ROCHESTERINSTITUTEOFTEHNOLOGY ICROELECTRONIC ENGINEERING

MEMS Capacitor Sensor Laboratory

Dr. Lynn Fuller, Dr. Ivan Puchades

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

Email: Lynn.Fuller@rit.edu Department webpage: http://www.microe.rit.edu

4-11-13 capacitor_Lab.ppt

Rochester Institute of Technology

Microelectronic Engineering

© April 11, 2013 Dr. Lynn Fuller

CAPACITOR CALCULATIONS

Rochester Institute of Technology							8-Apr-08
Dr. Lynn Fuller	Microelec	tronic Engir	neering, 82 l	Lomb Mem	orial Dr., Rochester, NY 14623		
To use this spread sheet enter values in the white boxes. The rest of the sheet is protected and should not be							
changed unless you are sure of the consequences. The results are displayed in the purple boxes.							
Capacitance of Two Parallel Plates							
Capacitance = eoer Area/d				C =	3.43E-11	F	
		eo = Permitivitty of free space			8.85E-14	Fłom	
		er = relative permitivitty =			2		
				Area =	5.81E+01	cm2	
	number of pairs of plates, N =				1		
		distance between plates, d =				μM	
		lf rou	ind plates, D	Diameter =	0	μM	
		lf recta	ngular plate	s, length =	7.62E+04	μM	
		If rectangular plates, width =			7.62E+04	μM	
Force Between Two Parallel Plates Force =					5.71E-07	N	
Electrostatic Force= eoer Area Y ² /24 ⁵ plied Voltage, V =					10	volts	

Rochester Institute of Technology

Microelectronic Engineering

© April 11, 2013 Dr. Lynn Fuller

Page 4

CAPACITANCE BETWEEN TWO PLATES

Design and build capacitors made of two metal plates separated by a thin foam insulator that can be compressed for various applied forces. Calculate capacitance and measure capacitance, compare results to theoretical.

 ε r air < ε r foam < ε r rubber 1 < ε r foam < 3 Capacitance of two wires 3' long Capacitance of 2" x 2" plates ¹/₂" gap Capacitance of 1" x 1" plates ¹/₄" gap

© April 11, 2013 Dr. Lynn Fuller

Page 5

LIQUID LEVEL CAPACITOR SENSOR

Calculate Capacitance, 3" x 3" plates 1/32" gap

Measure Capacitance Immersed in Water at ¹/₂, 1, 1 ¹/₂ and 2"

 $\varepsilon r = -80$ for water

OSCILLATOR OUTPUT

1.2 Mohm No Force Applied C ~50pf

1.2 Mohm with Force Applied C~100pf

INVESTIGATE RESONANT LC CIRCUIT

Network Analyzer

Rochester Institute of Technology Microelectronic Engineering

© April 11, 2013 Dr. Lynn Fuller

Page 16

PICKUP COIL CURRENT WITHOUT RESONANT CIRCUIT

BLUETOOTH WIRELESS CAPACITOR SENSOR

Rochester Institute of Technology

Microelectronic Engineering

© April 11, 2013 Dr. Lynn Fuller

Microelectronic Engineering

© April 11, 2013 Dr. Lynn Fuller