ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

RIT Factory CMOS Electrical Test

Dr. Lynn Fuller and David Pawlik

Webpage: http://www.rit.edu/~lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: lffeee@rit.edu MicroE Webpage: http://www.microe.rit.edu

Revision Date: CMOSTEST_Manual.ppt 12-15-08

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

INTRODUCTION

Motivation

 Most students taking Factory class are not yet familiar with the test equipment used in the test lab.

Goal

 Create a PowerPoint Manual, and electrical tests, so that most people will be able to easily perform the electrical tests, and extract the necessary data.

Assumptions

- Operator has a base knowledge of:
 - 1) The electrical tests being done

2) How to extract necessary information from the generated curves.

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

TEST EQUIPMENT

Semi-automatic Prober

Rochester Institute of Technolo; Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

TEST STATION

© December 15, 2008 Dr. Lynn Fuller

© December 15, 2008 Dr. Lynn Fuller

ICS SETUP

ICS SETUP DETAILS

ICS LOAD ELECTRICAL TESTS

LIST OF ELECTRICAL TESTS

Test Name	Description	Parameters to be extracted	Units	
VDP-POLY	Poly Van Der Pauw	Poly Sheet Resistance	ohms/square	
VDP-MET	Metal Van Der Pauw	Metal Sheet Resistance	ohms/square	
VDP-N	N+ Van Der Pauw	N+ Sheet Resistance	ohms/square	
VDP-P	P+ Van Der Pauw	P+ Sheet Resistance	ohms/square	
VDP-PWELL	P-well Van Der Pauw	P-Well Sheet Resistance	ohms/square	
CBKR-N	CBKR Metal to N+ silicon	Specific Contact Conductance for metal to N+ silicon	mmho/µm2	
CBKR-P	CBKR Metal to P+ silicon	Specific Contact Conductance for metal to P+ silicon	mmho/µm2	
CBKR-POLY	CBKR Metal to Poly	Specific Contact Conductance for metal to Poly	mmho/µm2	
NFAM	NMOS Family of Curves	Lambda	1/Volts	
NVT	NMOS ID - Vgs	Max gm	mho/µm of channel width	
		Vtn	Volts	
NSUB	NMOS Sub Threshold ID-Vgs	Sub Threshold Slope	mV/decade	
		Imax/Imin	# of decades	
PFAM	PMOS Family of Curves	Lambda	1/Volts	
PVT	PMOS ID - Vgs	Max gm mho/µm of cha		
		Vtn	Volts	
PSUB	PMOS Sub Threshold ID-Vgs	Sub Threshold Slope	mV/decade	
		Imax/Imin	# of decades	
NFIELD	NMOS Family of Curves	N Well Field Vt Volts		
PFIELD	PMOS Family of Curves	P Well Field Vt	Volts	
INV	Inverter Vout versus Vin	Imax	Amps	
		Vinv, Voh, Vol, Vih, Vil	Volts	

Rochester Institute of Technology Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

ICS – SELECTING AND RUNNING A TEST

© December 15, 2008 Dr. Lynn Fuller

PROBE STATION – SHOULD ALWAYS BE POWERED ON

INSERTING PROBE CARD

Choose Probe Card

 There are 2 types: 1) 10 pin card, & 2) 12 pin card Sub-CMOS: 10 pin probe card DAC lots: 12 pin probe card Adv-CMOS: 10 pin probe card

Probe Card Slot

- Remove Probe Card (If one is in the probe station already)
 - 1. Twist Micrometer "up" (couple turns)
 - 2. Loosen 4 thumb screws
 - 3. Remove card
- Insert Desired Probe Card
 - 1. Push card into the slot
 - 2. Tighten 4 thumb screws

Probe Card

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

LOAD WAFER

- Move Stage to the Load Position
 - Press the "Load/Center" button (moves stage out)
- Load the Wafer
 - Make sure the vacuum switch is turned off
 - Load the wafer onto the center of the chuck Wafer flat towards front of the tool
 - Turn on the vacuum
 - Press the "Home" button
 - Wafer is loaded and ready for viewing using Osprey

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

OSPREY – VIDEO IMAGING SETUP

- Turn the Light on
 - Turn the dial on the light source clockwise until optimal brightness is achieved

Settings Casture New Doce, Help

Start Osprey Software on your Desktop

- Click "close" on the window that pops-up.
- Second window is a video image of the microscope imaging.
- Window cannot be resized but magnification (zoom) can be changed

Adjust zoom and focus

SETUP STAGE HIGHT

Maneuver probes over empty street

- 1. Set Index/Jog switch to Jog
- 2. Use arrow buttons appropriately
- 3. Stop when over street (empty space between die)

Make probes contact Aluminum in the street

- 1. Toggle Probes down (set separate/contact switch to contact)
- 2. Use micrometer to move probe card down
- 3. When probes slide (very small amount) stop moving micrometer
- 4. Toggle probes up (separate)
- 5. Move station small amount, and look for probe marks
 - Black marks where the probes scratched the aluminum
 - Marks should be small elongated dots (Ex.)
- 6. Repeat As needed (move micrometer up if needed)

Rochester Institute of Technology

Microelectronic Engineering

SWITCH MATRIX

Turn on Switch Matrix (should be on from page 5)

Use Light wand to activate different switches

- Point wand at a circle on the indicator.
- Push button on the light wand.
- LED should toggle on and off.
- Columns indicate pin number on the probe card.
- Rows indicate SMU number (A = SMU 1, B = SMU 2, etc.).
- Push the Copy Button.
 - Activates the appropriate switches (LED is on) so that indicated probe pins and SMUs are connected.
 - Leave this button turned on.

© December 15, 2008 Dr. Lynn Fuller

STANDARD PROBE CARDS

'esting

SUB-CMOS MIXED CMOS TEST CHIP

Layout of CMOS test chip for microelectronic engineering manufacturing courses. This chip has transistors down to 0.5 µm gate length, a variety of test structures, digital and analog circuit building blocks including A-to-D and D-to-A converters, operational amplifiers, transconductance amplifiers, and filters of various types.

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

SUB-CMOS Die Photograph

© December 15, 2008 Dr. Lynn Fuller

ADVANCED CMOS TEST CHIP

SPICE PARAMETRIC CMOS TEST CHIP

DAC 2003 PROJECT CHIP

GENERAL TEST INSTRUCTIONS

Test die in the center of the wafer, then upper left, upper right, lower right, and lower left (about $\frac{1}{2}$ way between center and edge). Extract parameter values from the test results.

Create a PowerPoint document from **test_results.ppt** master (see example data powerpoint a few pages below) on Dr. Fullers webpage at <u>http://www.rit.edu/~lffeee/labnotes.htm</u> (save as) record Lot#, Wafer#, Die location (center, top left,etc), pictures of die, test results graphs, extracted parameters and comments. Email to Dr. Fuller at <u>lffeee@rit.edu</u>

Test 01 – Van Der Pauw and CBKR. Record Average of five tests
Test 02 – Transistors, test small transistors (L=2µm for SMFL, L=1µm for Sub-CMOS and Adv-CMOS). Record results in power point document.
Test 03 – Inverters, Ring Oscillator. Record Average of five tests.

Test 03 – Inverters, Ring Oscillator. Record Average of five test Test 04 – NMOS VT wafer map

© December 15, 2008 Dr. Lynn Fuller

GENERAL TEST INSTRUCTIONS

Substrate or Well Connections: Most of the test structures incorporate diffusions. In Resistors, Van der Pauw's and Transistors the junctions between the diffusions and the substrate/wells are normally never forward biased. As a result the test engineer needs to evaluate the applied test voltages and connections to the substrate/wells and connections to the diffusions to ensure proper bias conditions.

For example: a P+ Van der Pauw in an N-type Well requires that the Well connection always have the highest positive voltage that is applied. If a separate (5th pad) connection is available (not often because there are only 4 SMU's) that can be set to a high voltage. Otherwise the substrate is normally connected to one of the four pads of the Van der Pauw. This pad can be swept with positive voltage thus keeping the substrate/well junction reverse biased.

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

GENERAL TEST INSTRUCTIONS

Each test requires you to:

- 1. Find the structure you want to test
- 2. Place the probes
- 3. Open the test by restoring the "testname"-1 (example PFAM-1) in ICS, view the test setup to see what SMU's do what.
- 4. Set the switch matrix for the HP4145 SMU's to the probes you are using, consistent with the test setup.
- 5. Edit the graph by making changes in the title, moving the cursors to the correct location
- 6. Copy the plot using ctrl print screen, (paste into word, copy from word to power point, crop and paste in correct location)
- 7. Extract the data, such as threshold voltage or LAMBDA and enter the value in the data table in the powerpoint
- 8. Save the powerpoint, minimize the data plot on ICS
- 9. When done email the powerpoint to Lynn.Fuller@rit.edu

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

TE01 Van Der Pauw and CBKR

VAN DER PAUW TEST STRUCTURES FOR SHEET RESISTANCE

CROSS BRIDGE KELVIN RESISTANCE TEST STRUCTURES FOR CONTACT RESISTANCES

TE01 Test Structures for SUB-CMOS Process MIXED Product

© December 15, 2008 Dr. Lynn Fuller

INVERTERS, VAN DER PAUW AND CBKR

Lot Number = F050118 - Wafer Number = D4, Die Location R= , C=

F050118 - WAFER D4 - P+ Van Der Pauw

EXTRACTED PARAMETERS FROM INVERTERS, VAN DER PAUW AND CBKR

Lot Number = F050118 - Wafer Number = D4, Die Location R= , C=

Contact Gs	CBKR	
P +	42	mmho/µm²
N +	8	mmho/µm²
poly	37	mmho/µm²

	Ring Oscillator	Vdd=5V
# Stages	73	
Period	104	nsec
td	0.712	nsec

Rhos	Van der Pauw	
P +	115	Ohms
N +	5.8	Ohms
well	614	Ohms
Poly	20.0	Ohms
Al	0.0662	Ohms

		Inverter			
VinL		2.4		V	
VinH		3		V	
VoL		0.4		V	
VoH		4.5		v	
Vinv		2.6		V	
Imax		4.5		mA	
Gain		-21.5			
D0=ViL-VoL		2.0		V	
D1=VoH-ViH		1.5		V	
	0	рАтр			
Gain	None				
Offset	None		mVolts		
GBW		None	Hz	Hz	
	VIA	CHAIN			
M1-P+	None		ohms		
M1-M2		None	ohms		

TE01 Test Structures for SUB-CMOS Process MIXED Product

© December 15, 2008 Dr. Lynn Fuller

TEST SET UP FOR POLY VAN DER PAUW (SUB-CMOS, MIXED) CHIPS

MOSFET IV CHARACTERISTICS

Lot Number = F050118Wafer Number = D4Date = 11-17-2006Process = SMFL CMOSProduct = DAC03

NMOS L/W = 2/16

MOSFET EXTRACTED PARAMETERS

Lot Number = F050118 - Wafer Number = D4, Die Location R= , C=

	PMOS	NMOS	Units
Mask Length / Width	2/16	2/16	μm
VT	-1.51	1.36	V
Lambda (for Vgs = Vdd)	0.115	0.0417	V-1
Max gm / mm of channel width	21.3	31.3	S/mm
Idrive	54.4	93.8	μA/μm
Ion/Ioff @ Vd = 0.1V	6	5	Decades
Ion/Ioff @ Vd = 5V	7	6	Decades
Ioff @ Vd = 0.1V	5.9e-11	5.0e-10	A/µm
Ioff @ Vd = 5V	5.9e-11	5.0e-10	A/µm
Sub-Vt Slope @ Vd = 0.1V	90	190	mV/Dec
Sub-Vt Slope @ Vd = 5 V	90	190	mV/Dec
DIBL@1nA/μm = $\Delta V_g / \Delta V_d$	0	0	mV/V
Field VT	-23	23	V

TE02 TEST STRUCTURES

© December 15, 2008 Dr. Lynn Fuller

Sweep 0 to 20 V, 101

11 Steps 0 to 20V

steps

Vs = 0

1 age 55

+2			
+Vds		SMU1	Vds
		SMU2	Vgs
Extract: ~Vt		SMU3	Com
		SMU4	
	© December 15, 20		

© December 15,

+1 ds		→ Saturation Region	
NMOS	Å	+5 +4 +3 +2	+Vgs

+Vds

Extract: ~Vt

	SMU1	Vds	Sweep 0 to -20 V, 101 steps	
	SMU2	Vgs	11 Steps 0 to - 20V	
	SMU3	Com	Vs = 0	
	SMU4			\mathcal{V}
20				

10.211

TE03 INTEGRATED CIRCUITS

TE03 TEST STRUCTURES

© December 15, 2008 Dr. Lynn Fuller

TE03 RING OSCILLATOR

Rochester Institute of Technology Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

RING OSCILLATOR, td

73 Stage Ring at 5V, td = 0.712ns

73 Stage Ring at 6V, td = 0.228ns

TE03 INSTRUCTIONS

- Move to manual probe station.
- Place wafer on stage and apply vacuum.
- Move stage such that Ring Oscillator is in the field of view.
- Move manual probes to make contact with the "GND", "OUT", and "VDD" probe pads.
- Use a DC power supply to supply 5 V to VDD, and 0 V to GND.
- Use the oscilloscope to view & measure the frequency.
- 17, 37 or 73 stages.

Output:

Open Folder name: Textronixoutput on desktop Open Program 7470 (DOS)

Click Aquire; Request address number 7

Print plot or save as: filename.gif

Data will download to computer and plot will update

Rochester Institute of Techno Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

OPERATIONAL AMPLIFIER

Set up the HP 4145 to sweep the Vin from -20 mV to +20 mV in 0.001V steps. Measure Gain and Input offset voltage.

Rochester Institute of Technology

Microelectronic Engineering

© December 15, 2008 Dr. Lynn Fuller

AC TEST RESULTS

Testing

TE04 INSTRUCTIONS – WAFER MAP

- Measure Vt for NFET on each die in a 15 x 15 array centered on the wafer.
- **Record information in MESA** and on an excel spreadsheet using the Binning described in below.

Code	
0	no die
1	value<(Target-70%)
2	(Target-70%) <value<(target-50%)< td=""></value<(target-50%)<>
3	(Target-50%) <value<(target-30%)< td=""></value<(target-30%)<>
4	(Target-30%) <value<(target-10%)< td=""></value<(target-10%)<>
5	(Target-10%) <value<(target+10%)< td=""></value<(target+10%)<>
6	(Target+10%) <value<(target+30%)< td=""></value<(target+30%)<>
7	(Target+30%) <value<(target+50%)< td=""></value<(target+50%)<>
8	(Target+50%) <value<(target+70%)< td=""></value<(target+70%)<>
9	(Target+70%) <value< td=""></value<>

Rochester Institute of Technology Microelectronic Engineering

Example Data

nmos Vt target +1 0040504050906 000050505050500

© December 15, 2008 Dr. Lynn Fuller

© December 15, 2008 Dr. Lynn Fuller

Page 73

CMOS Testing

SMFL CMOS DAC TEST STRUCTURES

Rochester Institute of Technology Microelectronic Engineering

VAN DER PAUW AND CBKR

© December 15, 2008 Dr. Lynn Fuller

Page 74

CMOS Testing

SMFL CMOS DAC TEST STRUCTURES

© December 15, 2008 Dr. Lynn Fuller

Page 76