ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

CMOS Testing of First John Galt Chips

Dr. Lynn Fuller, Ellen Sedlack

Webpage: <u>http://people.rit.edu/lffeee</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: <u>Lynn.Fuller@rit.edu</u> Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

10-25-2009 CMOSTestingJohnGalt1.ppt

© October 22, 2009 Dr. Lynn Fuller

OUTLINE

Introduction
Process Technology
Design Rules
Chip Floor Plan
Structures for Fabrication Process and Evaluation
Sensors
Digital Circuits
Analog Circuits
Projects
References

Rochester Institute of Technology Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

INTRODUCTION

This document will describe a new CMOS test chip. The test chip will be used to develop CMOS process technology and to verify analog and digital circuit designs. In addition the test chip includes a variety of CMOS compatible sensors and signal processing electronics for those sensors. A section of the chip is for manufacturing process characterization and transistor parametric characterization. Other sections of the chip have basic digital and analog circuits, chip scale packaging designs and projects to evaluate various Microsystems architectures. For example a variable frequency oscillator, binary counter and shift register allows for capacitor sensor measurement and Blue-Tooth wireless transmission of data to a remote host. The test chip will be used with RIT's SUB-CMOS and ADV-CMOS processes.

Rochester Institute of Technology Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

DESIGN RULES

We will use a modified version of the MOSIS TSMC 0.35 2P 4M design rules. Eventually we hope to be compatible with MOSIS but new process technology needs to be developed at RIT to do that (PECVD Tungsten, improved lithography overlay, 4 layer metal). We plan to use one layer of poly and two layers of metal. We will use the same design layer numbers with additional layers as defined on the following pages for manufacturing/maskmaking enhancements. Many of the designs will use minimum drawn poly gate lengths of 2 μ m where circuit architecture is the main purpose of the design. Minimum size devices (Drawn Poly = 0.5 μ m, etc.) are included to develop manufacturing process technology.

Rochester Institute of Technology Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

MOSIS TSMC 0.35 2POLY 4 METAL PROCESS

General Information

About MOSIS Products Processes Prices Support User Group Events Job Openings News

Work with MOSIS

Overview Getting Started Design and Test

Requests Run Status

Project Status Test Data

Docs and Forms Documents Forms/Agreements Web Forms

Quick Reference

New Users Experienced Users Purchasing Agents Design and Test Academic Institutions Export Program Submit A Project

Search MOSIS

Search

http://www.mosis.com/Technical/Designrules/scmos/scmos-main.html#tech-codes MOSIS SCMOS Technology Codes and Layer Maps SCN4M and SCN4M SUBM

This is the layer map for the technology codes SCN4M and SCN4M_SUBM using the MOSIS Scalable CMOS layout rules (<u>SCMOS</u>), and only for SCN4M and SCN4M_SUBM. For designs that are laid out using other design rules (or <u>technology</u> <u>codes</u>), use the standard layer mapping conventions of that design rule set. For submissions in GDS format, the datatype is "0" (zero) unless specified in the map below.

SCN4M: Scalable CMOS N-well, 4 metal, 1 poly, silicided. Silicide block and thick oxide option available only on the TSMC process.

SCN4M_SUBM: Uses revised layout rules for better fit to sub-micron processes (see MOSIS Scalable CMOS (SCMOS) Design Rules, <u>section 2.4</u>).

Fabricated on <u>TSMC</u>, <u>AMIS</u>, and <u>Agilent/HP</u> 0.35 micron process runs. See "Notes" section of layer map for foundry-specific options.

Layer	GDS	CIF	CIF Synonym	Rule Section	Notes	
N WELL	42	CWN		1		
ACTIVE	43	CAA		<u>2</u>		
THICK ACTIVE	60	СТА		<u>24</u>	Dptional for TSMC; not available for Agilent/HP nor /	AMIS
POLY	46	CPG		<u>3</u>		
SILICIDE BLOCK	29	CSB		<u>20</u>	Dptional for Agilent/HP; not available for AMI	
N PLUS SELECT	45	CSN		<u>4</u>		
<u>P PLUS SELECT</u>	44	CSP		<u>4</u>		
<u>CONTACT</u>	25	\mathbf{ccc}	CCG	<u>5, 6, 13</u>		
POLY CONTACT	47	ССР		<u>5</u>	Can be replaced by CONTACT	
ACTIVE CONTACT	48	CCA		<u>6</u>	Can be replaced by CONTACT	
METAL1	49	CM1	CMF	2		
VIA	50	CV1	CVA	<u>8</u>		
METAL2	51	CM2	CMS	<u>9</u>		
<u>VIA2</u>	61	CV2	cvs	<u>14</u>	TSMC 0.35 micron	0.25 <u>SCN4M</u>
METAL3	62	смз	CMT	<u>15</u>	2P4M (4 Metal	
VIA3	30	сүз	сут	<u>21</u>	Polycided, 3.3	
METAL4	31	CM4	CMQ	<u>22</u>	V/5 V)	
<u>GLASS</u>	52	COG		<u>10</u>	iiiiiiii	
PADS	26	ХР			Non-fab layer used to highlight pads	
Comments		сх			Comments	
© Oct	obe	er 22	. 2009 Dr. L	vnn Fi		<u> </u>

MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

MASK LAYEK NAME	MENTOR NAME	GDS #	COMMENT
N WELL	N_well.i	42	
ACTIVE	Active.i	43	
POLY	Poly.i	46	
N PLUS	N_plus_select.i	45	
P PLUS	P_plus_select.i	44	
CONTACT	Contact.i	25	Active_contact.i 48 poly_contact.i 47
METAL1	Metal1.i	49	
VIA	Via.i	50	
METAL2	Metal2.i	51	
VIA2	Via2.i	61	Under Bump Metal
	Metal3.i	62	Solder Bump

MORE LAYERS USED IN MASK MAKING

LAYER	NAME	GDS	COMMENT		
	cell_outline.i	70	Not used		
	alignment	81	Placed on first level mask		
	nw_res	82	Placed on nwell level mask		
	active_lettering	83	Placed on active mask		
	channel_stop	84	Overlay/Resolution for Stop Mask		
	pmos_vt	85	Overlay/Resolution for Vt Mask		
	LDD	86	Overlay/Resolution for LDD Masks		
	p plus	87	Overlay/Resolution for P+ Mask		
	n plus	88	Overlay/Resolution for N+ Mask		
	tile_exclusion	89	Areas for no STI tiling		
Roc Mic	hester Institute of Technology roelectronic Engineering	1	These are the additional layers used in layout and mask maki		
	© Octobe	r 22, 2009 D	r. Lynn Fuller Page 10		

ЦΠ

		M	IAS	SK (ORL	E	R FC	DR A	M			
Rucher Microe	ter Instit lectrunic	ute of Techn Engineering	ala 47					Date	672572008			
Attach	nent far	Mark Order F					Ree	a artar	Dr. Lynn Full	or		
Darian	Descript	CMOS TESTO	 11P 2008	final		r Fila	teharadian	netortch	in 2007/CMO	S TESTO	HIP 20	08 final
			<u></u>			_		ning ving vern				<u></u>
cture Ra Sce	krolution le Fector	0.5 5X		Rutata	135 none	P	'late Size * of l eve	- Ir/plat	5"×5"×0.090			
-	Arrey	nane										
Dariga		Hark										
Hame	Humber	Hame	Humber	r Baales	n Functi			tr				
NWELL	1	n-uell.i	42	(42 OR 81	10R 82) INV	ERT	DarkFieldt	Mark I				
		alignment	81 82									
ACTIVE	2	activo-aroa.i	43	(43 OR 8)	3)		Cloar Field	Mark				
		activo-aroa.o	83									
STOP	3	n-uell.i	42	(42 OR 8)	₽ <u></u>		Cloar Fiold	<u>Mark</u>				
PMOSVT	· 4	p_plur_roloct.i	44	(44 OR 8	5)		DarkField1	Mark				
		pmar_vt	85									
POLY LDD-N	5	poly.i	46	none (45.00.%)			Clear Field	<u>Mark, Bia</u> Maala	<u>r layor 6 +0.5µ</u> 1	.m		
200-11	<u>+ *</u>	LDD	86				Darkriela					
LDD-P	7	p_plur_roloct.i	44	(44 OR 8)	6) INVERT		Dark Field 1	Mark				
Nepc	4	LDD	86	(4E OD A4	O INIEDT		Dark States	Maralı				
M+DS	8	n_plur_soloct.	45	(45 OK 81	o) INVERT		Darkfield	n ark				
P+DS	9	p_plur_relect.i	44	(44 OR 81	7) INVERT		DarkField	Mark				
		pplur	87									
CC	10	Activo contact	25 d%	(25 08 8	70847)INV T	ERT	Darkfield	Mark I				
		Poly_contact.i	47									
METAL1	11	motal1.i	49	none			Cloar Field	Mark				
<u>VIA</u>	12	Via.i	50	INVERT			DarkFieldt	Mark I				
METAL2	13	motal2.i	51	none			Clear Field	Mark				
VIA2	14	Via2	61	nane			DarkField	Mark				
	46		2.5				101	bd L				

© October 22, 2009 Dr. Lynn Fuller

OVERALL CHIP LAYOUT

The test chip is divided into nine cells each 5 mm by 5 mm. The cells are divided into 36 individual tiny cells each 800 µm by 800 µm in size plus 200 µm sawing streets. Most structures fit into the tiny cells including a 12 probe pad layout for probe card testing. The overall chip size is 14800 µm by 14800µm plus 200 um sawing street to give x and y step size of 15 mm by 15 mm.

4-BIT MICROPROCESSOR

ANALOG TO DIGITAL CONVERTER

FIELD OXIDE ID-VGS, EXTRACT VT(FIELD)

NMOS Field Vt > 10 volts

Pmos Field Vt < -25 volts

Rochester 1	Institute of Technology	
Microelectr	ronic Engineering	
	© October 22, 2009 Dr. Lynn Fuller	Page 21

NMOS TEST RESULTS

TRANSISTOR PARAMETER EXTRACTION

NMOS Transistor Family of Curves

TRANSISTOR PARAMETER EXTRACTION

NMOS Transistor Ids vs Vgs with Vds = 0.1 volts

TRANSISTOR PARAMETER EXTRACTION

NMOS Transistor Subthrehold Plot at Vd = 0.1 and Vd = 5

TRANSISTOR PARAMETER EXTRACTION

NMOS Field Oxide FET, ld versus Vgs

PMOS TEST RESULTS

Note: Vt adjust mask made incorrectly Vt = ~ -2.0

© October 22, 2009 Dr. Lynn Fuller

MOSFET EXTRACTED PARAMETERS

Lot Number = F080729 – Wafer Number = D2, Die Location

n R=	, C=	
II I \ —	, C –	

	PMOS	NMOS	Units
Mask Length / Width	2/4	2/4	μm
VT	-2.0	0.75	V
Lambda (for Vgs = Vdd)	0.018	0.006	V-1
Max gm / mm of channel width	0.90	2.17	mS/mm
Idrive	33	111	μA/μm
Ion/Ioff @ Vd = 0.1V	7.47	7.21	Decades
Ion/Ioff @ Vd = 5V	8.52	8.46	Decades
Ioff @ Vd = 0.1V	3E-13	1.55E-12	A/µm
Ioff @ Vd = 5 V	3E-13	1.55E-12	A/µm
Sub-Vt Slope @ Vd = 0.1V	99	120	mV/Dec
Sub-Vt Slope @ Vd = 5 V	99	120	mV/Dec
DIBL@1nA/μm = $\Delta V_g / \Delta V_d$	0	0	mV/V
Field VT	-25.2	10	V

RING OSCILLATOR DESIGN

2µm gate length
5 Volt
73 stage
4x Buffer Output
1x Buffer Output
Unbuffered Output

VAN DER PAUW TEST RESULTS

Page 37

VAN DER PAUW TEST RESULTS

Metal 1 Rhos=0.0457 ohm/sq

Rochester Institute of Technology

Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 38

VAN DER PAUW TEST RESULTS

Metal 2 Rhos=0.0615 ohm/sq

Rochester Institute of Technology

Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 39

CMOS Testing of John Galt Chip M1-M2 VIA CHAIN M1-M2 Via chain 512 via 0.1000 0.0750 0.0500 0.0250 0.0000 A -0.0250 -0.0500 NAPPAGE (526161 a c'hed PARA I -0.0750 analyse wanter 11-115/203 1000 WIR I -0.1000 -5.000 0.000 5.000 10.000 -10.000 VA 1. 3 WYA ... K.B. WEAK R. S. IN MARY 21 VAURA C L'ARRAL NUMBER OF NUMBER OF LO BROK D E. H. Martin 15 M 18 7 COMPLET N Fit #1: Fit #2: Cursors: X Type: Cursor None -2.0000 -0.0169 Slp:8.4525m 2.0000 0.0169 **** Yint:9.9996u Kint:-1.1830m 1 02/10/2010 F081201 M1-M2 Via chain with 512 Vias and total resistance of 118 ohms or 0.231 ohms per contact **Rochester Institute of Technology** Microelectronic Engineering © October 22, 2009 Dr. Lynn Fuller Page 41

CMOS Testing of John Galt Chip INTERDIGITATED FINGER CAPACITOR CALCULATIONS Capacitance for very Thin Interdigitated Fingers 28 CMOS TESTO 29 Capacitance, C = 2.26E-12 F $\mathbf{C} = \mathbf{LN}\left(\underbrace{\mathbf{4} \mathbf{g}_{0} \mathbf{g}_{r}}_{\pi}\right) \sum_{r=1}^{\infty} \frac{1}{2n \cdot r}$ Number of Fingers, N = 30 120 31 relative dielectric constant, er = 4.9 32 Length of finger overlap, L =440 µm 33 width of fingers, w =3µm 34 space between fingers, s = 3µm 20 **Rochester Institute of Technology** Microelectronic Engineering © October 22, 2009 Dr. Lynn Fuller Page 46

DIODES AND HEATER TEST RESULTS

RESISTORS

NWell R = 1/SLOPE = 1/0.025m = 40,000 ohm Rhos = 40K/39= 1026 ohm/sq

RESISTORS

CMOS Testing of John Galt Chip RESISTORS Poly Resistor p-well Poly 0.2000 4 R=1468 Rhos=37.6 VA L/W=390/10 L/W=390/30 n-well resistor Pwell nWell R=4160 R=44K Rhos=320 Rhos=1.13K 390/10um 390/30um L/W=390/10 L/W o+ in n-well resisto P+ in nWell R=1.78K Rhos=45.7 R = 1/slopeL/W=390/10 L/W=390/30 Rhos = R W/Ln+ in p-well resistor P+ in nWell n+ in pWell R=582 R=1.46K Rhos=44.8 Rhos=37.4 **Rochester Institute of** Microelectronic Engin L/W=390/10 © October 22, 2009 Dr. Lynn Fuller Page 53

BIG PHOTO VOLTAIC CELL

LARGE 5mm X 5mm PHOTODIODE

CMOS Testing of John Galt Chip INVERTER TEST RESULTS IN - OUT **CMOS INVERTER** Conditions: 5.0000, 0.6000m Con: SMU1 Val: 5.0000 V 4.0000 0.4000m VS2P Con: SMU2 3.0000 Ъ Val: 0.0000 A F١ 2.0000 Ж Con: SMU4 0.2000m Val: 0.0000 V 1.0000 NORA Swp: SMU3 0.0000 0.0000 Start: 0.0000 V 4.000 5.000 0.000 1.000 2.000 3.000 Stop: 5.0000 V Step: 0.0500 V VS1P Pts: 101 Fit #1: Fit #2: Cursors: X None None 2.6500 3.1079 **** **** 4.5320 2.4500 60 **** **** 2.7500 0.4641m *** 0.4350 2.9000 2.7000 2.0320 ICS 15:47:02 Output E E TE BERLY In High Low High Low Low **Rochester Institute of Technology** Microelectronic Engineering 1000 © October 22, 2009 Dr. Lynn Fuller Page 62

PRIMITIVE CELLS

PRIMITIVE CELLS

4 TO 1 MULTIPLEXER

EDGE TRIGGERED D TYPE FLIP FLOP

BINARY COUNTER USING T TYPE FLIP FLOPS

© October 22, 2009 Dr. Lynn Fuller

Page 86

CMOS Testing of John Galt Chip ADDITIONAL CIRCUITRY TO RESET, SHIFT, COUNT $Q_0 CE CE \overline{Q}_1$ ÇE CE $\bar{Q}_2 CE$ DRO RO DR RO D D $C\overline{E}$ CLK CLK ÇLK CLK S S S S $Q_1 CE \overline{CE} SR$ $Q_2 CE \overline{CE} SR$ $Q_0 CE \overline{CE} SR$ $RC CE \overline{CE} SR$ CE CE_D R Q RESET CE CLKS Q_2

© October 22, 2009 Dr. Lynn Fuller

CMOS Testing of John Galt Chip 3-BIT BINARY COUNTER/SHIFT REGISTER

ANALOG AND MIXED MODE CIRCUITS

Operational Amplifier Inverter with Hysteresis RC Oscillator Two Phase Clock Analog Switches Voltage Doubler, Tripler Analog Multiplexer Comparator with Hysteresis A-to-D D-to-A OTA, Biquad Filter, Elliptic Filter Programmable Binary Weighted Resistors

Rochester Institute of Technology

Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 92

CMOS Testing of John Galt Chip
SPICE PARAMETERS FOR SUB-CMOS PROCESS
*This file is called: RIT_MICROE_MODELS.TXT
*1-15-2007 FROM DR. FULLER'S SPREADSHEET WITH VT0=0.75 .MODEL RITSUBN49 NMOS (LEVEL=49 VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 NSS=3E11 +XWREF=2.0E-7 XLREF=2.95E-7 VTH0=0.75 U0= 950 WINT=2.0E-7 LINT=1.84E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGS0=3.4E-10 CGD0=3.4E-10 CGB0=5.75E-10) *
*1-17-2007 FROM DR. FULLER'S SPREADSHEET WITH VT0=-0.75 .MODEL RITSUBP49 PMOS (LEVEL=49 VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 NSS=3E11 PCLM=5 +XWREF= 2.0E-7 XLREF=3.61E-7 VTH0=-0.75 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 NGATE=5E20 +CGS0=4.5E-10 CGD0=4.5E-10 CGB0=5.75E-10)
Rochester Institute of Technology Microelectronic Engineering
© October 22, 2009 Dr. Lynn Fuller Page 93

R/C 2/2 OpAmp

OPAMP 1

OpAmp: 1 R/C 2/2

OPAMP 2

TWO PHASE CLOCK

Circuit of previous page at 100Khz

Rochester Institute of Technology

Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 103

TWO PHASE CLOCK WITH BUFFERS

BIQUAD FILTER

 $\mathbf{V}_{\text{out}} = (s^2 \mathbf{C}_1 \mathbf{C}_2 \mathbf{V}_c + s \ \mathbf{C}_1 \ \mathbf{g}_{\text{m4}} \ \mathbf{V}_b + \mathbf{g}_{\text{m2}} \ \mathbf{g}_{\text{m5}} \ \mathbf{V}_a) / (s^2 \mathbf{C}_1 \mathbf{C}_2 + s \mathbf{C}_1 \mathbf{g}_{\text{m3}} + \mathbf{g}_{\text{m2}} \mathbf{g}_{\text{m1}})$

This filter can be used as a low-pass, high-pass, bandpass, bandrejection and all pass filter. Depending on the C and gm values a Butterworth, Chebyshev, Elliptic or any other configuration can be achieved

For example: let Vc=Vb=0 and Va=Vin, also let all g_m be equal, then

Vout = Vin /
$$(s^2C_1C_2/g_mg_m + sC_1/g_m + 1)$$

which is a second order low pass filter with corner frequency at

$$\omega_{\rm c} = g_{\rm m}/\sqrt{C_1C_2}$$
 and $Q = C_2/C_1$

Rochester Institute of Technology Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 112

3 BIT ANALOG TO DIGITAL CONVERTER

WIRELESS CAPACITIVE SENSOR PROJECT

SPECTROPHOTOMETER

S.O.DIMM CONNECTOR

144 CONTACT(S), FEMALE, RIGHT ANGLE SINGLE PART CARD EDGE CONN, SURFACE MOUNT, SOCKET

This product ships from a Jameco satellite warehouse, usually within 2 to 3 the next business day when received by 5:00PM EST. Please choose *expedited processing* at checkout if you prefer to have the other products on your order ship immediately. Separate shipping charges would then apply.

Jameco P/N	801588PS	**We tem at this low supply rur quantity w
Mfg	MOLEX INC.	
Mfg #	54697-1440	
RoHS?	Yes 	
In Stock	Y	
Contact Gender	FEMALE	
Filter Feature	NO]
Mixed Contacts	NO	View Tecl
Mounting Style	RIGHT ANGLE	
Mounting Type	BOARD	Download
Number of Rows Loaded	2	Font Pack
Single Part Card Edge Connector Type	SINGLE PART CARD EDGE CONN	
Terminal Pitch (mm)	0.8]

Rochester Institute of Technology Microelectronic Engineering

© October 22, 2009 Dr. Lynn Fuller

Page 128

0.8 S.O.DIMM HSG ASSY 144CKT

SOLDER BUMP TEST CHIP

1000µm center-to-center 225µm diameter circle

Under bump metal is Cr/Ni and is defined by a lift-off lithography.

The solder is printed using a 150um photoresist and solder paste. (or 500um solder ball is placed over circle)

© October 22, 2009 Dr. Lynn Fuller

Page 129

RIT SOLDER BUMPS

