ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

BJT IC Design

Dr. Lynn Fuller

Webpage: http://people.rit.edu/lffeee/ Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

Email: <u>Lynn.Fuller@rit.edu</u> MicroE webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology Microelectronic Engineering 1-13-12 BJT_IC_Design.ppt

© January 13, 2012 Dr. Lynn Fuller, Professor

SMALL SIGNAL ANALYSIS

Lets define: Differential input voltage vid=vi1-vi2 Common input voltage vic = (vi1 + vi2)/2Differential Output Voltage Vod = Vo1 - Vo2Common output voltage Voc = (Vo1 + Vo2)/2Single sided output voltage *Voss=Vo1 or Vo2*

VOLTAGE GAINS: Avd, Avc, CMRR

Differential mode voltage gain, Avd = *Vod / vid*

Let
$$vin1 = vid/2 + vic$$
 and $vin2 = -vid/2 + vic$
Ib1 = $(vin1 - Ve) / r\pi$ Ib2 = $(vin2 - Ve) / r\pi$
Ib1 = $(vid/2 - Ve) / r\pi$ Ib2 = $(-vid/2 - Ve) / r\pi$
 $Vo1 = -\beta$ ib1 Rc $Vo2 = -\beta$ ib2 Rc
 $Vod = Vo1 - Vo2 = -\beta$ ib1 Rc $--\beta$ ib2 Rc
 $Vod = (\beta Rc / r\pi) (vid/2 + vid/2)$
 $Avd = -\frac{\beta Rc}{r\pi}$

VARIATIONS

Variations:

- 1. Resistor between emitter and –Vee rather than current source
- 2. Series base resistors
- 3. Emitter resistors
- 4. Various types of current sources
- 5. Darlington configuration
- 6. FET's
- 7. Single sided outputs
- 8. Active loads
- 9. unbalanced or non symmetrical circuits

Rochester Institute of Technology Microelectronic Engineering

© January 13, 2012 Dr. Lynn Fuller, Professor

SUMMARY

1. The differential amplifier should amplify the difference between the two input voltages.

2. The differential amplifier should suppress signals that are common to both inputs.

3. The differential amplifier with a constant current source is superior to the differential amplifier with just a resistor.

4. The common mode rejection ratio is used as a figure of merit for comparison.

5. The differential amplifier is a dc amplifier as well as an ac amplifier.

Rochester Institute of Technology Microelectronic Engineering

709 OPERATIONAL AMPLIFIER

© January 13, 2012 Dr. Lynn Fuller, Professor

741 OPERATIONAL AMPLIFIER

are 5.23 Photomicrograph of the 741 operational amplifier. Die size: 56 mils are. (Photo: Fairchild.)

© January 13, 2012 Dr. Lynn Fuller, Professor

SIMPLIFIED 741 OP AMP SCHEMATIC

LEVEL SHIFTING

It would be nice to have zero volts out when we have zero volts in. By adding a level shifting stage we can achieve this.

Design **REFERENCES** 1. Sedra and Smith, 2. Device Electronics for Integrated Circuits, 2nd Edition, Kamins and Muller, John Wiley and Sons, 1986. 3. The Bipolar Junction Transistor, 2nd Edition, Gerald Neudeck, Addison-Wesley, 1989. 4. Analog Integrated Circuits, Gray and Meyers **Rochester Institute of Technology** Microelectronic Engineering © January 13, 2012 Dr. Lynn Fuller, Professor Page 37

