 and 2
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Material 2Material 1

Hot

Cold

Nadim Maluf, Kirt Williams, An Introduction to 

Microelectromechanical Systems Engineering, 2nd Ed. 2004

Thermopile (many 

thermocouples in series)
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PELTIER HEAT PUMP (TEG)

Ferrotec America Corp
1050 Perimeter Rd, #202
Manchester, NH 03103
(603) 626-0700
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PELTIER EFFECT (TEG)

Heat pump device that works on the gain in electron energy for 
materials with low work function and the loss in energy for materials 
with higher work function.  Electrons are at higher energy (lower 
work function) in n-type silicon.

heat

CuCuCu
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PIEZOELECTRIC ENERGY HARVESTING DEVICES
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A piezoelectric material will exhibit a change in length in response to 
an applied voltage.  The reverse is also possible where an applied 
force causes the generation of a voltage.  Single crystal quartz has 
been used for piezeoelectric devices such as gas grill igniters and 
piezoelectric linear motors.  Thin films of various materials (organic 
and inorganic) exhibit piezoelectric properties.  ZnO films 0.2 µm 
thick are sputtered and annealed 25 min,  950C giving piezoelectric 
properties.  Many piezoelectric materials also exhibit pyroelectric 
properties (voltage out – heat in).
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ELECTROMAGNETIC GENERATORS (FARADAY)

A coil in a changing magnetic field 
will generate a voltage. (Faraday’s 
Law of Electromagnetic Induction)

motion
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magnet

EMF

Faraday’s Law of Electromagnetic Induction

EMF = - ∆ Φ/∆ t = - N Area ∆ Φ/∆ t

Coil of N turns

http://micro.magnet.fsu.edu/electromag/java/faraday2/
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MEMS DESIGN FOR ENERGY HARVESTING

Photovoltaic Cells

The white areas end up being cut 
out leaving the center supported 
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out leaving the center supported 
by four serpentine springs.  A 
magnet glued to the center is 
supported by the spring like 
structure and will move in 
response to vibrations.  

Four green photovoltaic cells also 
can generate energy.
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CALCULATIONS

Rochester Institute of Technology 22-Jun-08

Dr. Lynn Fuller Microelectronic Engineering, 82 Lomb Memorial Dr., Rochester, NY 14623

To use this spread sheet enter values in the white boxes.  The rest of the sheet is protected and should not be

changed unless you are sure of the consequences.  The results are displayed in the purple boxes.

Solenoid in a changing magnetic field

Faraday's Law of Electromagnetic Induction EMF = - dΦ  / dt

EMF (Electro Motive Force) = N A ∆Β∆Β∆Β∆Β /∆∆∆∆t emf x Av = -146 mVolts
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EMF (Electro Motive Force) = N A ∆Β∆Β∆Β∆Β /∆∆∆∆t emf x Av = -146 mVolts

N = number of loops N = 450

r = radius of loop r = 2 mm

A = area of loop A = 1.26E-05 m2

B initial = Initial Magnetic Flux Density B initial = 2123 Gauss

B final = Initial Magnetic Flux Density B final =  4702 Gauss

t = time to go from initial to final ∆ t = 0.01 s

Av = Amplifier Gain Av = 1

Initial and Final Flux Density is from http://www.kgmagnetics.com/calculators.asp

10000 Gauss = 1 Tesla
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POWER CONDITIONING FOR ENERGY HARVESTING

The power conditioning electronic circuits used between the energy 
conversion devices and the storage element will increase the voltage 
and convert it to DC to charge the storage element.

Energy
Harvesting

Device

Power 
Conditioning
Electronics 

(Increase Voltage,

Storage Device
Battery

Super Capacitor

Source of Energy
Heat, light, 

vibration, etc.
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Device (Increase Voltage,
Rectify, Regulate)

Super Capacitor

gnd

Vout

gnd

N

S motion

C

vibration, etc.
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POWER CONDITIONING ELECTRONICS

Transformers can increase the voltage for ac signals.  Voltage 
multiplier circuits exist for AC signals.  DC signals can be 
switched on and off and thus create changing signals in inductors 
and transformers that can increase the voltage.  These higher AC 
voltages can be rectified using diodes or switches and charge a 
battery or super capacitor.

Transformers

© February 2, 2013   Dr. Lynn Fuller Page 14

Rochester Institute of Technology

Microelectronic Engineering
Coilcraft Inductors

202uH to 390uH

Transformers

1:10 to 1:100

Coilcraft
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VIBRATION ENERGY HARVESTER HARDWARE

© February 2, 2013   Dr. Lynn Fuller Page 15

Rochester Institute of Technology

Microelectronic Engineering

5V / 0.035F
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POWER CONDITIONING (BOOST CONVERTER)

These circuits convert a low level DC (or AC) to high level DC voltage.
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ACTIVE RECTIFICATION

Active rectification is a technique where diodes are replaced by 
transistor switches in rectification circuits.  This can improve 
efficiency by elimination the 0.7 volt drop across the diode and 
reducing the series resistance. Electronic circuits turn on the 
transistor switch at the appropriate time thus the name synchronous 
or active rectification.

Regulator
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Step up converter with active rectification

and output voltage regulation

+
-

Oscillator

Regulator

CLoad
Load

Vin
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LINEAR TECHNOLOGY LTC3108
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LINEAR TECHNOLOGY LTC3108
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LINEAR TECHNOLOGY LTC3108
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LINEAR TECHNOLOGY LTC3108
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LINER TECHNOLOGY ENERGY HARVESTING LTC3108
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APPLICATIONS OF LTC3108 ULTRA LOW VOLTAGE 
STEP UP CONVERTER AND POWER MANAGER
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ULTRA-LOW POWER MICROCONTROLLERS

16 Bit, RISC,
Low supply Voltage 1.8 to 3.6V
Ultra-Low Power Consumption

Active Mode 220 uA
Standby Mode 0.5uA
Off Mode 0.1uA

Five Power Saving Modes
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Five Power Saving Modes
1Mhz, 100Khz, 4Khz

mode 0 Active 85uA
mode 2 22uA
mode 3 1uA
mode 4 0.5uA

Analog Input 0 to Vcc
Cost ~$1

13.6K < Rload < 6MEG ohm
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LMV551/552/554 MICRO POWER OP AMP
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0.6 uA OP AMP
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BATTERIES

Arduino-BT running blink and serial port write 
every second uses 20 mA at 3volts or 60 mW

AA Battery Stores ~2000 mAh of Charge Q 
Time = Q / I = 2000 / 20 = 100 hours

CR2032 Battery Stores ~200 mAh of Charge Q
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CR2032 Battery Stores ~200 mAh of Charge Q
Time = 200/20 = 10 hours

1 month is 720 hours
Current = Q / time

I = 2.8 mA
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BATTERIES

Batteries in series doubles the voltage but  maintains the same capacity

Batteries in parallel doubles the capacity but maintains the same 

voltage
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Four AA connected batteries as shown give 4000mAh at 2.4V

2000 mAh, at 1.2V
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BATTERY LIFE CALCULATIONS

© February 2, 2013   Dr. Lynn Fuller Page 29

Rochester Institute of Technology

Microelectronic Engineering



Energy Harvesting

STORAGE USING SUPER CAPACITOR OR BATTERY
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Coin type, thru hole mount, 20mm Diameter, 5mm high, 

0.47F, 5.5 Volt 

Price $3.74 for quantity of 1, $1.63 for quantity of 1000

Q=CV = 0.47F 5.5V = 2.585 Coulomb = 0.718 mAhr

compare to 2032 battery with Q=200 mAhr

100F capacitor ~ = 2032 battery
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POWER – CURRENT – TIME CALCULATIONS
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HOMEWORK- ENERGY HARVESTING

1. How can transistors be used in rectifier circuits?  What is the 
advantage over diodes.

2. How can an inductor and switch generate a large voltage 
from a small DC voltage source?

3. Look up super capacitors at Digikey.  Find capacitors that are 
rated for 5 volts.  What is the largest capacitance available.  
What is the cost of a 5 volt 1F capacitor.

4. How long can a 1F capacitor supply a constant current of 
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4. How long can a 1F capacitor supply a constant current of 
10mA before the voltage drops from 5 to 4 volts?
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LTC3108 SOLAR CELL TO SUPER CAPACITOR
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SPICE SIMULATION
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BREADBOARD AND TEST SETUP
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LTC3105 SOLAR CELL TO SUPER CAPACITOR 
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IXOLAR SOLAR CELL – MEASURED CHARACTERISTICS

MEASURED ISC Cell 1 Cell2 Measured Light Intensity

Room Light at Desk Top 0.0705mA 0.0509mA 300 Lux

Close to Light Fixture 1.574mA 1.560mA XXX Lux

Highest Microscope Illuminator Setting 51.2mA 48.6mA XXX Lux

Overhead Projector 13.6mA 15mA XX Lux (~2.5mW/cm2) 

Direct Sunlight Through Window 16.0mA 16.0mA 65,000 Lux

Dark Current 58.1nA 17.8nA zero

Series Resistance 1.6966Ω 1.5363Ω

Parallel Resistance >1MEG >1MEG
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IXOLAR – KXOB22-12X1

Parallel Resistance >1MEG >1MEG

(~25w/m2 = ~2.5mW/cm2)
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EXTRACT SPICE MODEL FROM I-V CHARACTERISTICS
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SPICE MODEL

Dark Current IS = 10nA

R shunt = 1/slope = 1/1.05u = ~1 MEG ohm

R series = 1/slope = 1/0.1458 = 6.86 ohm
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MEASURED 7MMX22MM SOLAR CELL

Solar Cell (1) – Bright light, 
Overhead projectorSolar Cell (1) - Dark Current 
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LTSPICE SIMULATION OF 7MMX22MM SOLAR CELL
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OUTPUT VOLTAGE AND INDUCTOR CURRENT
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Simulation with 

Photocurrent = 10mA

Rs = 0.5 ohms

Rp = infinity
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LTSPICE SIMULATION OF 7MMX22MM SOLAR CELL
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OUTPUT VOLTAGE AND INDUCTOR CURRENT
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Simulation with minimum 

photocurrent that works 

Photocurrent = 1.6 mA

Rs = 1.6 ohms

Rp = infinity



Energy Harvesting

BLOCK DIAGRAM FOR LTC3105

© February 2, 2013   Dr. Lynn Fuller Page 45

Rochester Institute of Technology

Microelectronic Engineering



Energy Harvesting

SIMULATION FOR VOUT=5 AND VLTO=3.3
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SIMULATION FOR SINUSOIDAL ILLUMINATION

V storage C4

V out LDO

Illumination
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SIMULATION TO OPTIMIZE TO LOW LIGHT LEVELS
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SIMULATION TO OPTIMIZE TO LOW LIGHT LEVELS

V storage C4

V out LDO

Illumination
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