ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

RIT CHEMICAL SENSORS

Dr. Lynn Fuller, Ellie Brion, Ellen Sedlack

Dr. Fuller's Webpage: <u>http://www.rit.edu/~lffeee</u>

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Program webpage: http://www.microe.rit.edu

Rochester Institute of Technology Microelectronic Engineering

10-1-2011 Chemical_Sensors.ppt

© August 27, 2010 Dr. Lynn Fuller

CHEMIRESISTOR

Simple interdigitated electrodes coated with a chemically sensitive layer that changes the resistance in response to a few ppm of some (or many) chemicals

For example: carbon black mixed with polymer, the polymer swells breaking some of the carbon black connections increasing resistance of the sensor Resistor with 25µm gaps 25µm length 7250µm width

MODELING OF PARALLEL RESISTANCE CHANGE

If each resistor is identical with value equal to 400 ohms, what is the total resistance?

Answer 20 ohms

If two of the resistors in each row open circuits, what is the total resistance?

Answer 40 ohms

If two resistors in one row open circuits, what is the total resistance?

Answer 22.22 ohms or 11%

Rochester Institute of Technology Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

MODELING OF SERIES RESISTANCE CHANGE

If each resistor is identical with value equal to 400 ohms, what is the total resistance?

Answer 500 ohms

If two resistors in each row open circuits, what is the total resistance?

Answer 1000 ohms

If two resistors in one row open circuits, what is the total resistance?

Answer 600 ohms or 20%

Rochester Institute of Technology Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

SUMMARY OF MODELING

Series architecture with coatings whose resistance increases in the presence of some chemical being detected gives more sensitivity

Parallel architecture with coatings whose resistance decreases in the presence of some chemical being detected gives more sensitivity.

If the coating is perfectly uniform and responds uniformly then both architecture approaches give identical results.

Rochester Institute of Technology

Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

DEFINITION OF TERMS

ISE – Ion Sensitive electrodes

ISFET – Ion Sensitive Field Effect Transistor

Ionophore – compounds that allow specific ions to move through a membrane that they otherwise would not be able to pass through.

Oligomer – low molecular weight monomers often used with photocurable polymers Polymer- major substance in a coating film, gives the film strength

Permselectivity – intrinsic ion selectivity of the polymer film itself

- Plasticizer increases the plasticity of a substance, making it more flexible, prevent cracking,
- Solvent any substance that dissolves another substance. Allows the substance to flow for coating purposes.

Phthalates – one type of plasticizer commonly used but is a Teratogen (causes birth defects) restricted use since 1976 in Europe

UV Blocker – blocks ultraviolet radiation

Rheological Properties – flow characteristics

Photoinitiator – causes cross linking in the presents of light

Crosslinker – used with low molecular weight monomers, causes cross linking

COATING TO DETECT ETHANOL

- 2 μm of (3,4-polyethylenedioxythiopene-polystyrenesulfonate) PEDOT polymer is applied to interdigitated electrodes and cured at 100 °C for 30 minutes
- PEDOT is a conductive polymer which upon exposure to ethanol vapors, will adsorb the ethanol causing the polymer to swell which results in a measurable change of resistance across the electrodes

© August 27, 2010 Dr. Lynn Fuller

FINISHED WAFERS OF CHEMICAL SENSORS

Rochester Institute of Technology Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

WAFERS OF SENSORS CUT (SOME REMOVED)

Ellen Sedlack

Rochester Institute of Technology

Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

COMPLETED ELECTRODES

COMPLETED ELECTRODES

Left: Sensor chip (no coating) with clip on pins Right: Sensor chip with solder connections

> Rochester Institute of Technology Microelectronic Engineering

> > © August 27, 2010 Dr. Lynn Fuller

page 18

CHEMICAL SENSOR USING SERIES ARCHITECTURE

GAS CONCENTRATION CALCULATOR

Rochester Ins	titute of Technol	ogy			20-Mar-06			
Microe lectro	nic Engineering				Dr. Lynn Fuller			
<u>Concentration</u>	n Calculations:	<u> </u>	<u> </u>				_	
When testing of	chemical sensors i	t is important	to know the c	oncentration	of the chemical to	determine	_	
the fellowing of	For chemicals in	al are availab	ie as a líquid bi	ul evaporate	in a volume of air,	one can use		
the following et								
Concentratio	n (in ppm) = [We	iaht (ma) / C	hamber volu	me (m ³)] X			BAC = Blood Alcoho	ol Concent
	IVolume of	one mole o	of air (L/mole)	/ Mole cula	r weight of samp	le (g/mole)]	BAC = wt. ln gm of the second secon	ethanol/10
							BAC = wt. In gm of ethanol/21	
To use this spi	read sheet input va	lues in the w	hite boxes and	results will	be displayed in pur	ple boxes		
			volum	e of liquid =	0.0002	ml	Chamber Volume =	0.2
Example:	3		<u>if liquid = volum</u>	nex density	0.1632	mg		0.00016
Chamber of 1 I	Chamber of 1 Liter = 1000 cm ³ = 0.001 Volume of air = 24.45 L/mole		.001 m [°] Chamber volume = Volume of air =		0.00025	m	_	210
Volume of air =					24.45		_	0.13/08
note: valid at T	-25°C and P-760	l mm Ha	molecular	wt sample=	46.06952	g/more	Ev: 0.0002ml ethan	nl in 250 m
			Concentratio	n in pom =	346	ppm	which is equivalent t	o 346 ppm
Data:								
Chemical	Chemical	Molecular	Density	Select				
name	formula	weight	Kg/m ³	one entry =	1, others = 0			
methanol	CH₃OH	32.04243	810	0				
ethanol	CH₃CH₂OH	46.06952	816	1				
2-propanol	CH3CH2CH2OH	60.09661	804.13	0				
acetone		58.08	784.58	0				
			10 1100					
Reference: http	o://www.ilpi.com/m	sds/ref/conce	entration.html					
								1
			© August 27	7,2010 Dr	. Lynn Fuller		70 20	

POLYMERS USED TO MAKE SENSORS

 Air Plane Glue

 Bond adhesives Co., Multipurpose Adhesive 527

 From the MSDS:
 Nitrocellulose (polymer)

 Trade Secret (plasticizer)
 X%

 Acetone (solvent)
 66%

 Isopropanol (solvent)
 7%

 Propylene Glycol Monoethyl Ether (rheological properties)
 4%

Cellulose Acetate Solution

Nitrocellulose (polymer)	10%
Di butyl Phthalate (plasticizer)	1%
Camphor (aromatic)	5%
Benzophenone-1 (UV Blocker)	1%
Toluene (solvent)	5%
Butyl acetate (solvent)	25%
Ethyl Acetate (solvent)	45%
Isopropyl Alcohol (solvent)	5%
	Nitrocellulose (polymer) Di butyl Phthalate (plasticizer) Camphor (aromatic) Benzophenone-1 (UV Blocker) Toluene (solvent) Butyl acetate (solvent) Ethyl Acetate (solvent) Isopropyl Alcohol (solvent)

© August 27, 2010 Dr. Lynn Fuller

MECHANISM OF POLYMER SWELLING

Solvents interact with the polymer, plasticizer or other additives in the film causing swelling. For example nail polish and airplane glue have the same base polymer, Nitrocellulose, which swells in the presence of acetone and both show acetone sensitivity. Nail polish does not show sensitivity to alcohol but air plane glue does so one explanation is that the alcohol sensitivity in air plane glue is due to the type of plasticizer used.

Rochester Institute of Technology Microelectronic Engineering

© August 27, 2010 Dr. Lynn Fuller

AIR PLANE GLUE / CARBON BLACK TEST RESULTS

ELLIE BRION

ELECTRODE ARRAYS AVAILABLE FROM RIT

ELECTRODE ARRAYS AVAILABLE FROM RIT

MODEL #	METAL MATERIAL	SUBSTRATE MATERIAL	TYPE	WIDTH	SPACE	LENGTH	NUMBER OF ELEMENTS	PRICE EACH
Ta50-10-37Si	Ni/Ta/TaN	Silicon*	SERIES	50 µm	50 µm	1000µm	37	\$5.95 each
Ta50-37-20Si	Ni/Ta/TaN	Silicon*	PARALLEL	50 µm	50 µm	3700µm	20	\$5.95 each
Ta20-37-40Si	Ni/Ta/TaN	Silicon*	PARALLEL	20 µm	20 µm	3700µm	40	\$5.95 each
Ta10-37-100Si	Ni/Ta/TaN	Silicon*	PARALLEL	10 µm	10 µm	3700µm	100	\$5.95 each
MODEL #	METAL MATERIAL	SUBSTRATE MATERIAL	ТҮРЕ	WIDTH	SPACE	LENGTH	NUMBER OF ELEMENTS	PRICE EACH
MODEL # Ta50-10-37G	METAL MATERIAL Ni/Ta/TaN	SUBSTRATE MATERIAL Glass	TYPE SERIES	WIDTH 50 μm	SPACE 50 μm	LENGTH 1000µm	NUMBER OF ELEMENTS 37	PRICE EACH \$9.95 each
MODEL # Ta50-10-37G Ta50-37-20G	METAL MATERIAL Ni/Ta/TaN Ni/Ta/TaN	SUBSTRATE MATERIAL Glass Glass	TYPE SERIES PARALLEL	WIDTH 50 μm 50 μm	SPACE 50 μm 50 μm	LENGTH 1000μm 3700μm	NUMBER OF ELEMENTS 37 20	PRICE EACH \$9.95 each \$9.95 each
MODEL # Ta50-10-37G Ta50-37-20G Ta20-37-40G	METAL MATERIAL Ni/Ta/TaN Ni/Ta/TaN Ni/Ta/TaN	SUBSTRATE MATERIAL Glass Glass Glass	TYPE SERIES PARALLEL PARALLEL	WIDTH 50 μm 50 μm 20 μm	SPACE 50 μm 50 μm 20 μm	LENGTH 1000μm 3700μm 3700μm	NUMBER OF ELEMENTS 37 20 40	PRICE EACH \$9.95 each \$9.95 each \$9.95 each

Dr. Lynn F. Fuller, Professor Electrical and Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Dr. Fuller's Webpage: http://people.rit.edu/Iffeee

Silicon* is 6500Å oxide on silicon Size 4.8 mm x 4.8 mm x 0.67 mm Solder Pads for Interconnect Other metals available

© August 27, 2010 Dr. Lynn Fuller

RIT Chemical Sensors RIT ELECTRODE ARRAYS П © August 27, 2010 Dr. Lynn Fuller Page 30

