

Defect Reduction and Yield Enhancement
COST OF KILLER DEFECT
THE COST OF ONE KILLER DEFECT PER WAFER
assume 5000 6 inch wafer starts per week assume 1 cm x 1 cm size chip assume \$10 selling price
AREA = PI R^2 (3.14)(7.5 cm)^2 = 176 cm2
NUMBER OF DIE/WAFER = AREA/DIE AREA = 176 die
NUMBER OF DIE PER YEAR = = (50000wfr/wk)(52 wk/yr)(176 die/wfr) = 45,760,000 die/year
DOLLARS/YEAR = \$457,600,000/year
COST OF ONE ADDITIONAL KILLER DEFECT / WFR
= \$457,600,000/176 = \$2,600,000 / year
© April 30, 2014 Dr. Lynn Fuller, Professor Page 6

MAXIMU	M NUM	IBER ()F PAF	RTICLES
PEI	R CUBI	C FOO'	T OF A	IR
	0.1 u	m0.2ur	n 0.3un	n 0.5um
CLASS 1	35	7.5	3	1
CLASS 10	350	75	30	10
CLASS 100		750	300	100
CLASS 1000				1000
Federal Standar	•d 209D,	U.S. G	SA 198	9

Defect Reduction and Yield Enhancement											
MICRO CONTAMINATION - EQ	QUIPMENT & PROCESS										
MICRO CONTAMINATION I	N IC MANUFACTURING										
RCA CLEAN AND WET ETCH SCALE (0-10) IMPORTANCE											
particles in liquids particles on surface of baths (languire film deposition)	2 4										
process design	` 8										
PLASMA ETCH											
particles formed by the process particles from the gas source	$\frac{10}{2}$										
DIFFUSION											
particles generated in diffusion furna	ce 4										
particles from the gas source	2										
© April 30, 2014 Dr. Lynn Fuller, I	Professor Page 23										

Defect Reduction and Yield Enhancement	t
MICRO CONTAMINATION - EQUIPMENT	& PROCESS
FACILITIES PROBLEMS	
loss of positive pressure	5
dirty equipment	8
dirty areas	8
people	8
HEPA filter failure	2
air flow problems	8
procedures	10
LPCVD flakes from previous depositions particles formed by the process particles from the gas source	10 10 2
ION IMPLANT	
basically clean	0
mechanical movement	$\tilde{2}$
© April 30, 2014 Dr. Lynn Fuller, Professor	Page 25

Defect Reduction and Yield Enhancement																	
EXAMPLE PARTICLE COUNT DATA																	
Date	Time	Temp	Hmd	10µm	5µm	2μm	1µm	0.5µm	0.3µm								
1-17-96	1.18	66.4	37.4	1	1	41	84	278	348								
1-23-96	1.42	65.8	46.6	3	6	40	69	325	467								
1-25-96	1.18	66.6	47.3	0	0	101	205	1111	1592								
1-26-96	9.28	66.4	47.3	6	10	71	129	460	572								
1-29-96	12.28	66.1	50.5	2	3	32	47	137	156								
1-30-96	1.53	67.2	47.3	2	3	20	47	209	280								
2-1-96	1.03	68.9	45.5	3	4	30	66	240	289								
2-5-96	12.28	67.6	47	11	11	47	86	267	343								
2-6-96	12.26	67.4	46.7	0	1	30	52	190	259								
2-7-96	1.05	66.8	53.4	1	1	26	44	177	248								
2-8-96	12.23	66.4	52.1	5	7	119	227	870	1199								
2-9-96	12.23	66.3	51.1	3	6	64	111	467	653								
2-12-96	11.14	65.2	49.1	3	3	55	106	506	700								
2-13-96	10.33	64.1	52	2	7	45	122	717	1181								
			© April 30	0, 2014 Dr. Lynr	n Fuller, Profes	© April 30, 2014 Dr. Lynn Fuller, Professor Page 31											

Defect Reduction and Yield Enhancement
REVIEW
ELECTRICAL EFFECTS CAN INCREASE THE DEPOSITION VELOCITY BY 2-3 ORDERS OF MAGNITUDE, EVEN FOR LOW FIELDS OF 100 V/M
HEATING THE WAFER CAN HELP PROTECT IT FROM PARTICULATES, 50 C CAN HELP BY ONE ORDER OF MAGNITUDE
WAFERS SHOULD BE FACE DOWN IN VACUUM SYSTEMS. WHERE GRAVITY IS THE IMPORTANT PARAMETER. (CAUTION: IN PLASMA SYSTEMS ELECTRIC FIELD IS MORE IMPORTANT THAN GRAVITY)
AEROSOL PARTICLE DEPOSITION RATE IS A FUNCTION OF PARTICLE SIZE
© April 30, 2014 Dr. Lynn Fuller, Professor Page 41

Defect Reduction and Yield Enhancement								
STATIC CHARGE								
Static Charge causes a surface to be positive or negatively charged. This surface will attract oppositely charged particles and neutral particles from the air.								
Sources of Static Charge: Triboelectric or Friction Charging Charging through Induction Ion implant, SEMs or plasma processes								
Triboelectric Series: (Positive) Air, Human Hair, Glass, Mica, Human Hair, Nylon, Wood, Lead, Aluminum, Paper, Cotton, Steel, Wood, Hard Rubber, Nickel and Copper, Brass and Silver, Gold and Platinum, Acetate, Rayon, Polyester, Polyurethane, Polyethylene, Polypropylene, PVC, Silicon, Teflon (Negative)								
© April 30, 2014 Dr. Lynn Fuller, Professor Page 42								

Defect Reduction and Yield Enhancement									
EXTRINSIC GETTERING									
HEAVY PHOSPHOROUS DIFFUSION OF THE BACKSIDE OF THE WAFER WILL CAUSE DEFECTS THAT CAN CAPTURE METAL CONTAMINATES									
MECHANICAL DAMAGE TO BACKSIDE OF THE WAFER, ABRAISON, SANDBLASTING									
LASER DAMAGE									
ION IMPLANT DAMAGE									
DEPOSITION OF POLYSILICON ON BACK OF WAFER									
© April 30, 2014 Dr. Lynn Fuller, Professor Page 53									

Defect Reduction and Yield Enhancement											
	MELTING POINT & VAPORIZATION PRESSURE										
DATA FOR VARIOUS MATERIALS											
Т											
				Tem	p @				1	emp	<u>æ</u>
Ma	terial Me	lt Point	Vapo	r Pre	ssure		Material M	elt Point	Vapor	Press	sure
			10	⁸ 10 ⁻	⁶ 10 ⁻⁴		-		10-8	10-0	10-4
Al		660	677	812	1010		Ge	660	677	812	1010
Ars	enic	814	107	152	210		Gold	1062	807	947	1132
Bar	ium	725	545	627	735		Hafnium Ox	ide 2812	-	-	2500
Ber	yllium	1278	710	878	1000		Iron Oxide	1425			
Bis	muth	271	330	410	520		Nickel	1453	927	987	1262
Bor	on	2100	1278	1548	1797		Platinum	1769	1292	1492	1747
Bor	on Nitride	2300	-	-	1300		Selenium	217	89	125	170
Cad	lmium	321	64	120	180		Silver	961	574	617	684
Cds	5	1750			550		Tantalum	2996	1960	2240	2590
Cď	Ге	1098			450		Titanium	1668	1067	1235	5 1453
Chi	omium	1890	837	977	1177		Tungsten	3410	2117	2407	2757
Gal	lium	30	619	742	907		Zinc Oxide	1975			
Ga	As	1238					Ziconium	1852	1477	1702	1987
	A										
<u> </u>							-				
© April 30, 2014 Dr. Lynn Fuller, Professor Page 59											

