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OUTLINE

RIT MEMS Bulk Process

MEMS Sensor Chip Layout

Heater I-V Characteristics

Diode Sensor I-V Characteristics

Response to Heater

Response to Light

LED I-V Characteristics

Diode Optical Communication Link
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RIT MEMS BULK PROCESS

1 P+ Diffused Layer (90 Ohm/sq)

1 N+ Layer (50 Ohm/sq)

1 N-Poly layer (40 Ohm/sq)

1 metal layer (Al 1µm thick)

30-40 µm Si diaphragm
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MEMS SENSORS CHIP  LAYOUT

Photo Diode

Poly Heater

Diode 
Temperature 
Sensor

Thermocouple
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CLOSE UP OF MEMS SENSORS CHIP
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Heater L/W = 225µm/200µm

Poly Heater, Buried pn Diode,
N+ Poly to Aluminum Thermocouple
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SHOWS DEVICES ARE ON A DIAPHRAGM

Vacuum applied to back of chip

Diaphragm bends down
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HEATER RESISTOR I-V CHARACTERISTICS

R = Rhos L/W

find Rhos 

R= 1/1.34E-2

= 74.7 ohms

Poly Heater, Buried pn Diode,
N+ Poly to Aluminum Thermocouple

P+

N+
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DIODE I-V CHARACTERISTICS

Poly Heater, Buried pn Diode,
N+ Poly to Aluminum Thermocouple

P+

N+
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PACKAGED DIODE TEST CHIP
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DIODE TEMPERATURE SENSOR RESPONSE

Apply 5 volts (gives ~ 65mA)  

P=IV =0.3 watts

Delta Vd = 0.64 -0.48 = 0.16

Delta T = 0.16 / 2.2mV = 72.7 °C

Poly Heater, Buried pn Diode,
N+ Poly to Aluminum Thermocouple

P+

N+
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SPICE FOR DIODE TEMPERATURE SENSOR
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TEST SETUP 

Take data for room T up to 100°C
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TEMPERATURE TEST DATA

Temperature  vs Dial  Setting
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Diode Vol tage vs Temperature
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0.5
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2.5

3 0.5747 71

3.5 0.556 83

4 0.543 90

4.5 0.5246 100

5 0.51 108.5
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Diode 
Voltage 
Buffer Gain and 

Inversion

Level Shifting 
and Buffer

SIGNAL CONDITIONING CIRCUIT

Signal Conditioning Circuit
Improves the sensitivity to changes in temperature
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TEMPERATURE TEST RESULTS OF WATER

Temperature Sensor
Voltage Output vs. Temperature
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Measurement of Amplified and Shifted
Diode Voltage in Different Temperature Water Baths

The output changes by -19 mV/°C
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SEEBECK EFFECT

When two dissimilar conductors are connected together a voltage 
may be generated if the junction is at a temperature different from 
the temperature at the other end of the conductors (cold junction) 
This is the principal behind the thermocouple and is called the 
Seebeck effect.

∆V

Material 2Material 1

Hot

Cold

Nadim Maluf, Kirt Williams, An Introduction to 

Microelectromechanical Systems Engineering, 2nd Ed. 2004

∆V = α1(Tcold-Thot) + α2 (Thot-Tcold)=(α1-α2)(Thot-Tcold)

Where α1 and α2 are the Seebeck coefficients for materials 1 and 2
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THERMOCOUPLE TEMPERATURE SENSOR 

Volt
Meter

Heater TC Output Diode
Volts Volts Volts
0 ~0 0.7
1 … ….
2 … ….
3 … ….
4 … ….
5 ~15mV 0.55
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PHOTO DIODE RESPONSE TO LIGHT
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PHOTO DIODE RESPONSE TO LIGHT

No light

Full light

~ Max 
Power Out

P=IV = (7.09e-5)( 0.4)

=28.4µwatts

P/unit area =

28.4e-6/1500e-6/1000e-6

= 18.9watt/m2

No Light and Max Light Using 8X Objective Lens
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UV LED AND PHOTO DIODE SENSOR
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PHOTO DIODE I TO V LOG AMPLIFIER
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Vout vs. Diode Current
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Linear Amplifier
Log Amplifier

Linear amplifier uses 
100K ohm in place of 
the 1N4448

Photodiode 
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PHOTO DIODE I TO V INTEGRATING AMPLIFIER

Rf

-
+

Ri
-
+

C

Reset

Internal

100 pF

Analog Vout

Integrator and amplifier allow for measurement at low light levels
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TURBIDITY

Turbidity = loss of transparancy due to the presence of suspended 
solids, water < 1-5 NTU (Nephelometric Turbidity Units), measured 
by a nephelometer or turbidimeter, which measures the intensity of 
light scattered at 90 degrees as a beam of light passes through a 
water sample. 

+

Sensor Chip With Photodiode

p n

Vout = IR

PCB

LED

R

I
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LED IV CHARACTERISTICS
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TURBIDITY

Infrared LED

Photocell

Packaged Sensor Chip and LED Sensor Chip
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IR LED

Digital Cameras can see the light from an 

infrared LED that the human eye can not see
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TURBIDITY – SIGNAL CONDITIONING CIRCUIT

Photo-
Current to 

Voltage

Gain and 
Level Shifting
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TURBIDITY TEST RESULTS

Turbidity Standards

Plot of output voltage for different 

standard turbidity samples
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MICRO SPECTRO RADIOMETER 

300 400 500 600 700

1.0
i-line, 365 nm

g-line, 436 nm
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Electronics Output
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Diffraction

Grating

Acknowledgments:
Marion Jess, Visiting Scholar from Germany
Wessel Valster, Student of Hogeschool Enschede,The Netherlands
Zoran Uskokovic, RIT, graduate student in MicroE

Plasma Etch Endpoint Detection

Nanospec Like Film Thickness

Light Source Characterization
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DIFFRACTION GRATING

Light is diffracted into
a series of intensity spots

called diffraction orders

a a
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CALCULATIONS

Grating of 2 um lines and 2 um space gives S=4 um

k is the diffraction order

λ is wavelength

The angle ξ
sin ξ = k λ / n S

and

tan ξ = r/d

for      d = 1000um, and n = 1.5 for glass

ξ1  ξ2 r1 r2

350 nm 3.34 6.71 58um 117um

550 nm 5.24 10.6 92um 187um

750 nm 7.17 14.5 126um 259um
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Diffraction Grating

I/O Pads

128 Ion Implanted p+ diode

Photo Detectors  

n-type silicon

1mm Glass

Analog Switches

Multiplexer

Shift Registers

MICRO-SPECTRO-RADIOMETER
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FIRST TEST CHIP

Marion Jess

1996

Shielded area

Pads to 128 diodes

Photo diodes
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RESULTS OF FIRST TEST CHIP

Measurements from 128 diodes

illuminated through different 

color filters 

Photodiode Current vs Voltage

Some Light

More Light
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SWITCHES

7 BIT COUNTER

Clock
Reset

Analog out

Sync pulse

(at 0000000B)
Sync
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MICRO-SPECTRO-PHOTOMETER ON CHIP 
ELECTRONICS FOR ELECTRONIC READOUT
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POLY GATE PMOS + DEPLETION MODE 
IMPLANT MULTIPLEXER

A

A’

B

B’
C

C’

D0D7

Rf

-
+Ri

C
Reset

Internal

100 pF
-
+ Vout

7
 B

 i
t 
C

o
u
n
te

r



© April 16, 2013    Dr. Lynn Fuller

Diode Lab

Page 37

Rochester Institute of Technology

Microelectronic Engineering

SECOND TEST CHIP

T Type FF

Binary Counter

Multiplexer

Photodiodes
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HOMEWORK – DIODE SENSOR LAB

1. Calculate the sensitivity (mV/°C) from the data on page 13.

2. Calculate reasonable values to fill in the table on page 17. 
state your assumptions and show equations you used.

3. Calculate the gain (V/µA) of the signal conditioning circuit 
on page 20.

4. Write an expression for the output voltage of the circuit on 
page 21 and 22.


